Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 8/2011

01.08.2011 | Original Article

Assessment of α7 nicotinic acetylcholine receptor availability in juvenile pig brain with [18F]NS10743

verfasst von: Winnie Deuther-Conrad, Steffen Fischer, Achim Hiller, Georg Becker, Paul Cumming, Guoming Xiong, Uta Funke, Osama Sabri, Dan Peters, Peter Brust

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 8/2011

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [18F]NS10743, a novel diazabicyclononane derivative targeting α7 nicotinic acetylcholine receptors (α7 nAChRs).

Methods

Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [18F]NS10743 under baseline conditions (n = 3) and after blocking of the α7 nAChR with NS6740 (3 mg·kg−1 bolus + 1  mg·kg−1·h−1 continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time–radioactivity curves was performed, and parametric maps were calculated relative to arterial input.

Results

Plasma [18F]NS10743 passed readily into the brain, with peak uptake occurring in α7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUVmax was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUVmax 1.53 ± 0.32). Administration of NS6740 significantly decreased [18F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BPND. The baseline BPND ranged from 0.39 ± 0.08 in the cerebellum to 0.76 ± 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BPND in regions with high [18F]NS10743 binding (temporal lobe −29%, p = 0.01; midbrain: −35%, p = 0.02), without significantly altering the BPND in low binding regions (cerebellum: −16%, p = 0.2).

