Skip to main content
Erschienen in: Pediatric Nephrology 3/2007

Open Access 01.03.2007 | Educational Feature

Pathophysiology of focal segmental glomerulosclerosis

verfasst von: Kimberly Reidy, Frederick J. Kaskel

Erschienen in: Pediatric Nephrology | Ausgabe 3/2007

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Focal segmental glomerulosclerosis (FSGS) is a major cause of idiopathic steroid-resistant nephrotic syndrome (SRNS) and end-stage kidney disease (ESKD). In recent years, animal models and studies of familial forms of nephrotic syndrome helped elucidate some mechanisms of podocyte injury and disease progression in FSGS. This article reviews some of the experimental and clinical data on the pathophysiology of FSGS.
Hinweise
KR is a Pediatric Nephrology Trainee supported by grant no. NIH T32 DK007110 30. FJK is supported in part by NIH DK63549-04.

Answers

1.
B
 
2.
A
 
3.
C
 
4.
B
 
5.
C
 
Learning objectives
  • Discuss the experimental and clinical data on the pathophysiology of FSGS
  • Review the alterations in glomerular structure and function associated with FSGS
  • To identify potential mechanisms responsible for disease progression in FSGS
  • Distinguish some targets for the future therapy of FSGS
Focal segmental glomerulosclerosis (FSGS) is a disease entity defined by findings on kidney biopsy [1, 2]. FSGS is the major cause of idiopathic steroid-resistant nephrotic syndrome (SRNS) in children and adults [3]. FSGS is the most common cause of acquired chronic renal insufficiency in children and frequently leads to progression to end-stage kidney disease (ESKD) [2]. FSGS may occur secondary to such disparate disease processes as HIV and obesity [1, 4]; this review focuses on the pathophysiology of primary FSGS (i.e., with no underlying illness).
Alterations of normal glomerular structure and function have been found in FSGS [5]. Normal function requires that the three major components of the glomerular filter (the endothelial cells, podocytes, and glomerular basement membrane) are intact and are able to provide a permselective filtration barrier (Fig. 1). Specialized tight junctions between podocyte foot processes create the slit diaphragm which is integral to preventing the loss of protein into the urinary space [6]. While the clinical presentation of FSGS is often heterogeneous, a characteristic feature of the disease is proteinuria, which implies the loss of this barrier [2, 7]. Indeed, electron microscopy has shown distortion of the normal architecture (or effacement) of the foot processes of podocytes in FSGS [1]. The connection between these projections of the epithelial cell and the underlying basement membrane can be disrupted, leading to the loss of nonspecific plasma proteins into the tubular filtrate [6].
However, unlike other causes of proteinuria and nephrotic syndrome, such as minimal change disease (MCD), FSGS often progresses to ESKD. While foot process effacement is seen in MCD as well as FSGS, histologically, FSGS is characterized by increased extracellular matrix within the glomerular tuft with obliteration of the glomerular capillary lumen. These sclerotic lesions occur focally and in only some segments of glomeruli, and are typically not associated with immune complex deposition [1]. The location of sclerotic lesions by light microscopy defines the variants of FSGS: perihilar variant (with sclerosis of the vascular pole), cellular variant (associated with hypercellularity of the capillary space), tip variant (involving the part of the glomerulus near the origin of the proximal tubule), and collapsing variant (with one or more glomeruli with global or segmental collapse) [1]. Clinically, the variants of FSGS differ; for example, the collapsing variant tends to progress more rapidly to ESKD and commonly occurs in the setting of HIV [1]. It is possible that different mechanisms may play a role in the pathogenesis of each variant of FSGS [7, 8].
Insight into the pathogenesis of FSGS developed over the past decade from studies of genetic mutations in mice, models of progressive glomerulosclerosis (such as the rat remnant kidney model), and identification of gene mutations in some familial forms of nephrotic syndrome (including congenital nephrotic syndrome and familial and autosomal dominant FSGS) [7, 9, 10].
Key in the pathogenesis of FSGS is podocyte damage and loss [5, 6]. Injury to podocytes occurs by four major mechanisms: alteration of the components of the slit diaphragm or interference with its structure, dysregulation of the actin cytoskeleton, alteration of the glomerular basement membrane or its interactions with the podocyte, or alteration of the negative surface charge of the podocyte [6, 9]. Damage to podocytes triggers apoptosis and their detachment of podocytes from the glomerular basement membrane [6, 9]. The ensuing reduction in podocyte number is felt to play an important role in the pathogenesis of FSGS [7]. The podocyte is normally a terminally differentiated cell with limited proliferative capacity in response to injury [7]. The initial insult to the podocyte leads to further damage mediated by cytokine release, mechanical stress, and further loss of polarity, resulting in sclerosis and scarring of the glomerulus [7, 9].
Genetic mutations seen in congenital forms of nephrotic syndrome and FSGS enabled researchers to identify specific gene mutations involved in podocyte damage [10]. Mutations of the nephrin gene, a podocyte-specific transmembrane component of the slit diaphragm, are found in congenital Finnish-type nephrotic syndrome, and may lead to loss of normal caliber slit diaphragms [6, 911]. In mouse models, mutations of nephrin-like transmembrane genes (NEPH-1) which also localize to the slit diaphragm result in proteinuria and early death [6, 10].
It is unclear how alteration of the slit diaphragm results in podocyte loss. The slit diaphragm may be integral to maintaining cell polarity or its damage may alter the balance of cell signals, resulting in apoptosis. Mutations in a Fyn kinase (one of the src tyrosine kinases) that phosphorylates nephrin and may regulate cell cycle and apoptosis resulted in proteinuria and foot process effacement in a mouse model [9, 10].
