Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 2/2012

01.02.2012 | Focussed Research Review

Regulatory dendritic cells in the tumor immunoenvironment

verfasst von: Galina V. Shurin, Camille E. Ouellette, Michael R. Shurin

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

The tumor microenvironment is a pivotal factor in tumorigenesis, and especially in progression, as the pathogenesis of cancer critically depends on the complex interactions between various microenvironmental components. A key component of the tumor immunoenvironment is the infiltration of immune cells, which has been proven to play a dual role in tumor growth and progression. This Janus two-faced function of the tumor immunoenvironment is seen in tumor infiltration by T cells, which correlates with improved patient survival, but also with the homing of multiple subsets of immunoregulatory cells that inhibit the antitumor immune response. Regulatory dendritic cells (regDCs) have recently been shown to be induced by tumor-derived factors and represent a new and potentially important player in supporting tumor progression and suppressing the development of antitumor immune responses. Our recent data reveal that different tumor cell lines produce soluble factors that induce polarization of conventional DCs into regDCs, both in vitro and in vivo. These regDCs can suppress the proliferation of pre-activated T cells and are phenotypically and functionally different from their precursors as well as the classical immature conventional DCs. Understanding the biology of regDCs and the mechanisms of their formation in the tumor immunoenvironment will provide a new therapeutic target for re-polarizing protumorigenic immunoregulatory cells into proimmunogenic effector cells able to induce and support effective antitumor immunity.
Literatur
1.
Zurück zum Zitat Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenviron 1:9–17CrossRef Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenviron 1:9–17CrossRef
2.
Zurück zum Zitat Catalona WJ, Mann R, Nime F, Potvin C, Harty JI, Gomolka D, Eggleston JC (1975) Identification of complement-receptor lymphocytes (B cells) in lymph nodes and tumor infiltrates. J Urol 114:915–921PubMed Catalona WJ, Mann R, Nime F, Potvin C, Harty JI, Gomolka D, Eggleston JC (1975) Identification of complement-receptor lymphocytes (B cells) in lymph nodes and tumor infiltrates. J Urol 114:915–921PubMed
3.
Zurück zum Zitat Kurihara K, Hashimoto N (1985) The pathological significance of Langerhans cells in oral cancer. J Oral Pathol 14:289–298PubMedCrossRef Kurihara K, Hashimoto N (1985) The pathological significance of Langerhans cells in oral cancer. J Oral Pathol 14:289–298PubMedCrossRef
4.
Zurück zum Zitat Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105:93–103PubMedCrossRef Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105:93–103PubMedCrossRef
5.
Zurück zum Zitat Talmadge JE (2011) Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol 21:131–138PubMedCrossRef Talmadge JE (2011) Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol 21:131–138PubMedCrossRef
6.
Zurück zum Zitat Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, Zhong H, Han B, Ferris RL (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356PubMedCrossRef Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, Zhong H, Han B, Ferris RL (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356PubMedCrossRef
7.
Zurück zum Zitat Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27:5944–5951PubMedCrossRef Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27:5944–5951PubMedCrossRef
8.
Zurück zum Zitat Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A, Camus M, Gillard M, Bruneval P, Fridman WH, Pages F, Trajanoski Z, Galon J (2010) Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138:1429–1440PubMedCrossRef Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A, Camus M, Gillard M, Bruneval P, Fridman WH, Pages F, Trajanoski Z, Galon J (2010) Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138:1429–1440PubMedCrossRef
9.
Zurück zum Zitat Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29:1949–1955PubMedCrossRef Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29:1949–1955PubMedCrossRef
10.
Zurück zum Zitat Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, Pommerencke T, von Knebel Doeberitz M, Folprecht G, Luber B, Feyen N, Martens UM, Beckhove P, Gnjatic S, Schirmacher P, Herpel E, Weitz J, Grabe N, Jaeger D (2011) Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res 71:5670–5677PubMedCrossRef Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, Pommerencke T, von Knebel Doeberitz M, Folprecht G, Luber B, Feyen N, Martens UM, Beckhove P, Gnjatic S, Schirmacher P, Herpel E, Weitz J, Grabe N, Jaeger D (2011) Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res 71:5670–5677PubMedCrossRef
11.
