Skip to main content
Erschienen in: Archives of Dermatological Research 4/2005

01.10.2005 | Original Paper

Upregulation of transforming growth factor-β1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity

verfasst von: Masao Fujiwara, Yasuteru Muragaki, Akira Ooshima

Erschienen in: Archives of Dermatological Research | Ausgabe 4/2005

Einloggen, um Zugang zu erhalten

Abstract

Keloids are tumor-like lesions that result from excessive scar formation during healing of wounds. Histologically, keloids show an increased blood vessel density compared with normal dermis or normal scars. However, the angiogenic activity of keloid fibroblasts remains unknown. In this study, we investigated angiogenic activity of keloid fibroblasts. Transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) were investigated as elements of the angiogenic factors. Expressions of TGF-β1 and VEGF in conditioned medium were measured with enzyme-linked immunosorbent assay (EIA) and Northern blot analysis. Participation of TGF-β1 in the production of VEGF was also investigated with addition of TGF-β1 and a neutralizing anti-TGF-β1 antibody. A modified Boyden chamber assay was performed to assess the chemotactic activity of vascular endothelial cells. Angiogenic activity in vivo was evaluated by neovascularization of nodules formed by implantation of fibroblasts into severe combined immunodeficiency (SCID) mice. EIA showed that the concentrations of TGF-β1 and VEGF in conditioned medium were increased 2.5- and 6-fold, respectively, after the culture of keloid fibroblasts compared with normal fibroblasts. Northern blot analysis revealed that the expression of TGF-β1 and VEGF mRNA was upregulated 3.6- and 6-fold, respectively, in keloid fibroblasts compared with normal fibroblasts. Addition of TGF-β1 to keloid fibroblast cultures increased VEGF production by 3.5-fold, while there was a 6-fold in culture of normal fibroblasts. A neutralizing anti-TGF-β1 antibody reduced VEGF secretion to control levels, suggesting that TGF-β1 mediated the upregulation of VEGF expression. A modified Boyden chamber assay demonstrated that the chemotactic activity of vascular endothelial cells was more strongly (sevenfold) induced by keloid fibroblast-conditioned medium than by normal fibroblast-conditioned medium. Anti-VEGF antibody inhibited chemotaxis to basal levels. When SCID mice underwent implantation of fibroblasts into the back, the nodules formed by keloid fibroblasts were three times larger than those formed by normal fibroblasts. Although abundant neovascularization was observed in keloid fibroblast nodules, neovascularization was scarce in normal fibroblast nodules. Both in vitro and in vivo studies confirmed the significantly higher angiogenic activity of keloid fibroblasts compared with normal fibroblasts, and TGF-β1 and VEGF were clearly shown to be involved. These results suggest that angiogenesis in keloids is promoted by endogenous TGF-β1 and VEGF.
Literatur
1.
Zurück zum Zitat Appleton I, Brown NJ, Willoughby DA (1996) Apoptosis, necrosis, and proliferation: possible implications in the etiology of keloids. Am J Pathol 149:1441–1447PubMed Appleton I, Brown NJ, Willoughby DA (1996) Apoptosis, necrosis, and proliferation: possible implications in the etiology of keloids. Am J Pathol 149:1441–1447PubMed
2.
Zurück zum Zitat Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MW (1997) Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels. Nat Med 3:1209–1215CrossRefPubMed Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MW (1997) Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels. Nat Med 3:1209–1215CrossRefPubMed
