Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 7/2008

01.07.2008 | Original Article

Quantification of dopaminergic neurotransmission SPECT studies with 123I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation

verfasst von: Cristina Crespo, Judith Gallego, Albert Cot, Carles Falcón, Santiago Bullich, Deborah Pareto, Pablo Aguiar, Josep Sempau, Francisco Lomeña, Francisco Calviño, Javier Pavía, Domènec Ros

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 7/2008

Einloggen, um Zugang zu erhalten

Abstract

Purpose

123I-labelled radioligands are commonly used for single-photon emission computed tomography (SPECT) imaging of the dopaminergic system to study the dopamine transporter binding. The aim of this work was to compare the quantitative capabilities of two different SPECT systems through Monte Carlo (MC) simulation.

Methods

The SimSET MC code was employed to generate simulated projections of a numerical phantom for two gamma cameras equipped with a parallel and a fan-beam collimator, respectively. A fully 3D iterative reconstruction algorithm was used to compensate for attenuation, the spatially variant point spread function (PSF) and scatter. A post-reconstruction partial volume effect (PVE) compensation was also developed.

Results

For both systems, the correction for all degradations and PVE compensation resulted in recovery factors of the theoretical specific uptake ratio (SUR) close to 100%. For a SUR value of 4, the recovered SUR for the parallel imaging system was 33% for a reconstruction without corrections (OSEM), 45% for a reconstruction with attenuation correction (OSEM-A), 56% for a 3D reconstruction with attenuation and PSF corrections (OSEM-AP), 68% for OSEM-AP with scatter correction (OSEM-APS) and 97% for OSEM-APS plus PVE compensation (OSEM-APSV). For the fan-beam imaging system, the recovered SUR was 41% without corrections, 55% for OSEM-A, 65% for OSEM-AP, 75% for OSEM-APS and 102% for OSEM-APSV.

