Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 3/2023

08.11.2022 | Original Article

Development of an 18F-labeled anti-human CD8 VHH for same-day immunoPET imaging

verfasst von: Shravan Kumar Sriraman, Christopher W. Davies, Herman Gill, James R. Kiefer, Jianping Yin, Annie Ogasawara, Alejandra Urrutia, Vincent Javinal, Zhonghua Lin, Dhaya Seshasayee, Ryan Abraham, Phil Haas, Christopher Koth, Jan Marik, James T. Koerber, Simon Peter Williams

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Cancer immunotherapies (CITs) have revolutionized the treatment of certain cancers, but many patients fail to respond or relapse from current therapies, prompting the need for new CIT agents. CD8+ T cells play a central role in the activity of many CITs, and thus, the rapid imaging of CD8+ cells could provide a critical biomarker for new CIT agents. However, existing 89Zr-labeled CD8 PET imaging reagents exhibit a long circulatory half-life and high radiation burden that limit potential applications such as same-day and longitudinal imaging.

Methods

To this end, we discovered and developed a 13-kDa single-domain antibody (VHH5v2) against human CD8 to enable high-quality, same-day imaging with a reduced radiation burden. To enable sensitive and rapid imaging, we employed a site-specific conjugation strategy to introduce an 18F radiolabel to the VHH.

Results

The anti-CD8 VHH, VHH5v2, demonstrated binding to a membrane distal epitope of human CD8 with a binding affinity (KD) of 500 pM. Subsequent imaging experiments in several xenografts that express varying levels of CD8 demonstrated rapid tumor uptake and fast clearance from the blood. High-quality images were obtained within 1 h post-injection and could quantitatively differentiate the tumor models based on CD8 expression level.