3.
Zurück zum Zitat Beer TW, Baldwin HC, Goddard JR, Gallagher PJ, Wright DH (1998) Angiogenesis in pathological and surgical scars. Hum Pathol 29:1273–1278CrossRefPubMed Beer TW, Baldwin HC, Goddard JR, Gallagher PJ, Wright DH (1998) Angiogenesis in pathological and surgical scars. Hum Pathol 29:1273–1278CrossRefPubMed
4.
Zurück zum Zitat Berse B, Hunt JA, Diegel RJ, Morganelli P, Yeo K, Brown F, Fava RA (1999) Hypoxia augments cytokine (transforming growth factor-beta (TGF-β) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol 115:176–182CrossRefPubMed Berse B, Hunt JA, Diegel RJ, Morganelli P, Yeo K, Brown F, Fava RA (1999) Hypoxia augments cytokine (transforming growth factor-beta (TGF-β) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol 115:176–182CrossRefPubMed
5.
Zurück zum Zitat Bettinger DA, Yager DR, Diegelmann RF, Cohen IK (1996) The effect of TGF-β on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg 98:827–833PubMedCrossRef Bettinger DA, Yager DR, Diegelmann RF, Cohen IK (1996) The effect of TGF-β on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg 98:827–833PubMedCrossRef
6.
Zurück zum Zitat Brogi E, Wu T, Namiki A, Isner JM (1994) Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 90:649–652PubMed Brogi E, Wu T, Namiki A, Isner JM (1994) Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 90:649–652PubMed
7.
Zurück zum Zitat Chua CC, Hamdy RC, Chua BH (2000) Mechanism of transforming growth factor-β1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells. Biochim Biophys Acta 1497:69–76CrossRefPubMed Chua CC, Hamdy RC, Chua BH (2000) Mechanism of transforming growth factor-β1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3-E1 cells. Biochim Biophys Acta 1497:69–76CrossRefPubMed
8.
Zurück zum Zitat Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G (1994) Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 145:105–113PubMed Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G (1994) Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 145:105–113PubMed
9.
10.
Zurück zum Zitat Estrem SA, Domayer M, Bardach J, Cram AE (1987) Implantation of human keloid into athymic mice. Laryngoscope 97:1214–1218PubMedCrossRef Estrem SA, Domayer M, Bardach J, Cram AE (1987) Implantation of human keloid into athymic mice. Laryngoscope 97:1214–1218PubMedCrossRef
11.
Zurück zum Zitat Fajardo LF, Prionas SD, Kwan HH, Kowalski J, Allison AC (1996) Transforming growth factor β1 induces angiogenesis in vivo with a threshold pattern. Lab Invest 74:600–608PubMed Fajardo LF, Prionas SD, Kwan HH, Kowalski J, Allison AC (1996) Transforming growth factor β1 induces angiogenesis in vivo with a threshold pattern. Lab Invest 74:600–608PubMed
12.
Zurück zum Zitat Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefPubMed Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefPubMed
13.
Zurück zum Zitat Gajdusek CM, Luo Z, Mayberg MR (1993) Basic fibroblast growth factor and transforming growth factor beta-1: synergistic mediators of angiogenesis in vitro. J Cell Physiol 157:133–144CrossRefPubMed Gajdusek CM, Luo Z, Mayberg MR (1993) Basic fibroblast growth factor and transforming growth factor beta-1: synergistic mediators of angiogenesis in vitro. J Cell Physiol 157:133–144CrossRefPubMed
14.
Zurück zum Zitat Gira AK, Brown LF, Washington CV, Cohen C, Arbiser JL (2004) Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor. J Am Acad Dermatol 50:850–853CrossRefPubMed Gira AK, Brown LF, Washington CV, Cohen C, Arbiser JL (2004) Keloids demonstrate high-level epidermal expression of vascular endothelial growth factor. J Am Acad Dermatol 50:850–853CrossRefPubMed