Conclusion

Our findings indicate that the correction for degradations increases the quantification accuracy, with PVE compensation playing a major role in the SUR quantification. The proposed methodology allows us to reach similar SUR values for different SPECT systems, thereby allowing a reliable standardisation in multicentric studies.
Literatur
1.
Zurück zum Zitat Gelb DJ, Oliver E, Gilman S. Diagnosis criteria for Parkinson disease. Arch Neurol 1999;56:33–9.PubMedCrossRef Gelb DJ, Oliver E, Gilman S. Diagnosis criteria for Parkinson disease. Arch Neurol 1999;56:33–9.PubMedCrossRef
2.
Zurück zum Zitat Halldin C, Gulyas B, Langer O, Farde L. Brain radioligands—state of the art and new trends. Q J Nucl Med 2001;45:139–52.PubMed Halldin C, Gulyas B, Langer O, Farde L. Brain radioligands—state of the art and new trends. Q J Nucl Med 2001;45:139–52.PubMed
3.
Zurück zum Zitat Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AGM, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labeling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;62:133–40.PubMedCrossRef Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AGM, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labeling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;62:133–40.PubMedCrossRef
4.
Zurück zum Zitat Seibyl JP, Marek K, Sheff K, Baldwin RM, Zoghbi S, Zea-Ponce Y, et al. Test/retest reproducibility of iodine-123-β-CIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med 1997;38:1453–9.PubMed Seibyl JP, Marek K, Sheff K, Baldwin RM, Zoghbi S, Zea-Ponce Y, et al. Test/retest reproducibility of iodine-123-β-CIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med 1997;38:1453–9.PubMed
5.
Zurück zum Zitat Linke R, Gostomzyk J, Hahn K, Tatsch K. [I-123] IPT-binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000;27:1809–12.PubMedCrossRef Linke R, Gostomzyk J, Hahn K, Tatsch K. [I-123] IPT-binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000;27:1809–12.PubMedCrossRef
6.
Zurück zum Zitat Catafau AM. Brain SPECT of dopaminergic neurotransmission: a new tool with proved clinical impact. Nucl Med Commun 2001;22:1059–60.PubMedCrossRef Catafau AM. Brain SPECT of dopaminergic neurotransmission: a new tool with proved clinical impact. Nucl Med Commun 2001;22:1059–60.PubMedCrossRef
7.
Zurück zum Zitat Stoof JC, Winogrodzka A, van Muiswinkel FL, Wolters EC, Voorn P, Groenewegen HJ, et al. Leads for the development of neuroprotective treatment in Parkinson’s disease and brain imaging methods for estimating treatment efficacy. Eur J Pharmacol 1999;375:75–86.PubMedCrossRef Stoof JC, Winogrodzka A, van Muiswinkel FL, Wolters EC, Voorn P, Groenewegen HJ, et al. Leads for the development of neuroprotective treatment in Parkinson’s disease and brain imaging methods for estimating treatment efficacy. Eur J Pharmacol 1999;375:75–86.PubMedCrossRef
8.
Zurück zum Zitat Tatsch K, Asenbaum S, Bartebstein P, Catafau A, Halldin C, Pillowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine transporter ligands. Eur J Nucl Med 2002;BP29:30–5. Tatsch K, Asenbaum S, Bartebstein P, Catafau A, Halldin C, Pillowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine transporter ligands. Eur J Nucl Med 2002;BP29:30–5.
9.
Zurück zum Zitat El Fakhri G, Kijewski MF, Moore SC. Absolute activity quantitation from projections using an analytical approach: comparison with iterative methods in Tc-99m and I-123 brain SPECT. IEEE Trans Nucl Sci 2001;48:768–73.CrossRef El Fakhri G, Kijewski MF, Moore SC. Absolute activity quantitation from projections using an analytical approach: comparison with iterative methods in Tc-99m and I-123 brain SPECT. IEEE Trans Nucl Sci 2001;48:768–73.CrossRef
10.
Zurück zum Zitat Pareto D, Cot A, Pavía J, Falcón C, Juvells I, Lomeña F, et al. Iterative reconstruction with correction of the spatially variant fan-beam collimator response in neurotransmission SPET imaging. Eur J Nucl Med Mol Imaging 2003;30:1322–9.PubMedCrossRef Pareto D, Cot A, Pavía J, Falcón C, Juvells I, Lomeña F, et al. Iterative reconstruction with correction of the spatially variant fan-beam collimator response in neurotransmission SPET imaging. Eur J Nucl Med Mol Imaging 2003;30:1322–9.PubMedCrossRef
11.
Zurück zum Zitat Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 2003;44:1184–93.PubMed Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med 2003;44:1184–93.PubMed
12.
Zurück zum Zitat Cot A, Falcón C, Crespo C, Sempau J, Pareto D, Bullich S, et al. Absolute quantification in dopaminergic neurotransmission SPECT using a Monte Carlo-based scatter correction and fully 3-dimensional reconstruction. J Nucl Med 2005;46:1497–504.PubMed Cot A, Falcón C, Crespo C, Sempau J, Pareto D, Bullich S, et al. Absolute quantification in dopaminergic neurotransmission SPECT using a Monte Carlo-based scatter correction and fully 3-dimensional reconstruction. J Nucl Med 2005;46:1497–504.PubMed
13.
Zurück zum Zitat Du Y, Tsui BMW, Frey E. Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol 2006;51:1269–82.PubMedCrossRef Du Y, Tsui BMW, Frey E. Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol 2006;51:1269–82.PubMedCrossRef
14.
Zurück zum Zitat Beekman FJ, de Jong HWAM, Geloven S. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 2002;21:867–77.PubMedCrossRef Beekman FJ, de Jong HWAM, Geloven S. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 2002;21:867–77.PubMedCrossRef
15.
Zurück zum Zitat Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82.PubMedCrossRef Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82.PubMedCrossRef
16.
Zurück zum Zitat Cot A, Sempau J, Pareto D, Bullich S, Pavía J, Calviño F, et al. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation. Phys Med Biol 2004;49:3125–36.PubMedCrossRef Cot A, Sempau J, Pareto D, Bullich S, Pavía J, Calviño F, et al. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation. Phys Med Biol 2004;49:3125–36.PubMedCrossRef
17.