Other proteins which are part of the slit diaphragm complex include: podocin, CD2-associated protein (CD2AP), FAT, ZO-1, P-cadherin, an LAP (leucine rich repeat and PDZ domain) protein, and MAGI-1 [6, 10]. Mutations in podocin (a transmembrane protein that interacts with nephrin, NEPH-1 and CD2AP) have been identified in familial FSGS [9, 10, 12]. Recently, mutations in CD2AP, an immunoglobulin-like protein that is involved in nephrin integration with the podocyte cytoskeleton, have also been linked to genetic forms of FSGS [10, 13, 14]. In mouse models, the loss of FAT1 and FAT2 (transmembrane proteins with cadherin-like repeats) results in the absence of slit diaphragms, proteinuria, and early death [10]. The role of the other components of the slit diaphragm in the pathophysiology of FSGS is not yet clear.
Alpha-actinin-4, an important structural component of the podocyte cytoskeleton, is mutated in some autosomal dominant forms of FSGS [10, 1517]. Other mutations have been identified in association with FSGS in addition to abnormal structural proteins. For example, TRPC6 is a cation-selective ion-channel protein that mediates calcium signals and has also been associated with FSGS [18].
Certain clinical variants of FSGS are suggestive of different mechanisms of injury to the podocyte. For example, a circulating factor which leads to glomerular basement membrane injury has been proposed in the pathogenesis of some types of FSGS [19, 20]. For example, there appears to be a role of a circulatory factor in the recurrence of FSGS in transplanted kidneys [20]. In some patients with recurrent FSGS, proteinuria remits in response to plasmapheresis and the removal of serum proteins. In addition, injections of serum from patients with recurrent FSGS were capable of inducing proteinuria in rats [20].
Another example of alternative mechanisms of injury is collapsing FSGS, which occurs in the setting of viruses such as HIV. In collapsing FSGS, dysregulation of the podocyte cell cycle appears to result in immature, proliferative podocytes [21, 22]. Finally, recent work has focused on the role of the parietal epithelial cell in the pathophysiology of FSGS [23]. Proliferation of parietal epithelial cells was identified in both a transgenic model of FSGS and a biopsy from a patient with collapsing FSGS [23].
Of great clinical importance is the mechanism by which the initial podocyte injury progresses to the final sclerotic lesion (Fig. 1). As podocyte numbers decline, there is a relative exposure of the glomerular basement membrane. Maladaptive interactions develop between the glomerular basement membrane and the parietal epithelial cells. Expansion of synechiae and/or the leak of protein into Bowman’s space results in the deposition of collagen. Ultimately, this results in the collapse of the capillary loop and the loss of endothelial cells [5].
Factors resulting in the progression of FSGS to ESKD have also been the focus of recent research (Fig. 2). Cytokines and vasoactive factors are believed to play a major role in the progression of FSGS. The overexpression of transforming growth factor β (TGFβ) or its effector proteins, the Smads, leads to glomerulosclerosis in animal models [8, 24]. Activation of the renin-angiotensin system upregulates TGFβ and is felt to further lead to the progression of disease [7, 24]. Other angiogenic factors, such as platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) may also play a role in disease progression [24]. The evidence for this is primarily based on animal models of progressive glomerulosclerosis, such as the rat remnant kidney model. In this model, PDGF and VEGF are upregulated and the later loss of VEGF expression correlates with progression of the glomerulosclerosis [24, 25].
Mechanical stress is also believed to play a role in the progression of FSGS [9, 26]. Increased filtration due the defects of the filtration barrier results in increased single-nephron glomerular filtration rate (SNGFR). This hyperfiltration results in hypertrophy of glomeruli. The hypertrophy exacerbates the mismatch between the glomerular basement membrane and the decreased numbers of podocytes, resulting in further injury [9].
Another factor in the progression of FSGS is tubulointerstitial injury. Clinically, tubulointerstitial injury is a predictor of the loss of renal function in FSGS [1, 27]. The nonspecific entry of proteins into the tubular lumen is one potential source of damage to the interstitium. Indeed, persistence of nephrotic-range proteinuria is a negative prognostic factor for the progression of FSGS to ESKD [28]. While it is unclear if proteinuria itself is toxic to the tubulointerstitium, decreases in proteinuria achieved by angiotensin-converting enzyme (ACE) inhibitors and by angiotensin receptor blockers (ARB) appear to slow disease progression in some adults with FSGS [9, 29].
The presence of plasma proteins in the tubular filtrate may directly injure the tubulointerstitium. Cytokines (such as TGFβ), when present in the tubules, will recruit monocytes, macrophage, and T-cells. This stimulates other cytokines, including interleukin-1, tumor necrosis factor alpha, and other chemokines [24]. The inflammatory infiltrate leads to mesangial matrix deposition, promoting the collapse of glomeruli. The cellular infiltrate and cytokines also damage tubular epithelial cells, and some tubular epithelial cells may undergo transformation to mesenchymal cells (an epithelial-mesenchymal transition or EMT) [24]. These mesenchymal cells, as well as recruited and stimulated fibroblasts, result in collagen matrix deposition and tubulointerstitial fibrosis [24].
The beneficial effects of blocking the renin-angiotensin system may not be limited to their antiproteinuric or antihypertensive effects. As noted earlier, angiotensin stimulates TGFβ, contributing to fibrosis. It can also induce oxidative stress and it is stimulated by mechanical stress, such as hyperfiltration [24]. In addition, angiotensin affects intracellular calcium concentrations and the podocyte cytoskeleton [24]. Inhibition of angiotensin may slow progression by these local mechanisms [9, 29].
With the increasing incidence of FSGS in children [30], these pathways of podocyte injury and disease progression provide important targets for future intervention. Trials have already been initiated to antagonize cytokines, such as TGFβ. Future therapeutic targets may include factors involved in podocyte protection or tubulointerstitial injury.
Questions
(Answers appear following the reference list)
1.
Which of the following statements is TRUE regarding the current understanding of the pathogenesis of focal segmental glomerulosclerosis (FSGS)?
a.
FSGS may result from immune-complex-mediated damage to endothelial cells
 