12.
Zurück zum Zitat Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296PubMedCrossRef Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296PubMedCrossRef
13.
Zurück zum Zitat Ueha S, Shand FH, Matsushima K (2011) Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol 11:783–788PubMedCrossRef Ueha S, Shand FH, Matsushima K (2011) Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol 11:783–788PubMedCrossRef
14.
Zurück zum Zitat Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237PubMedCrossRef Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237PubMedCrossRef
15.
Zurück zum Zitat Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31:212–219PubMedCrossRef Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31:212–219PubMedCrossRef
16.
Zurück zum Zitat Manrique SZ, Correa MA, Hoelzinger DB, Dominguez AL, Mirza N, Lin HH, Stein-Streilein J, Gordon S, Lustgarten J (2011) Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. J Exp Med 208:1485–1499PubMedCrossRef Manrique SZ, Correa MA, Hoelzinger DB, Dominguez AL, Mirza N, Lin HH, Stein-Streilein J, Gordon S, Lustgarten J (2011) Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. J Exp Med 208:1485–1499PubMedCrossRef
17.
Zurück zum Zitat Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev 10:453–460 Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev 10:453–460
18.
Zurück zum Zitat Piccard H, Muschel RJ, Opdenakker G (2011) On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol [Epub ahead of print] Piccard H, Muschel RJ, Opdenakker G (2011) On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol [Epub ahead of print]
19.
Zurück zum Zitat Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, Deryugina EI (2011) Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 179:1455–1470PubMedCrossRef Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, Deryugina EI (2011) Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 179:1455–1470PubMedCrossRef
20.
Zurück zum Zitat Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71:2411–2416PubMedCrossRef Gregory AD, Houghton AM (2011) Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71:2411–2416PubMedCrossRef
21.
Zurück zum Zitat Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194PubMedCrossRef Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194PubMedCrossRef
22.
Zurück zum Zitat Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother (in press) Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother (in press)
23.
Zurück zum Zitat Younos I, Donkor M, Hoke T, Dafferner A, Samson H, Westphal S, Talmadge J (2011) Tumor- and organ-dependent infiltration by myeloid-derived suppressor cells. Int Immunopharmacol 11:816–826PubMedCrossRef Younos I, Donkor M, Hoke T, Dafferner A, Samson H, Westphal S, Talmadge J (2011) Tumor- and organ-dependent infiltration by myeloid-derived suppressor cells. Int Immunopharmacol 11:816–826PubMedCrossRef
24.
Zurück zum Zitat Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116PubMedCrossRef Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116PubMedCrossRef
25.
Zurück zum Zitat Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466PubMedCrossRef Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466PubMedCrossRef
26.
Zurück zum Zitat Watowich SS, Liu YJ (2010) Mechanisms regulating dendritic cell specification and development. Immunol Rev 238:76–92PubMedCrossRef Watowich SS, Liu YJ (2010) Mechanisms regulating dendritic cell specification and development. Immunol Rev 238:76–92PubMedCrossRef
27.
Zurück zum Zitat Tisch R (2010) Immunogenic versus tolerogenic dendritic cells: a matter of maturation. Int Rev Immunol 29:111–118PubMedCrossRef Tisch R (2010) Immunogenic versus tolerogenic dendritic cells: a matter of maturation. Int Rev Immunol 29:111–118PubMedCrossRef
28.
Zurück zum Zitat Shurin MR, Naiditch H, Zhong H, Shurin GV (2011) Regulatory dendritic cells: new targets for cancer immunotherapy. Cancer Biol Ther 11:988–992PubMedCrossRef Shurin MR, Naiditch H, Zhong H, Shurin GV (2011) Regulatory dendritic cells: new targets for cancer immunotherapy. Cancer Biol Ther 11:988–992PubMedCrossRef
29.