Zurück zum Zitat Soret M, Alaoui J, Koulibaly PM, Darcourt J, Buvat I. Accuracy of partial volume effect correction in clinical molecular imaging of dopamine transporter using SPECT. Nucl Instrum Methods A 2007;571:173–6.CrossRef Soret M, Alaoui J, Koulibaly PM, Darcourt J, Buvat I. Accuracy of partial volume effect correction in clinical molecular imaging of dopamine transporter using SPECT. Nucl Instrum Methods A 2007;571:173–6.CrossRef
18.
Zurück zum Zitat Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998;39:904–11.PubMed Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998;39:904–11.PubMed
19.
Zurück zum Zitat Frouin V, Comtat C, Reilhac A, Grégoire MC. Correction of partial-volume effect for PET striatal imaging: fast implementation and study robustness. J Nucl Med 2002;43:1715–26.PubMed Frouin V, Comtat C, Reilhac A, Grégoire MC. Correction of partial-volume effect for PET striatal imaging: fast implementation and study robustness. J Nucl Med 2002;43:1715–26.PubMed
20.
Zurück zum Zitat Bullich S, Ros D, Pavia J, Penengo M, Mateos J, Falcon C, et al. Influence of coregistration algorithms on I-123-IBZM SPET imaging quantification. Eur J Nucl Med Mol Imaging 2004;31:S409. Bullich S, Ros D, Pavia J, Penengo M, Mateos J, Falcon C, et al. Influence of coregistration algorithms on I-123-IBZM SPET imaging quantification. Eur J Nucl Med Mol Imaging 2004;31:S409.
21.
Zurück zum Zitat Quarantelli M, Berkouk K, Prinster A, Landeau B, Svarer C, Balkay L, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med 2004;45:192–201.PubMed Quarantelli M, Berkouk K, Prinster A, Landeau B, Svarer C, Balkay L, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med 2004;45:192–201.PubMed
22.
Zurück zum Zitat Du Y, Tsui BMW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 2005;24:969–76.PubMedCrossRef Du Y, Tsui BMW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 2005;24:969–76.PubMedCrossRef
23.
Zurück zum Zitat Vanzi E, De Cristofaro M, Ramat S, Sotgia B, Mascalchi M, Formiconi AR. A direct ROI quantification method for inherent PVE correction: accuracy assessment in striatal SPECT measurements. Eur J Nucl Med Mol Imaging 2007;34:1480–9.PubMedCrossRef Vanzi E, De Cristofaro M, Ramat S, Sotgia B, Mascalchi M, Formiconi AR. A direct ROI quantification method for inherent PVE correction: accuracy assessment in striatal SPECT measurements. Eur J Nucl Med Mol Imaging 2007;34:1480–9.PubMedCrossRef
24.
Zurück zum Zitat Harrison RL, Vannoy SD, Haynor DR, Gillispie SB, Kaplan MS, Lewellen TK. Preliminary experience with the photon history generator module of a public-domain simulation systems for emission tomography. In: 1993 records of IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, pp. 1154–8. Harrison RL, Vannoy SD, Haynor DR, Gillispie SB, Kaplan MS, Lewellen TK. Preliminary experience with the photon history generator module of a public-domain simulation systems for emission tomography. In: 1993 records of IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, pp. 1154–8.
25.
Zurück zum Zitat Pareto D, Cot A, Falcón C, Juvells I, Pavía J, Ros D. Geometrical response modelling in fan-beam collimators—a numerical simulation. IEEE Trans Nucl Sci 2002;49:17–24.CrossRef Pareto D, Cot A, Falcón C, Juvells I, Pavía J, Ros D. Geometrical response modelling in fan-beam collimators—a numerical simulation. IEEE Trans Nucl Sci 2002;49:17–24.CrossRef
26.
Zurück zum Zitat Cot A, Jané E, Sempau J, Falcón C, Bullich S, Pavía J, et al. Modeling of high-energy contamination in SPECT imaging using Monte Carlo simulation. IEEE Trans Nucl Sci 2006;53:198–203.CrossRef Cot A, Jané E, Sempau J, Falcón C, Bullich S, Pavía J, et al. Modeling of high-energy contamination in SPECT imaging using Monte Carlo simulation. IEEE Trans Nucl Sci 2006;53:198–203.CrossRef
27.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef
28.
Zurück zum Zitat Bowsher JE, Johnson WE, Turkington TG, Jasszczak RJ, Floyd CE, Coleman RE. Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Trans Med Imaging 1996;15:673–86.PubMedCrossRef Bowsher JE, Johnson WE, Turkington TG, Jasszczak RJ, Floyd CE, Coleman RE. Bayesian reconstruction and use of anatomical a priori information for emission tomography. IEEE Trans Med Imaging 1996;15:673–86.PubMedCrossRef
29.
Zurück zum Zitat Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004;49:N227–34.PubMedCrossRef Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004;49:N227–34.PubMedCrossRef
30.
Zurück zum Zitat Tossici-Bolt L, Hoffmann SMA, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging 2006;33:1491–9.PubMedCrossRef Tossici-Bolt L, Hoffmann SMA, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging 2006;33:1491–9.PubMedCrossRef
31.
Zurück zum Zitat Du Y, Tsui BMW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 2005;24:969–76.PubMedCrossRef Du Y, Tsui BMW, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. IEEE Trans Med Imaging 2005;24:969–76.PubMedCrossRef
32.
Zurück zum Zitat Koch W, Radau PE, Münzing W, Tatsch K. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging 2006;33:495–502.PubMedCrossRef Koch W, Radau PE, Münzing W, Tatsch K. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging 2006;33:495–502.PubMedCrossRef
33.
Zurück zum Zitat Koch W, Hamann C, Welsch J, Popperl G, Radau PE, Tatsch K. Is iterative reconstruction an alternative to filtered backprojection in routine processing of dopamine transporter SPECT studies? J Nucl Med 2005;46(11):1804–11.PubMed Koch W, Hamann C, Welsch J, Popperl G, Radau PE, Tatsch K. Is iterative reconstruction an alternative to filtered backprojection in routine processing of dopamine transporter SPECT studies? J Nucl Med 2005;46(11):1804–11.PubMed
Metadaten
Titel
Quantification of dopaminergic neurotransmission SPECT studies with 123I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation
verfasst von
Cristina Crespo
Judith Gallego
Albert Cot
Carles Falcón
Santiago Bullich
Deborah Pareto
Pablo Aguiar
Josep Sempau
Francisco Lomeña
Francisco Calviño
Javier Pavía
Domènec Ros
Publikationsdatum
01.07.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 7/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0711-z

Weitere Artikel der Ausgabe 7/2008

European Journal of Nuclear Medicine and Molecular Imaging 7/2008 Zur Ausgabe