Skip to main content
Erschienen in: Acta Neuropathologica 2/2003

01.08.2003 | Regular Paper

Cellular pathology of amygdala neurons in human temporal lobe epilepsy

verfasst von: Ales F. Aliashkevich, Deniz Yilmazer-Hanke, Dirk Van Roost, Björn Mundhenk, Johannes Schramm, Ingmar Blümcke

Erschienen in: Acta Neuropathologica | Ausgabe 2/2003

Einloggen, um Zugang zu erhalten

Abstract

The amygdala complex substantially contributes to the generation and propagation of focal seizures in patients suffering from temporal lobe epilepsy (TLE). A cellular substrate for increased excitability in the human amygdala, however, remains to be identified. Here, we analyzed the three-dimensional morphology of 264 neurons from different subregions of the amygdaloid complex obtained from 17 "en bloc" resected surgical specimens using intracellular Lucifer Yellow (LY) injection and confocal laser scanning microscopy. Autopsy samples from unaffected individuals (n=3, 20 neurons) served as controls. We have identified spine-laden, spine-sparse and aspinous cells in the lateral, basal, accessory basal and granular nuclei. Semiquantitative analysis points to significant changes in neuronal soma size, number of dendrites and spine densities in specimens from epilepsy patients compared to controls. Neuronal somata in the epilepsy group were smaller compared to controls (P<0.01), neurons had fewer first-order dendrites (P<0.01), whereas the maximum density of spines per dendritic segment in these cells was increased in TLE patients (P<0.01). There were also dendritic alterations such as focal constrictions or spine bifurcations. These changes were consistent between amygdaloid subregions. The dendritic morphology of amygdaloid neurons in TLE patients points to substantial changes in synaptic connectivity and would be compatible with altered neuronal circuitries operating in the epileptic human amygdala. Although the morphological alterations differ from those described in hippocampal subregions of a similar cohort of TLE patients, they appear to reflect a characteristic pathological substrate associated with seizure activity/propagation within the amygdaloid complex.
Literatur
1.
Zurück zum Zitat Andressen C, Blumcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271:181–208PubMed Andressen C, Blumcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271:181–208PubMed
2.
Zurück zum Zitat Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH (1984) Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 25:729–740PubMed Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH (1984) Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 25:729–740PubMed
3.
Zurück zum Zitat Belichenko P, Sourander P, Dahlstrom A (1994) Morphological aberrations in therapy-resistant partial epilepsy (TRPE). Confocal laser scanning and 3D reconstructions of Lucifer Yellow injected atypical pyramidal neurons in epileptic human cortex. Mol Neurobiol 9:245–252PubMed Belichenko P, Sourander P, Dahlstrom A (1994) Morphological aberrations in therapy-resistant partial epilepsy (TRPE). Confocal laser scanning and 3D reconstructions of Lucifer Yellow injected atypical pyramidal neurons in epileptic human cortex. Mol Neurobiol 9:245–252PubMed
4.
Zurück zum Zitat Blumcke I, Zuschratter W, Schewe JC, Suter B, Lie AA, Riederer BM, Meyer B, Schramm J, Elger CE, Wiestler OD (1999) Cellular pathology of hilar neurons in Ammon's horn sclerosis. J Comp Neurol 414:437–453 Blumcke I, Zuschratter W, Schewe JC, Suter B, Lie AA, Riederer BM, Meyer B, Schramm J, Elger CE, Wiestler OD (1999) Cellular pathology of hilar neurons in Ammon's horn sclerosis. J Comp Neurol 414:437–453
5.