Zurück zum Zitat Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661PubMedCrossRef Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661PubMedCrossRef
31.
Zurück zum Zitat Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692PubMedCrossRef Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692PubMedCrossRef
32.
Zurück zum Zitat Bosschaerts T, Guilliams M, Stijlemans B, Morias Y, Engel D, Tacke F, Herin M, De Baetselier P, Beschin A (2010) Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog 6:e1001045PubMedCrossRef Bosschaerts T, Guilliams M, Stijlemans B, Morias Y, Engel D, Tacke F, Herin M, De Baetselier P, Beschin A (2010) Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog 6:e1001045PubMedCrossRef
33.
Zurück zum Zitat Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244PubMedCrossRef Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244PubMedCrossRef
34.
Zurück zum Zitat Shurin GV, Shurin MR, Bykovskaia S, Shogan J, Lotze MT, Barksdale EM Jr (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369PubMed Shurin GV, Shurin MR, Bykovskaia S, Shogan J, Lotze MT, Barksdale EM Jr (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369PubMed
35.
Zurück zum Zitat Shurin MR, Yurkovetsky ZR, Tourkova IL, Balkir L, Shurin GV (2002) Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 101:61–68PubMedCrossRef Shurin MR, Yurkovetsky ZR, Tourkova IL, Balkir L, Shurin GV (2002) Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 101:61–68PubMedCrossRef
36.
Zurück zum Zitat Tourkova IL, Shurin GV, Wei S, Shurin MR (2007) Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol 178:7787–7793PubMed Tourkova IL, Shurin GV, Wei S, Shurin MR (2007) Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol 178:7787–7793PubMed
37.
Zurück zum Zitat Tourkova IL, Shurin GV, Ferrone S, Shurin MR (2009) Interferon regulatory factor 8 mediates tumor-induced inhibition of antigen processing and presentation by dendritic cells. Cancer Immunol Immunother 58:567–574PubMedCrossRef Tourkova IL, Shurin GV, Ferrone S, Shurin MR (2009) Interferon regulatory factor 8 mediates tumor-induced inhibition of antigen processing and presentation by dendritic cells. Cancer Immunol Immunother 58:567–574PubMedCrossRef
38.
Zurück zum Zitat Steinbrink K, Mahnke K, Grabbe S, Enk AH, Jonuleit H (2009) Myeloid dendritic cell: from sentinel of immunity to key player of peripheral tolerance? Hum Immunol 70:289–293PubMedCrossRef Steinbrink K, Mahnke K, Grabbe S, Enk AH, Jonuleit H (2009) Myeloid dendritic cell: from sentinel of immunity to key player of peripheral tolerance? Hum Immunol 70:289–293PubMedCrossRef
39.
Zurück zum Zitat Lin A, Schildknecht A, Nguyen LT, Ohashi PS (2010) Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 127:77–84PubMedCrossRef Lin A, Schildknecht A, Nguyen LT, Ohashi PS (2010) Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 127:77–84PubMedCrossRef
40.
Zurück zum Zitat Gregori S (2011) Dendritic cells in networks of immunological tolerance. Tissue Antigens 77:89–99PubMedCrossRef Gregori S (2011) Dendritic cells in networks of immunological tolerance. Tissue Antigens 77:89–99PubMedCrossRef
41.
Zurück zum Zitat Manicassamy S, Pulendran B (2011) Dendritic cell control of tolerogenic responses. Immunol Rev 241:206–227PubMedCrossRef Manicassamy S, Pulendran B (2011) Dendritic cell control of tolerogenic responses. Immunol Rev 241:206–227PubMedCrossRef
42.
Zurück zum Zitat Akbari O, Umetsu DT (2005) Role of regulatory dendritic cells in allergy and asthma. Curr Allergy Asthma Rep 5:56–61PubMedCrossRef Akbari O, Umetsu DT (2005) Role of regulatory dendritic cells in allergy and asthma. Curr Allergy Asthma Rep 5:56–61PubMedCrossRef
43.