Conclusion

This study confirms the potential of [18F]NS10743 as a target-specific radiotracer for the molecular imaging of central α7 nAChRs by PET.
Literatur
1.
Zurück zum Zitat Lindstrom J, Anand R, Gerzanich V, Peng X, Wang F, Wells G. Structure and function of neuronal nicotinic acetylcholine receptors. Prog Brain Res. 1996;109:125–37.PubMedCrossRef Lindstrom J, Anand R, Gerzanich V, Peng X, Wang F, Wells G. Structure and function of neuronal nicotinic acetylcholine receptors. Prog Brain Res. 1996;109:125–37.PubMedCrossRef
2.
Zurück zum Zitat Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74(6):363–96.PubMedCrossRef Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74(6):363–96.PubMedCrossRef
3.
Zurück zum Zitat Fucile S, Renzi M, Lax P, Eusebi F. Fractional Ca(2+) current through human neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium. 2003;34(2):205–9.PubMedCrossRef Fucile S, Renzi M, Lax P, Eusebi F. Fractional Ca(2+) current through human neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium. 2003;34(2):205–9.PubMedCrossRef
4.
Zurück zum Zitat Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M, et al. Comparison of the regional expression of nicotinic acetylcholine receptor α7 mRNA and [125I]-α-bungarotoxin binding in human postmortem brain. J Comp Neurol. 1997;387(3):385–98.PubMedCrossRef Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M, et al. Comparison of the regional expression of nicotinic acetylcholine receptor α7 mRNA and [125I]-α-bungarotoxin binding in human postmortem brain. J Comp Neurol. 1997;387(3):385–98.PubMedCrossRef
5.
Zurück zum Zitat Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry. 1995;38(1):22–33.PubMedCrossRef Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry. 1995;38(1):22–33.PubMedCrossRef
6.
Zurück zum Zitat Stephens SH, Logel J, Barton A, Franks A, Schultz J, Short M, et al. Association of the 5'-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizophr Res. 2009;109(1–3):102–12.PubMedCrossRef Stephens SH, Logel J, Barton A, Franks A, Schultz J, Short M, et al. Association of the 5'-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizophr Res. 2009;109(1–3):102–12.PubMedCrossRef
7.
Zurück zum Zitat Bencherif M, Lippiello PM. Alpha7 neuronal nicotinic receptors: the missing link to understanding Alzheimer's etiopathology? Med Hypotheses. 2010;74(2):281–5.PubMedCrossRef Bencherif M, Lippiello PM. Alpha7 neuronal nicotinic receptors: the missing link to understanding Alzheimer's etiopathology? Med Hypotheses. 2010;74(2):281–5.PubMedCrossRef
8.
Zurück zum Zitat Dunlop J, Peri R, Terstappen GC, Bowlby M. Functional screening of α7 nicotinic ligands. Expert Opin Drug Discov. 2008;3(6):623–8.CrossRef Dunlop J, Peri R, Terstappen GC, Bowlby M. Functional screening of α7 nicotinic ligands. Expert Opin Drug Discov. 2008;3(6):623–8.CrossRef
9.
Zurück zum Zitat Bunnelle WH, Dart MJ, Schrimpf MR. Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity. Curr Top Med Chem. 2004;4(3):299–334.PubMedCrossRef Bunnelle WH, Dart MJ, Schrimpf MR. Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity. Curr Top Med Chem. 2004;4(3):299–334.PubMedCrossRef
10.
Zurück zum Zitat Gotti C, Balestra B, Moretti M, Rovati GE, Maggi L, Rossoni G, et al. 4-Oxystilbene compounds are selective ligands for neuronal nicotinic alphaBungarotoxin receptors. Br J Pharmacol. 1998;124(6):1197–206.PubMedCrossRef Gotti C, Balestra B, Moretti M, Rovati GE, Maggi L, Rossoni G, et al. 4-Oxystilbene compounds are selective ligands for neuronal nicotinic alphaBungarotoxin receptors. Br J Pharmacol. 1998;124(6):1197–206.PubMedCrossRef
11.
Zurück zum Zitat Maggi L, Palma E, Eusebi F, Moretti M, Balestra B, Clementi F, et al. Selective effects of a 4-oxystilbene derivative on wild and mutant neuronal chick α7 nicotinic receptor. Br J Pharmacol. 1999;126(1):285–95.PubMedCrossRef Maggi L, Palma E, Eusebi F, Moretti M, Balestra B, Clementi F, et al. Selective effects of a 4-oxystilbene derivative on wild and mutant neuronal chick α7 nicotinic receptor. Br J Pharmacol. 1999;126(1):285–95.PubMedCrossRef
12.
Zurück zum Zitat Meyer EM, Tay ET, Papke RL, Meyers C, Huang GL, de Fiebre CM. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat α7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res. 1997;768(1–2):49–56.PubMedCrossRef Meyer EM, Tay ET, Papke RL, Meyers C, Huang GL, de Fiebre CM. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat α7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res. 1997;768(1–2):49–56.PubMedCrossRef
13.
Zurück zum Zitat Balestra M, Gordon JC, Griffith RC, Murray RJ. Spiro-azabicyclic compounds useful in therapy. Patent WO9606098. 1996. Balestra M, Gordon JC, Griffith RC, Murray RJ. Spiro-azabicyclic compounds useful in therapy. Patent WO9606098. 1996.
14.