15.
Zurück zum Zitat Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J 21:1743–1753CrossRefPubMed Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J 21:1743–1753CrossRefPubMed
16.
Zurück zum Zitat Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027CrossRefPubMed Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027CrossRefPubMed
17.
Zurück zum Zitat Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580CrossRefPubMed Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580CrossRefPubMed
19.
Zurück zum Zitat Kischer CW, Thies AC, Chvapil M (1982) Perivascular myofibroblasts and microvascular occlusion in hypertrophic scars and keloids. Hum Pathol 13:819–824PubMedCrossRef Kischer CW, Thies AC, Chvapil M (1982) Perivascular myofibroblasts and microvascular occlusion in hypertrophic scars and keloids. Hum Pathol 13:819–824PubMedCrossRef
20.
Zurück zum Zitat Kischer CW, Pindur J, Shetlar MR, Shetlar CL (1989) Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology. J Trauma 29:672–677PubMed Kischer CW, Pindur J, Shetlar MR, Shetlar CL (1989) Implants of hypertrophic scars and keloids into the nude (athymic) mouse: viability and morphology. J Trauma 29:672–677PubMed
21.
Zurück zum Zitat Kischer CW (1992) The microvessels in hypertrophic scars, keloids and related lesions: a review. J Submicrosc Cytol Pathol 24:281–296PubMed Kischer CW (1992) The microvessels in hypertrophic scars, keloids and related lesions: a review. J Submicrosc Cytol Pathol 24:281–296PubMed
22.
Zurück zum Zitat Le AD, Zhang Q, Wu Y, Messadi DV, Akhondzadeh A, Nguyen AL, Aghaloo TL, Kelly AP, Bertolami CN (2004) Elevated vascular endothelial growth factor in keloids: relevance to tissue fibrosis. Cells Tissues Organs 176:87–94CrossRefPubMed Le AD, Zhang Q, Wu Y, Messadi DV, Akhondzadeh A, Nguyen AL, Aghaloo TL, Kelly AP, Bertolami CN (2004) Elevated vascular endothelial growth factor in keloids: relevance to tissue fibrosis. Cells Tissues Organs 176:87–94CrossRefPubMed
23.
Zurück zum Zitat Lee TY, Chin GS, Kim WJ, Chau D, Gittes GK, Longaker MT (1999) Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Ann Plast Surg 43:179–184PubMedCrossRef Lee TY, Chin GS, Kim WJ, Chau D, Gittes GK, Longaker MT (1999) Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Ann Plast Surg 43:179–184PubMedCrossRef
24.
Zurück zum Zitat Miyata M, Biro S, Kaieda H, Eto H, Orihara K, Kihara T, Obata H, Matsushita N, Matsuyama T, Tei C (2001) Apolipoprotein J/clusterin is induced in vascular smooth muscle cells after vascular injury. Circulation 104:1407–1412PubMedCrossRef Miyata M, Biro S, Kaieda H, Eto H, Orihara K, Kihara T, Obata H, Matsushita N, Matsuyama T, Tei C (2001) Apolipoprotein J/clusterin is induced in vascular smooth muscle cells after vascular injury. Circulation 104:1407–1412PubMedCrossRef
25.
Zurück zum Zitat Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104:1435–1458PubMedCrossRef Niessen FB, Spauwen PH, Schalkwijk J, Kon M (1999) On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 104:1435–1458PubMedCrossRef
26.
Zurück zum Zitat Pepper MS, Vassalli JD, Orci L, Montesano R (1993) Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis. Exp Cell Res 204:356–363CrossRefPubMed Pepper MS, Vassalli JD, Orci L, Montesano R (1993) Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis. Exp Cell Res 204:356–363CrossRefPubMed
27.