Zurück zum Zitat Torisu M, Murakami H, Akbar F, Matsui H, Hiasa Y, Matsuura B, Onji M (2008) Protective role of interleukin-10-producing regulatory dendritic cells against murine autoimmune gastritis. J Gastroenterol 43:100–107PubMedCrossRef Torisu M, Murakami H, Akbar F, Matsui H, Hiasa Y, Matsuura B, Onji M (2008) Protective role of interleukin-10-producing regulatory dendritic cells against murine autoimmune gastritis. J Gastroenterol 43:100–107PubMedCrossRef
44.
Zurück zum Zitat Fujita S, Yamashita N, Ishii Y, Sato Y, Sato K, Eizumi K, Fukaya T, Nozawa R, Takamoto Y, Yamashita N, Taniguchi M, Sato K (2008) Regulatory dendritic cells protect against allergic airway inflammation in a murine asthmatic model. J Allergy Clin Immunol 121:95–104, e107 Fujita S, Yamashita N, Ishii Y, Sato Y, Sato K, Eizumi K, Fukaya T, Nozawa R, Takamoto Y, Yamashita N, Taniguchi M, Sato K (2008) Regulatory dendritic cells protect against allergic airway inflammation in a murine asthmatic model. J Allergy Clin Immunol 121:95–104, e107
45.
Zurück zum Zitat Sato K, Eizumi K, Fukaya T, Fujita S, Sato Y, Takagi H, Yamamoto M, Yamashita N, Hijikata A, Kitamura H, Ohara O, Yamasaki S, Saito T, Sato K (2009) Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease. Blood 113:4780–4789PubMedCrossRef Sato K, Eizumi K, Fukaya T, Fujita S, Sato Y, Takagi H, Yamamoto M, Yamashita N, Hijikata A, Kitamura H, Ohara O, Yamasaki S, Saito T, Sato K (2009) Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease. Blood 113:4780–4789PubMedCrossRef
46.
Zurück zum Zitat Isomura I, Shintani Y, Yasuda Y, Tsujimura K, Morita A (2008) Induction of regulatory dendritic cells by topical application of NF-kappaB decoy oligodeoxynucleotides. Immunol Lett 119:49–56PubMedCrossRef Isomura I, Shintani Y, Yasuda Y, Tsujimura K, Morita A (2008) Induction of regulatory dendritic cells by topical application of NF-kappaB decoy oligodeoxynucleotides. Immunol Lett 119:49–56PubMedCrossRef
47.
Zurück zum Zitat Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5:1124–1133PubMedCrossRef Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5:1124–1133PubMedCrossRef
48.
Zurück zum Zitat Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, Nam JH, Rhee JH, Hwang KC, Im SH (2010) Generation of regulatory dendritic cells and CD4 + Foxp3 + T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci USA 107:2159–2164PubMedCrossRef Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, Nam JH, Rhee JH, Hwang KC, Im SH (2010) Generation of regulatory dendritic cells and CD4 + Foxp3 + T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci USA 107:2159–2164PubMedCrossRef
49.
Zurück zum Zitat Torres-Aguilar H, Aguilar-Ruiz SR, Gonzalez-Perez G, Munguia R, Bajana S, Meraz-Rios MA, Sanchez-Torres C (2010) Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4 + T cells. J Immunol 184:1765–1775PubMedCrossRef Torres-Aguilar H, Aguilar-Ruiz SR, Gonzalez-Perez G, Munguia R, Bajana S, Meraz-Rios MA, Sanchez-Torres C (2010) Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4 + T cells. J Immunol 184:1765–1775PubMedCrossRef
50.