Zurück zum Zitat Toyohara J, Ishiwata K, Sakata M, Wu J, Nishiyama S, Tsukada H, et al. In vivo evaluation of α7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys. PLoS ONE. 2010;5(2):e8961.PubMedCrossRef Toyohara J, Ishiwata K, Sakata M, Wu J, Nishiyama S, Tsukada H, et al. In vivo evaluation of α7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys. PLoS ONE. 2010;5(2):e8961.PubMedCrossRef
15.
Zurück zum Zitat Toyohara J, Sakata M, Wu J, Ishikawa M, Oda K, Ishii K, et al. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping α7 nicotinic receptors by positron emission tomography. Ann Nucl Med. 2009;23(3):301–9.PubMedCrossRef Toyohara J, Sakata M, Wu J, Ishikawa M, Oda K, Ishii K, et al. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping α7 nicotinic receptors by positron emission tomography. Ann Nucl Med. 2009;23(3):301–9.PubMedCrossRef
16.
Zurück zum Zitat Hashimoto K, Nishiyama S, Ohba H, Matsuo M, Kobashi T, Takahagi M, et al. [11C]CHIBA-1001 as a novel PET ligand for α7 nicotinic receptors in the brain: a PET study in conscious monkeys. PLoS ONE. 2008;3(9):e3231.PubMedCrossRef Hashimoto K, Nishiyama S, Ohba H, Matsuo M, Kobashi T, Takahagi M, et al. [11C]CHIBA-1001 as a novel PET ligand for α7 nicotinic receptors in the brain: a PET study in conscious monkeys. PLoS ONE. 2008;3(9):e3231.PubMedCrossRef
17.
Zurück zum Zitat Whiteaker P, Davies AR, Marks MJ, Blagbrough IS, Potter BV, Wolstenholme AJ, et al. An autoradiographic study of the distribution of binding sites for the novel α7-selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. Eur J Neurosci. 1999;11(8):2689–96.PubMedCrossRef Whiteaker P, Davies AR, Marks MJ, Blagbrough IS, Potter BV, Wolstenholme AJ, et al. An autoradiographic study of the distribution of binding sites for the novel α7-selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. Eur J Neurosci. 1999;11(8):2689–96.PubMedCrossRef
18.
Zurück zum Zitat Davies AR, Hardick DJ, Blagbrough IS, Potter BV, Wolstenholme AJ, Wonnacott S. Characterisation of the binding of [3H]methyllycaconitine: a new radioligand for labelling α7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology. 1999;38(5):679–90.PubMedCrossRef Davies AR, Hardick DJ, Blagbrough IS, Potter BV, Wolstenholme AJ, Wonnacott S. Characterisation of the binding of [3H]methyllycaconitine: a new radioligand for labelling α7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology. 1999;38(5):679–90.PubMedCrossRef
19.
Zurück zum Zitat Mathew SV, Law AJ, Lipska BK, Davila-Garcia MI, Zamora ED, Mitkus SN, et al. α7 nicotinic acetylcholine receptor mRNA expression and binding in postmortem human brain are associated with genetic variation in neuregulin 1. Hum Mol Genet. 2007;16(23):2921–32.PubMedCrossRef Mathew SV, Law AJ, Lipska BK, Davila-Garcia MI, Zamora ED, Mitkus SN, et al. α7 nicotinic acetylcholine receptor mRNA expression and binding in postmortem human brain are associated with genetic variation in neuregulin 1. Hum Mol Genet. 2007;16(23):2921–32.PubMedCrossRef
20.
Zurück zum Zitat Tanibuchi Y, Wu J, Toyohara J, Fujita Y, Iyo M, Hashimoto K. Characterization of [3H]CHIBA-1001 binding to α7 nicotinic acetylcholine receptors in the brain from rat, monkey, and human. Brain Res. 2010;1348:200–8.PubMedCrossRef Tanibuchi Y, Wu J, Toyohara J, Fujita Y, Iyo M, Hashimoto K. Characterization of [3H]CHIBA-1001 binding to α7 nicotinic acetylcholine receptors in the brain from rat, monkey, and human. Brain Res. 2010;1348:200–8.PubMedCrossRef
21.
Zurück zum Zitat Deuther-Conrad W, Fischer S, Hiller A, Nielsen EO, Timmermann DB, Steinbach J, et al. Molecular imaging of α7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur J Nucl Med Mol Imaging. 2009;36(5):791–800.PubMedCrossRef Deuther-Conrad W, Fischer S, Hiller A, Nielsen EO, Timmermann DB, Steinbach J, et al. Molecular imaging of α7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur J Nucl Med Mol Imaging. 2009;36(5):791–800.PubMedCrossRef
22.
Zurück zum Zitat Briggs CA, Gronlien JH, Curzon P, Timmermann DB, Ween H, Thorin-Hagene K, et al. Role of channel activation in cognitive enhancement mediated by α7 nicotinic acetylcholine receptors. Br J Pharmacol. 2009;158(6):1486–94.PubMedCrossRef Briggs CA, Gronlien JH, Curzon P, Timmermann DB, Ween H, Thorin-Hagene K, et al. Role of channel activation in cognitive enhancement mediated by α7 nicotinic acetylcholine receptors. Br J Pharmacol. 2009;158(6):1486–94.PubMedCrossRef
23.
Zurück zum Zitat Brust P, Patt JT, Deuther-Conrad W, Becker G, Patt M, Schildan A, et al. In vivo measurement of nicotinic acetylcholine receptors with [18F]norchloro-fluoro-homoepibatidine. Synapse. 2008;62(3):205–18.PubMedCrossRef Brust P, Patt JT, Deuther-Conrad W, Becker G, Patt M, Schildan A, et al. In vivo measurement of nicotinic acetylcholine receptors with [18F]norchloro-fluoro-homoepibatidine. Synapse. 2008;62(3):205–18.PubMedCrossRef
24.
Zurück zum Zitat Gillings NM, Bender D, Falborg L, Marthi K, Munk OL, Cumming P. Kinetics of the metabolism of four PET radioligands in living minipigs. Nucl Med Biol. 2001;28(1):97–104.PubMedCrossRef Gillings NM, Bender D, Falborg L, Marthi K, Munk OL, Cumming P. Kinetics of the metabolism of four PET radioligands in living minipigs. Nucl Med Biol. 2001;28(1):97–104.PubMedCrossRef