Zurück zum Zitat Peltonen J, Hsiao LL, Jaakkola S, Sollberg S, Aumailley M, Timpl R, Chu ML, Uitto J (1991) Activation of collagen gene expression in keloids: co-localization of type I and VI collagen and transforming growth factor-β1 mRNA. J Invest Dermatol 97:240–248CrossRefPubMed Peltonen J, Hsiao LL, Jaakkola S, Sollberg S, Aumailley M, Timpl R, Chu ML, Uitto J (1991) Activation of collagen gene expression in keloids: co-localization of type I and VI collagen and transforming growth factor-β1 mRNA. J Invest Dermatol 97:240–248CrossRefPubMed
28.
Zurück zum Zitat Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J Biol Chem 269:6271–6274PubMed Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J Biol Chem 269:6271–6274PubMed
29.
Zurück zum Zitat Polo M, Kim YJ, Kucukcelebi A, Hayward PG, Ko F, Robson MC (1998) An in vivo model of human proliferative scar. J Surg Res 74:187–195CrossRefPubMed Polo M, Kim YJ, Kucukcelebi A, Hayward PG, Ko F, Robson MC (1998) An in vivo model of human proliferative scar. J Surg Res 74:187–195CrossRefPubMed
31.
Zurück zum Zitat Renner U, Lohrer P, Schaaf L, Feirer M, Schmitt K, Onofri C, Arzt E, Stalla GK (2002) Transforming growth factor-β stimulates vascular endothelial growth factor production by folliculostellate pituitary cells. Endocrinology 143:3759–3765CrossRefPubMed Renner U, Lohrer P, Schaaf L, Feirer M, Schmitt K, Onofri C, Arzt E, Stalla GK (2002) Transforming growth factor-β stimulates vascular endothelial growth factor production by folliculostellate pituitary cells. Endocrinology 143:3759–3765CrossRefPubMed
32.
Zurück zum Zitat Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS (1986) Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171PubMedCrossRef Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS (1986) Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171PubMedCrossRef
33.
Zurück zum Zitat Saadeh PB, Mehrara BJ, Steinbrech DS, Dudziak ME, Greenwald JA, Luchs JS, Spector JA, Ueno H, Gittes GK, Longaker MT (1999) Transforming growth factor-β1 modulates the expression of vascular endothelial growth factor by osteoblasts. Am J Physiol 277:C628–C637PubMed Saadeh PB, Mehrara BJ, Steinbrech DS, Dudziak ME, Greenwald JA, Luchs JS, Spector JA, Ueno H, Gittes GK, Longaker MT (1999) Transforming growth factor-β1 modulates the expression of vascular endothelial growth factor by osteoblasts. Am J Physiol 277:C628–C637PubMed
34.
Zurück zum Zitat Schierle HP, Scholz D, Lemperle G (1997) Elevated levels of testosterone receptors in keloid tissue: an experimental investigation. Plast Reconstr Surg 100:390–395PubMedCrossRef Schierle HP, Scholz D, Lemperle G (1997) Elevated levels of testosterone receptors in keloid tissue: an experimental investigation. Plast Reconstr Surg 100:390–395PubMedCrossRef
35.
Zurück zum Zitat Steinbrech DS, Mehrara BJ, Chau D, Rowe NM, Chin G, Lee T, Saadeh PB, Gittes GK, Longaker MT (1999) Hypoxia upregulates VEGF production in keloid fibroblasts. Ann Plast Surg 42:514–519PubMedCrossRef Steinbrech DS, Mehrara BJ, Chau D, Rowe NM, Chin G, Lee T, Saadeh PB, Gittes GK, Longaker MT (1999) Hypoxia upregulates VEGF production in keloid fibroblasts. Ann Plast Surg 42:514–519PubMedCrossRef
36.
Zurück zum Zitat Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4:19–24CrossRefPubMed Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4:19–24CrossRefPubMed
37.
Zurück zum Zitat Vladutiu AO (1993) The severe combined immunodeficient (SCID) mouse as a model for the study of autoimmune diseases. Clin Exp Immunol 93:1–8PubMedCrossRef Vladutiu AO (1993) The severe combined immunodeficient (SCID) mouse as a model for the study of autoimmune diseases. Clin Exp Immunol 93:1–8PubMedCrossRef
38.