Conclusion

Our work reveals the potential of this anti-human CD8 VHH [18F]F-VHH5v2 to enable rapid and specific imaging of CD8+ cells in the clinic.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Borm FJ, Smit J, Oprea-Lager DE, Wondergem M, Haanen JBAG, Smit EF, et al. Response prediction and evaluation using PET in patients with solid tumors treated with immunotherapy. Cancers. 2021;13:3083.CrossRef Borm FJ, Smit J, Oprea-Lager DE, Wondergem M, Haanen JBAG, Smit EF, et al. Response prediction and evaluation using PET in patients with solid tumors treated with immunotherapy. Cancers. 2021;13:3083.CrossRef
2.
Zurück zum Zitat Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Brit J Cancer. 2021;124:359–67.CrossRef Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Brit J Cancer. 2021;124:359–67.CrossRef
3.
Zurück zum Zitat Huang Y, Park Y, Wang-Zhu Y, Larange A, Arens R, Bernardo I, et al. Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nat Immunol. 2011;12:1086–95.CrossRef Huang Y, Park Y, Wang-Zhu Y, Larange A, Arens R, Bernardo I, et al. Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nat Immunol. 2011;12:1086–95.CrossRef
4.
Zurück zum Zitat Moebius U, Kober G, Griscelli AL, Hercend T, Meuer SC. Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur J Immunol. 1991;21:1793–800.CrossRef Moebius U, Kober G, Griscelli AL, Hercend T, Meuer SC. Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur J Immunol. 1991;21:1793–800.CrossRef
5.
Zurück zum Zitat Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.CrossRef Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.CrossRef
6.
Zurück zum Zitat Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61:512–9.CrossRef Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61:512–9.CrossRef
7.
Zurück zum Zitat Ogasawara A, Kiefer JR, Gill H, Chiang E, Sriraman S, Ferl GZ, et al. Preclinical development of ZED8 an 89Zr immuno-PET reagent for monitoring tumor CD8 status in patients undergoing cancer immunotherapy. Eur J Nucl Med Mol Imaging. 2022. https://doi.org/10.1007/s00259-022-05968-6. Ogasawara A, Kiefer JR, Gill H, Chiang E, Sriraman S, Ferl GZ, et al. Preclinical development of ZED8 an 89Zr immuno-PET reagent for monitoring tumor CD8 status in patients undergoing cancer immunotherapy. Eur J Nucl Med Mol Imaging. 2022. https://​doi.​org/​10.​1007/​s00259-022-05968-6.
8.
9.
Zurück zum Zitat Feo MSD, Pontico M, Frantellizzi V, Corica F, Cristofaro FD, Vincentis GD. 89Zr-PET imaging in humans: a systematic review. Clin Transl Imaging. 2022;10:23–36.CrossRef Feo MSD, Pontico M, Frantellizzi V, Corica F, Cristofaro FD, Vincentis GD. 89Zr-PET imaging in humans: a systematic review. Clin Transl Imaging. 2022;10:23–36.CrossRef
10.
Zurück zum Zitat Rashidian M, Ploegh H. Nanobodies as noninvasive imaging tools. Immuno-oncology Technol. 2020;7:2–14.CrossRef Rashidian M, Ploegh H. Nanobodies as noninvasive imaging tools. Immuno-oncology Technol. 2020;7:2–14.CrossRef
11.
Zurück zum Zitat Schoonooghe S, Laoui D, Ginderachter JAV, Devoogdt N, Lahoutte T, Baetselier PD, et al. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology. 2012;217:1266–72.CrossRef Schoonooghe S, Laoui D, Ginderachter JAV, Devoogdt N, Lahoutte T, Baetselier PD, et al. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology. 2012;217:1266–72.CrossRef
12.
Zurück zum Zitat Abdiche YN, Yeung AY, Ni I, Stone D, Miles A, Morishige W, et al. Antibodies targeting closely adjacent or minimally overlapping epitopes can displace one another. Plos one. 2017;12:e0169535.CrossRef Abdiche YN, Yeung AY, Ni I, Stone D, Miles A, Morishige W, et al. Antibodies targeting closely adjacent or minimally overlapping epitopes can displace one another. Plos one. 2017;12:e0169535.CrossRef
13.
Zurück zum Zitat Otwinowski Z, Minor W. [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26.CrossRef Otwinowski Z, Minor W. [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26.CrossRef
14.
Zurück zum Zitat McCoy AJ, Oeffner RD, Wrobel AG, Ojala JRM, Tryggvason K, Lohkamp B, et al. Ab initio solution of macromolecular crystal structures without direct methods. Proc Natl Acad Sci. 2017;114:3637–41.CrossRef McCoy AJ, Oeffner RD, Wrobel AG, Ojala JRM, Tryggvason K, Lohkamp B, et al. Ab initio solution of macromolecular crystal structures without direct methods. Proc Natl Acad Sci. 2017;114:3637–41.CrossRef
15.
Zurück zum Zitat Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biological Crystallogr. 2004;60:2126–32.CrossRef Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biological Crystallogr. 2004;60:2126–32.CrossRef
16.
Zurück zum Zitat Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biological Crystallogr. 2010;66:213–21.CrossRef Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biological Crystallogr. 2010;66:213–21.CrossRef
17.
Zurück zum Zitat Genst ED, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc National Acad Sci. 2006;103:4586–91.CrossRef Genst ED, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc National Acad Sci. 2006;103:4586–91.CrossRef
18.
Zurück zum Zitat Gill H, Seipert R, Carroll VM, Gouasmat A, Yin J, Ogasawara A, et al. The production, quality control, and characterization of ZED8, a CD8-specific 89Zr-labeled immuno-PET clinical imaging agent. Aaps J. 2020;22:22.CrossRef Gill H, Seipert R, Carroll VM, Gouasmat A, Yin J, Ogasawara A, et al. The production, quality control, and characterization of ZED8, a CD8-specific 89Zr-labeled immuno-PET clinical imaging agent. Aaps J. 2020;22:22.CrossRef
19.
Zurück zum Zitat Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51:R541–78.CrossRef Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51:R541–78.CrossRef
20.
Zurück zum Zitat Wang R, Natarajan K, Margulies DH. Structural basis of the CD8αβ/MHC class I interaction: focused recognition orients CD8β to a T cell proximal position. J Immunol. 2009;183:2554–64.CrossRef Wang R, Natarajan K, Margulies DH. Structural basis of the CD8αβ/MHC class I interaction: focused recognition orients CD8β to a T cell proximal position. J Immunol. 2009;183:2554–64.CrossRef
21.