Zurück zum Zitat Blumcke I, Thom M, Wiestler OD (2002) Ammon's horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211PubMed Blumcke I, Thom M, Wiestler OD (2002) Ammon's horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211PubMed
6.
Zurück zum Zitat Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365PubMed Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365PubMed
7.
Zurück zum Zitat Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81:712–721PubMed Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81:712–721PubMed
8.
Zurück zum Zitat Drakew A, Muller M, Gahwiler BH, Thompson SM, Frotscher M (1996) Spine loss in experimental epilepsy: quantitative light and electron microscopic analysis of intracellularly stained CA3 pyramidal cells in hippocampal slice cultures. Neuroscience 70:31–45CrossRefPubMed Drakew A, Muller M, Gahwiler BH, Thompson SM, Frotscher M (1996) Spine loss in experimental epilepsy: quantitative light and electron microscopic analysis of intracellularly stained CA3 pyramidal cells in hippocampal slice cultures. Neuroscience 70:31–45CrossRefPubMed
9.
Zurück zum Zitat Franck JE, Pokorny J, Kunkel DD, Schwartzkroin PA (1995) Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 36:543–558PubMed Franck JE, Pokorny J, Kunkel DD, Schwartzkroin PA (1995) Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia 36:543–558PubMed
10.
Zurück zum Zitat Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT (1993) Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 33:622–631PubMed Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT (1993) Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 33:622–631PubMed
11.
Zurück zum Zitat Isokawa M (1998) Remodeling dendritic spines in the rat pilocarpine model of temporal lobe epilepsy. Neurosci Lett 258:73–76CrossRefPubMed Isokawa M (1998) Remodeling dendritic spines in the rat pilocarpine model of temporal lobe epilepsy. Neurosci Lett 258:73–76CrossRefPubMed
12.
Zurück zum Zitat Isokawa M (2000) Remodeling dendritic spines of dentate granule cells in temporal lobe epilepsy patients and the rat pilocarpine model. Epilepsia 41: S14–17PubMed Isokawa M (2000) Remodeling dendritic spines of dentate granule cells in temporal lobe epilepsy patients and the rat pilocarpine model. Epilepsia 41: S14–17PubMed
13.
Zurück zum Zitat Jiang M, Lee CL, Smith KL, Swann JW (1998) Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J Neurosci 18:8356–8368PubMed Jiang M, Lee CL, Smith KL, Swann JW (1998) Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J Neurosci 18:8356–8368PubMed
14.
Zurück zum Zitat Komori T, Arai N, Shimizu H, Yagishita A, Mizutani M, Oda M (2002) Cortical perivascular satellitosis in intractable epilepsy; a form of cortical dysplasia? Acta Neuropathol 104:149–154CrossRefPubMed Komori T, Arai N, Shimizu H, Yagishita A, Mizutani M, Oda M (2002) Cortical perivascular satellitosis in intractable epilepsy; a form of cortical dysplasia? Acta Neuropathol 104:149–154CrossRefPubMed
15.
Zurück zum Zitat Kossel A, Lowel S, Bolz J (1995) Relationships between dendritic fields and functional architecture in striate cortex of normal and visually deprived cats. J Neurosci 15:3913–3926PubMed Kossel A, Lowel S, Bolz J (1995) Relationships between dendritic fields and functional architecture in striate cortex of normal and visually deprived cats. J Neurosci 15:3913–3926PubMed
16.
Zurück zum Zitat Kossel AH, Williams CV, Schweizer M, Kater SB (1997) Afferent innervation influences the development of dendritic branches and spines via both activity-dependent and non-activity-dependent mechanisms. J Neurosci 17:6314–6324PubMed Kossel AH, Williams CV, Schweizer M, Kater SB (1997) Afferent innervation influences the development of dendritic branches and spines via both activity-dependent and non-activity-dependent mechanisms. J Neurosci 17:6314–6324PubMed