25.
Zurück zum Zitat Brust P, Zessin J, Kuwabara H, Pawelke B, Kretzschmar M, Hinz R, et al. Positron emission tomography imaging of the serotonin transporter in the pig brain using [11C](+)-McN5652 and S-[18F]fluoromethyl-(+)-McN5652. Synapse. 2003;47(2):143–51.PubMedCrossRef Brust P, Zessin J, Kuwabara H, Pawelke B, Kretzschmar M, Hinz R, et al. Positron emission tomography imaging of the serotonin transporter in the pig brain using [11C](+)-McN5652 and S-[18F]fluoromethyl-(+)-McN5652. Synapse. 2003;47(2):143–51.PubMedCrossRef
26.
Zurück zum Zitat Brust P, Hinz R, Kuwabara H, Hesse S, Zessin J, Pawelke B, et al. In vivo measurement of the serotonin transporter with (S)-[18F]fluoromethyl-(+)-McN5652. Neuropsychopharmacology. 2003;28(11):2010–9.PubMed Brust P, Hinz R, Kuwabara H, Hesse S, Zessin J, Pawelke B, et al. In vivo measurement of the serotonin transporter with (S)-[18F]fluoromethyl-(+)-McN5652. Neuropsychopharmacology. 2003;28(11):2010–9.PubMed
27.
Zurück zum Zitat Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007:27(9):1533–9.PubMedCrossRef Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007:27(9):1533–9.PubMedCrossRef
28.
Zurück zum Zitat Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10(5):740–7.PubMedCrossRef Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10(5):740–7.PubMedCrossRef
29.
Zurück zum Zitat Jensen SB, Smith DF, Bender D, Jakobsen S, Peters D, Nielsen EØ, et al. [11C]-NS 4194 versus [11C]-DASB for PET imaging of serotonin transporters in living porcine brain. Synapse. 2003;49(3):170–7.PubMedCrossRef Jensen SB, Smith DF, Bender D, Jakobsen S, Peters D, Nielsen EØ, et al. [11C]-NS 4194 versus [11C]-DASB for PET imaging of serotonin transporters in living porcine brain. Synapse. 2003;49(3):170–7.PubMedCrossRef
30.
Zurück zum Zitat Hoffmeister PG, Donat CK, Schuhmann MU, Voigt C, Walter B, Nieber K et al. Traumatic brain injury elicits similar alterations in α7 nicotinic receptor density in two different experimental models. Neuromolecular Med. 2010;13(1):44–53.PubMedCrossRef Hoffmeister PG, Donat CK, Schuhmann MU, Voigt C, Walter B, Nieber K et al. Traumatic brain injury elicits similar alterations in α7 nicotinic receptor density in two different experimental models. Neuromolecular Med. 2010;13(1):44–53.PubMedCrossRef
31.
Zurück zum Zitat Cumming P, Rosa-Neto P, Watanabe H, Smith D, Bender D, Clarke PB, et al. Effects of acute nicotine on hemodynamics and binding of [11C]raclopride to dopamine D2,3 receptors in pig brain. Neuroimage. 2003;19(3):1127–36.PubMedCrossRef Cumming P, Rosa-Neto P, Watanabe H, Smith D, Bender D, Clarke PB, et al. Effects of acute nicotine on hemodynamics and binding of [11C]raclopride to dopamine D2,3 receptors in pig brain. Neuroimage. 2003;19(3):1127–36.PubMedCrossRef
32.
Zurück zum Zitat Court JA, Martin-Ruiz C, Graham A, Perry E. Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat. 2000;20(3-4):281–98.PubMedCrossRef Court JA, Martin-Ruiz C, Graham A, Perry E. Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat. 2000;20(3-4):281–98.PubMedCrossRef
33.
Zurück zum Zitat Uchida S, Hotta H. Cerebral cortical vasodilatation mediated by nicotinic cholinergic receptors: effects of old age and of chronic nicotine exposure. Biol Pharm Bull. 2009;32(3):341–4.PubMedCrossRef Uchida S, Hotta H. Cerebral cortical vasodilatation mediated by nicotinic cholinergic receptors: effects of old age and of chronic nicotine exposure. Biol Pharm Bull. 2009;32(3):341–4.PubMedCrossRef
34.
Zurück zum Zitat Si ML, Lee TJ. α7-nicotinic acetylcholine receptors on cerebral perivascular sympathetic nerves mediate choline-induced nitrergic neurogenic vasodilation. Circ Res. 2002;91(1):62–9.PubMedCrossRef Si ML, Lee TJ. α7-nicotinic acetylcholine receptors on cerebral perivascular sympathetic nerves mediate choline-induced nitrergic neurogenic vasodilation. Circ Res. 2002;91(1):62–9.PubMedCrossRef
35.
Zurück zum Zitat Andersen F, Watanabe H, Bjarkam C, Danielsen EH, Cumming P. Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning. Brain Res Bull. 2005;66(1):17–29.PubMedCrossRef Andersen F, Watanabe H, Bjarkam C, Danielsen EH, Cumming P. Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning. Brain Res Bull. 2005;66(1):17–29.PubMedCrossRef
Metadaten
Titel
Assessment of α7 nicotinic acetylcholine receptor availability in juvenile pig brain with [18F]NS10743
verfasst von
Winnie Deuther-Conrad
Steffen Fischer
Achim Hiller
Georg Becker
Paul Cumming
Guoming Xiong
Uta Funke
Osama Sabri
Dan Peters
Peter Brust
Publikationsdatum
01.08.2011
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 8/2011
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-1808-y

Weitere Artikel der Ausgabe 8/2011

European Journal of Nuclear Medicine and Molecular Imaging 8/2011 Zur Ausgabe