Zurück zum Zitat Wahid S, Blades MC, De Lord D, Brown I, Blake G, Yanni G, Haskard DO, Panayi GS, Pitzalis C (2000) Tumour necrosis factor-alpha (TNF-α) enhances lymphocyte migration into rheumatoid synovial tissue transplanted into severe combined immunodeficient (SCID) mice. Clin Exp Immunol 122:133–142CrossRefPubMed Wahid S, Blades MC, De Lord D, Brown I, Blake G, Yanni G, Haskard DO, Panayi GS, Pitzalis C (2000) Tumour necrosis factor-alpha (TNF-α) enhances lymphocyte migration into rheumatoid synovial tissue transplanted into severe combined immunodeficient (SCID) mice. Clin Exp Immunol 122:133–142CrossRefPubMed
39.
Zurück zum Zitat Wang X, Smith P, Pu LL, Kim YJ, Ko F, Robson MC (1999) Exogenous transforming growth factor β2 modulates collagen I and collagen III synthesis in proliferative scar xenografts in nude rats. J Surg Res 87:194–200CrossRefPubMed Wang X, Smith P, Pu LL, Kim YJ, Ko F, Robson MC (1999) Exogenous transforming growth factor β2 modulates collagen I and collagen III synthesis in proliferative scar xenografts in nude rats. J Surg Res 87:194–200CrossRefPubMed
40.
Zurück zum Zitat Wu Y, Zhang Q, Ann DK, Akhondzadeh A, Duong HS, Messadi DV, Le AD (2003) Increased vascular endothelial growth factor may account for an elevated level of plasminogen activator inhibitor-1 via activating ERK1/2 in keloid fibroblasts. Am J Physiol Cell Physiol 286:905–912CrossRef Wu Y, Zhang Q, Ann DK, Akhondzadeh A, Duong HS, Messadi DV, Le AD (2003) Increased vascular endothelial growth factor may account for an elevated level of plasminogen activator inhibitor-1 via activating ERK1/2 in keloid fibroblasts. Am J Physiol Cell Physiol 286:905–912CrossRef
41.
Zurück zum Zitat Xia W, Phan TT, Lim IJ, Longaker MT, Yang GP (2004) Complex epithelial-mesenchymal interactions modulate transforming growth factor-β expression in keloid-derived cells. Wound Repair Regen 12:546–556CrossRefPubMed Xia W, Phan TT, Lim IJ, Longaker MT, Yang GP (2004) Complex epithelial-mesenchymal interactions modulate transforming growth factor-β expression in keloid-derived cells. Wound Repair Regen 12:546–556CrossRefPubMed
42.
Zurück zum Zitat Yoshimoto H, Ishihara H, Ohtsuru A, Akino K, Murakami R, Kuroda H, Namba H, Ito M, Fujii T, Yamashita S (1999) Overexpression of insulin-like growth factor-1 (IGF-I) receptor and the invasiveness of cultured keloid fibroblasts. Am J Pathol 154:883–889PubMed Yoshimoto H, Ishihara H, Ohtsuru A, Akino K, Murakami R, Kuroda H, Namba H, Ito M, Fujii T, Yamashita S (1999) Overexpression of insulin-like growth factor-1 (IGF-I) receptor and the invasiveness of cultured keloid fibroblasts. Am J Pathol 154:883–889PubMed
43.
Zurück zum Zitat Zhang Q, Wu Y, Ann DK, Messadi DV, Tuan TL, Kelly AP, Bertolami CN, Le AD (2003) Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts. J Invest Dermatol 121:1005–1012CrossRefPubMed Zhang Q, Wu Y, Ann DK, Messadi DV, Tuan TL, Kelly AP, Bertolami CN, Le AD (2003) Mechanisms of hypoxic regulation of plasminogen activator inhibitor-1 gene expression in keloid fibroblasts. J Invest Dermatol 121:1005–1012CrossRefPubMed
Metadaten
Titel
Upregulation of transforming growth factor-β1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity
verfasst von
Masao Fujiwara
Yasuteru Muragaki
Akira Ooshima
Publikationsdatum
01.10.2005
Verlag
Springer-Verlag
Erschienen in
Archives of Dermatological Research / Ausgabe 4/2005
Print ISSN: 0340-3696
Elektronische ISSN: 1432-069X
DOI
https://doi.org/10.1007/s00403-005-0596-2

Weitere Artikel der Ausgabe 4/2005

Archives of Dermatological Research 4/2005 Zur Ausgabe

Leitlinien kompakt für die Dermatologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Dermatologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.