17.
Zurück zum Zitat McDonald AJ (1982) Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J Comp Neurol 212:293–312PubMed McDonald AJ (1982) Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J Comp Neurol 212:293–312PubMed
18.
Zurück zum Zitat McDonald AJ (1992) Cell types and intrinsic connections of the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp. 67–96 McDonald AJ (1992) Cell types and intrinsic connections of the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp. 67–96
19.
Zurück zum Zitat Miller LA, McLachlan RS, Bouwer MS, Hudson LP, Munoz DG (1994) Amygdalar sclerosis: preoperative indicators and outcome after temporal lobectomy. J Neurol Neurosurg Psychiatry 57:1099–1105PubMed Miller LA, McLachlan RS, Bouwer MS, Hudson LP, Munoz DG (1994) Amygdalar sclerosis: preoperative indicators and outcome after temporal lobectomy. J Neurol Neurosurg Psychiatry 57:1099–1105PubMed
20.
Zurück zum Zitat Muller M, Gahwiler BH, Rietschin L, Thompson SM (1993) Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures. Proc Natl Acad Sci USA 90:257–261PubMed Muller M, Gahwiler BH, Rietschin L, Thompson SM (1993) Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures. Proc Natl Acad Sci USA 90:257–261PubMed
21.
Zurück zum Zitat Nagerl UV, Mody I, Jeub M, Lie AA, Elger CE, Beck H (2000) Surviving granule cells of the sclerotic human hippocampus have reduced Ca(2+) influx because of a loss of calbindin-d(28 k) in temporal lobe epilepsy. J Neurosci 20:1831–1836PubMed Nagerl UV, Mody I, Jeub M, Lie AA, Elger CE, Beck H (2000) Surviving granule cells of the sclerotic human hippocampus have reduced Ca(2+) influx because of a loss of calbindin-d(28 k) in temporal lobe epilepsy. J Neurosci 20:1831–1836PubMed
22.
Zurück zum Zitat Nitsch R, Frotscher M (1993) Transneuronal changes in dendrites of gabaergic parvalbumin-containing neurons of the rat fascia dentata following entorhinal lesion. Hippocampus 3:481–490PubMed Nitsch R, Frotscher M (1993) Transneuronal changes in dendrites of gabaergic parvalbumin-containing neurons of the rat fascia dentata following entorhinal lesion. Hippocampus 3:481–490PubMed
23.
Zurück zum Zitat Paul LA, Scheibel AB (1986) Structural substrates of epilepsy. Adv Neurol 44:775–786PubMed Paul LA, Scheibel AB (1986) Structural substrates of epilepsy. Adv Neurol 44:775–786PubMed
24.
Zurück zum Zitat Pierce JP, Milner TA (2001) Parallel increases in the synaptic and surface areas of mossy fiber terminals following seizure induction. Synapse 39:249–256CrossRefPubMed Pierce JP, Milner TA (2001) Parallel increases in the synaptic and surface areas of mossy fiber terminals following seizure induction. Synapse 39:249–256CrossRefPubMed
25.
Zurück zum Zitat Pitkanen A, Tuunanen J, Kalviainen R, Partanen K, Salmenpera T (1998) Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res 32:233–253CrossRefPubMed Pitkanen A, Tuunanen J, Kalviainen R, Partanen K, Salmenpera T (1998) Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res 32:233–253CrossRefPubMed
26.
Zurück zum Zitat Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198:315–317PubMed Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198:315–317PubMed
27.
Zurück zum Zitat Scheibel ME, Crandall PH, Scheibel AB (1974) The hippocampal-dentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia 15:55–80PubMed Scheibel ME, Crandall PH, Scheibel AB (1974) The hippocampal-dentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia 15:55–80PubMed
28.