Zurück zum Zitat Usui Y, Takeuchi M, Hattori T, Okunuki Y, Nagasawa K, Kezuka T, Okumura K, Yagita H, Akiba H, Goto H (2009) Suppression of experimental autoimmune uveoretinitis by regulatory dendritic cells in mice. Arch Ophthalmol 127:514–519PubMedCrossRef Usui Y, Takeuchi M, Hattori T, Okunuki Y, Nagasawa K, Kezuka T, Okumura K, Yagita H, Akiba H, Goto H (2009) Suppression of experimental autoimmune uveoretinitis by regulatory dendritic cells in mice. Arch Ophthalmol 127:514–519PubMedCrossRef
51.
Zurück zum Zitat Pedersen AW, Holmstrom K, Jensen SS, Fuchs D, Rasmussen S, Kvistborg P, Claesson MH, Zocca MB (2009) Phenotypic and functional markers for 1alpha, 25-dihydroxyvitamin D(3)-modified regulatory dendritic cells. Clin Exp Immunol 157:48–59PubMedCrossRef Pedersen AW, Holmstrom K, Jensen SS, Fuchs D, Rasmussen S, Kvistborg P, Claesson MH, Zocca MB (2009) Phenotypic and functional markers for 1alpha, 25-dihydroxyvitamin D(3)-modified regulatory dendritic cells. Clin Exp Immunol 157:48–59PubMedCrossRef
52.
Zurück zum Zitat Luther C, Adamopoulou E, Stoeckle C, Brucklacher-Waldert V, Rosenkranz D, Stoltze L, Lauer S, Poeschel S, Melms A, Tolosa E (2009) Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients. J Immunol 183:841–848PubMedCrossRef Luther C, Adamopoulou E, Stoeckle C, Brucklacher-Waldert V, Rosenkranz D, Stoltze L, Lauer S, Poeschel S, Melms A, Tolosa E (2009) Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients. J Immunol 183:841–848PubMedCrossRef
53.
Zurück zum Zitat Fu BM, He XS, Yu S, Hu AB, Zhang J, Ma Y, Tam NL, Huang JF (2010) A tolerogenic semimature dendritic cells induce effector T-cell hyporesponsiveness by activation of antigen-specific CD4+ CD25+ T regulatory cells that promotes skin allograft survival in mice. Cell Immunol 261:69–76PubMedCrossRef Fu BM, He XS, Yu S, Hu AB, Zhang J, Ma Y, Tam NL, Huang JF (2010) A tolerogenic semimature dendritic cells induce effector T-cell hyporesponsiveness by activation of antigen-specific CD4+ CD25+ T regulatory cells that promotes skin allograft survival in mice. Cell Immunol 261:69–76PubMedCrossRef
54.
Zurück zum Zitat Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res 69:3086–3094PubMedCrossRef Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res 69:3086–3094PubMedCrossRef
55.
Zurück zum Zitat Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev 10:554–567CrossRef Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev 10:554–567CrossRef
56.
Zurück zum Zitat Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4 + CD25 + Foxp3 + regulatory T cells. J Immunol 182:2795–2807PubMedCrossRef Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4 + CD25 + Foxp3 + regulatory T cells. J Immunol 182:2795–2807PubMedCrossRef
57.
Zurück zum Zitat Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 182:6207–6216PubMedCrossRef Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 182:6207–6216PubMedCrossRef
58.
Zurück zum Zitat Mundy-Bosse BL, Thornton LM, Yang HC, Andersen BL, Carson WE (2011) Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell Immunol 270:80–87PubMedCrossRef Mundy-Bosse BL, Thornton LM, Yang HC, Andersen BL, Carson WE (2011) Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell Immunol 270:80–87PubMedCrossRef
Metadaten
Titel
Regulatory dendritic cells in the tumor immunoenvironment
verfasst von
Galina V. Shurin
Camille E. Ouellette
Michael R. Shurin
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 2/2012
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-011-1138-8

Weitere Artikel der Ausgabe 2/2012

Cancer Immunology, Immunotherapy 2/2012 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.