Zurück zum Zitat Sun J, Kavathas PB. Comparison of the roles of CD8 alpha alpha and CD8 alpha beta in interaction with MHC class I. J Immunol Baltim Md. 1950;1997(159):6077–82. Sun J, Kavathas PB. Comparison of the roles of CD8 alpha alpha and CD8 alpha beta in interaction with MHC class I. J Immunol Baltim Md. 1950;1997(159):6077–82.
22.
Zurück zum Zitat Bostrom J, Lee CV, Haber L, Fuh G. Therapeutic antibodies, methods and protocols. Methods Mol Biol. 2008;525:353–76.CrossRef Bostrom J, Lee CV, Haber L, Fuh G. Therapeutic antibodies, methods and protocols. Methods Mol Biol. 2008;525:353–76.CrossRef
23.
Zurück zum Zitat Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18:6097–100.CrossRef Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18:6097–100.CrossRef
24.
Zurück zum Zitat Barnett D, Storie I, Granger V, Whitby L, Reilly JT, Brough S, et al. Standardization of lymphocyte antibody binding capacity – a multi-centre study. Clin Lab Haematol. 2000;22:89–96.CrossRef Barnett D, Storie I, Granger V, Whitby L, Reilly JT, Brough S, et al. Standardization of lymphocyte antibody binding capacity – a multi-centre study. Clin Lab Haematol. 2000;22:89–96.CrossRef
25.
Zurück zum Zitat Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214:2243–55.CrossRef Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214:2243–55.CrossRef
26.
Zurück zum Zitat Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.CrossRef Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.CrossRef
27.
Zurück zum Zitat Ewert S, Cambillau C, Conrath K, Plückthun A. Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry-us. 2002;41:3628–36.CrossRef Ewert S, Cambillau C, Conrath K, Plückthun A. Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry-us. 2002;41:3628–36.CrossRef
28.
Zurück zum Zitat Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins Struct Funct Bioinform. 2018;86:697–706.CrossRef Mitchell LS, Colwell LJ. Comparative analysis of nanobody sequence and structure data. Proteins Struct Funct Bioinform. 2018;86:697–706.CrossRef
29.
Zurück zum Zitat Mitchell LS, Colwell LJ. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel. 2018;31:267–75.CrossRef Mitchell LS, Colwell LJ. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel. 2018;31:267–75.CrossRef
30.
Zurück zum Zitat Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017;541:321–30.CrossRef Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017;541:321–30.CrossRef
31.
Zurück zum Zitat Echarti A, Hecht M, Büttner-Herold M, Haderlein M, Hartmann A, Fietkau R, et al. CD8+ and regulatory T cells differentiate tumor immune phenotypes and predict survival in locally advanced head and neck cancer. Cancers. 2019;11:1398.CrossRef Echarti A, Hecht M, Büttner-Herold M, Haderlein M, Hartmann A, Fietkau R, et al. CD8+ and regulatory T cells differentiate tumor immune phenotypes and predict survival in locally advanced head and neck cancer. Cancers. 2019;11:1398.CrossRef
32.
Zurück zum Zitat Tolmachev V, Tran TA, Rosik D, Sjöberg A, Abrahmsén L, Orlova A. Tumor targeting using affibody molecules: interplay of affinity, target expression level, and binding site composition. J Nucl Med. 2012;53:953–60.CrossRef Tolmachev V, Tran TA, Rosik D, Sjöberg A, Abrahmsén L, Orlova A. Tumor targeting using affibody molecules: interplay of affinity, target expression level, and binding site composition. J Nucl Med. 2012;53:953–60.CrossRef
33.
Zurück zum Zitat Sörensen J, Velikyan I, Sandberg D, Wennborg A, Feldwisch J, Tolmachev V, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics. 2016;6:262–71.CrossRef Sörensen J, Velikyan I, Sandberg D, Wennborg A, Feldwisch J, Tolmachev V, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics. 2016;6:262–71.CrossRef
34.
Zurück zum Zitat Sanchez-Crespo A. Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isotopes. 2013;76:55–62.CrossRef Sanchez-Crespo A. Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isotopes. 2013;76:55–62.CrossRef
35.
Zurück zum Zitat Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, et al. Noninvasive imaging of immune responses. P Natl Acad Sci Usa. 2015;112:6146–51.CrossRef Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, et al. Noninvasive imaging of immune responses. P Natl Acad Sci Usa. 2015;112:6146–51.CrossRef
36.
Zurück zum Zitat Barakat S, Berksoz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radical Bio Med. 2022;182:260–75.CrossRef Barakat S, Berksoz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radical Bio Med. 2022;182:260–75.CrossRef
37.
Zurück zum Zitat Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med. 1998;25:201–12.CrossRef Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med. 1998;25:201–12.CrossRef
38.
Zurück zum Zitat Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 2017;77:2318–27.CrossRef Larimer BM, Wehrenberg-Klee E, Dubois F, Mehta A, Kalomeris T, Flaherty K, et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 2017;77:2318–27.CrossRef
39.
Zurück zum Zitat Roth KS, Voltin C-A, van-Heek L, Wegen S, Schomaecker K, Fischer T, et al (2022) Dual-tracer PET/CT protocol with [ 18 F]-FDG and [ 68 Ga]Ga-FAPI-46 for cancer imaging - a proof of concept. J Nucl Med. jnumed.122.263835. Roth KS, Voltin C-A, van-Heek L, Wegen S, Schomaecker K, Fischer T, et al (2022) Dual-tracer PET/CT protocol with [ 18 F]-FDG and [ 68 Ga]Ga-FAPI-46 for cancer imaging - a proof of concept. J Nucl Med. jnumed.122.263835.
40.
Zurück zum Zitat Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.CrossRef Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.CrossRef
Metadaten
Titel
Development of an 18F-labeled anti-human CD8 VHH for same-day immunoPET imaging
verfasst von
Shravan Kumar Sriraman
Christopher W. Davies
Herman Gill
James R. Kiefer
Jianping Yin
Annie Ogasawara
Alejandra Urrutia
Vincent Javinal
Zhonghua Lin
Dhaya Seshasayee
Ryan Abraham
Phil Haas
Christopher Koth
Jan Marik
James T. Koerber
Simon Peter Williams
Publikationsdatum
08.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 3/2023
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05998-0

Weitere Artikel der Ausgabe 3/2023

European Journal of Nuclear Medicine and Molecular Imaging 3/2023 Zur Ausgabe