Zurück zum Zitat Schiess MC, Callahan PM, Zheng H (1999) Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro. J Neurosci Res 58:663–673CrossRefPubMed Schiess MC, Callahan PM, Zheng H (1999) Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro. J Neurosci Res 58:663–673CrossRefPubMed
29.
Zurück zum Zitat Sorvari H, Soininen H, Pitkanen A (1996) Calbindin-d28k-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443CrossRefPubMed Sorvari H, Soininen H, Pitkanen A (1996) Calbindin-d28k-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443CrossRefPubMed
30.
Zurück zum Zitat Vaquero J, Oya S, Cabezudo JM, Bravo G (1982) Morphological study of human epileptic dendrites. Neurosurgery 10:720–724PubMed Vaquero J, Oya S, Cabezudo JM, Bravo G (1982) Morphological study of human epileptic dendrites. Neurosurgery 10:720–724PubMed
31.
Zurück zum Zitat Von Bohlen, Halbach O, Albrecht D (2002) Reciprocal connections of the hippocampal area CA1, the lateral nucleus of the amygdala and cortical areas in a combined horizontal slice preparation. Neurosci Res 44:91–100CrossRefPubMed Von Bohlen, Halbach O, Albrecht D (2002) Reciprocal connections of the hippocampal area CA1, the lateral nucleus of the amygdala and cortical areas in a combined horizontal slice preparation. Neurosci Res 44:91–100CrossRefPubMed
32.
Zurück zum Zitat Von Campe G, Spencer DD, Lanerolle NC de (1997) Morphology of dentate granule cells in the human epileptogenic hippocampus. Hippocampus 7:472–488CrossRefPubMed Von Campe G, Spencer DD, Lanerolle NC de (1997) Morphology of dentate granule cells in the human epileptogenic hippocampus. Hippocampus 7:472–488CrossRefPubMed
33.
Zurück zum Zitat Wolf HK, Aliashkevich AF, Blumcke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy. A quantitative analysis of 70 surgical specimens. Acta Neuropathol 93:606–610CrossRefPubMed Wolf HK, Aliashkevich AF, Blumcke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy. A quantitative analysis of 70 surgical specimens. Acta Neuropathol 93:606–610CrossRefPubMed
34.
Zurück zum Zitat Yilmazer-Hanke DM, Wolf HK, Schramm J, Elger CE, Wiestler OD, Blumcke I (2000) Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J Neuropathol Exp Neurol 59:907–920PubMed Yilmazer-Hanke DM, Wolf HK, Schramm J, Elger CE, Wiestler OD, Blumcke I (2000) Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J Neuropathol Exp Neurol 59:907–920PubMed
35.
Zurück zum Zitat Zentner J, Wolf HK, Helmstaedter C, Grunwald T, Aliashkevich AF, Wiestler OD, Elger CE, Schramm J (1999) Clinical relevance of amygdala sclerosis in temporal lobe epilepsy. J Neurosurg 91:59–67PubMed Zentner J, Wolf HK, Helmstaedter C, Grunwald T, Aliashkevich AF, Wiestler OD, Elger CE, Schramm J (1999) Clinical relevance of amygdala sclerosis in temporal lobe epilepsy. J Neurosurg 91:59–67PubMed
36.
Zurück zum Zitat Zhu ZQ, Armstrong DL, Hamilton WJ, Grossman RG (1997) Disproportionate loss of CA4 parvalbumin-immunoreactive interneurons in patients with Ammon's horn sclerosis. J Neuropathol Exp Neurol 56:988–998PubMed Zhu ZQ, Armstrong DL, Hamilton WJ, Grossman RG (1997) Disproportionate loss of CA4 parvalbumin-immunoreactive interneurons in patients with Ammon's horn sclerosis. J Neuropathol Exp Neurol 56:988–998PubMed
Metadaten
Titel
Cellular pathology of amygdala neurons in human temporal lobe epilepsy
verfasst von
Ales F. Aliashkevich
Deniz Yilmazer-Hanke
Dirk Van Roost
Björn Mundhenk
Johannes Schramm
Ingmar Blümcke
Publikationsdatum
01.08.2003
Verlag
Springer-Verlag
Erschienen in
Acta Neuropathologica / Ausgabe 2/2003
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-003-0707-0

Weitere Artikel der Ausgabe 2/2003

Acta Neuropathologica 2/2003 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.