b.
Alterations in components of the slit diaphragm may play a role in the pathogenesis of FSGS
 
c.
Proliferation of podocytes leads to cytokine release and mechanical stress, resulting in scarring and sclerosis of the glomeruli
 
d.
Mutations in a chloride channel have been associated with FSGS and may be pathogenic
 
 
2.
All of the following are mutations of structural proteins that have been identified as pathogenic in FSGS EXCEPT:
a.
Sodium channel mutation
 
b.
Alpha-actinin-4
 
c.
Nephrin
 
d.
Podocin
 
 
3.
Progression of FSGS to end-stage kidney disease (ESKD) results from:
a.
Downregulation of transforming growth factor β (TGFβ)
 
b.
Decreased glomerular filtration
 
c.
Tubulointerstitial injury
 
d.
Blockade of the renin-angiotensin system
 
 
4.
Proteinuria in the setting of FSGS:
a.
Has no effect on clinical course
 
b.
May be decreased by treatment with angiotensin-converting enzyme (ACE) inhibitors
 
c.
Results from an increased number of glomerular foot processes
 
d.
Leads to the loss of mesangial matrix
 
 
5.
Which of the following is FALSE:
a.
A circulating factor may play a role in the pathogenesis of FSGS
 
b.
Proliferation of parietal epithelial cells has been identified in collapsing FSGS
 
c.
Podocyte loss due to necrosis appears to play a role in the pathogenesis of FSGS
 
d.
CD2-associated protein, FAT, nephrin, and podocin are examples of slit diaphragm proteins
 
 
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Answers

1.
B
 
2.
A
 
3.
C
 
4.
B
 
5.
C
 
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

e.Med Urologie

Kombi-Abonnement

Mit e.Med Urologie erhalten Sie Zugang zu den urologischen CME-Fortbildungen und Premium-Inhalten der urologischen Fachzeitschriften.

Literatur
1.
Zurück zum Zitat D’Agati VD (2003) Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 23(2):117–134PubMedCrossRef D’Agati VD (2003) Pathologic classification of focal segmental glomerulosclerosis. Semin Nephrol 23(2):117–134PubMedCrossRef
2.
Zurück zum Zitat Schnaper HW (2003) Idiopathic focal segmental glomerulosclerosis. Semin Nephrol 23(2):183–193PubMedCrossRef Schnaper HW (2003) Idiopathic focal segmental glomerulosclerosis. Semin Nephrol 23(2):183–193PubMedCrossRef
3.
Zurück zum Zitat Dingli D, Larson DR, Plevak MF, Grande JP, Kyle RA (2005) Focal and segmental glomerulosclerosis and plasma cell proliferative disorders. Am J Kidney Dis 46(2):278–282PubMedCrossRef Dingli D, Larson DR, Plevak MF, Grande JP, Kyle RA (2005) Focal and segmental glomerulosclerosis and plasma cell proliferative disorders. Am J Kidney Dis 46(2):278–282PubMedCrossRef
4.
Zurück zum Zitat Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59(4):1498–1509PubMedCrossRef Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59(4):1498–1509PubMedCrossRef
5.
Zurück zum Zitat Kriz W (2003) The pathogenesis of “classic” focal segmental glomerulosclerosis—lessons from rat models. Nephrol Dial Transplant 18(Suppl 6):vi39–vi44PubMed Kriz W (2003) The pathogenesis of “classic” focal segmental glomerulosclerosis—lessons from rat models. Nephrol Dial Transplant 18(Suppl 6):vi39–vi44PubMed
6.
Zurück zum Zitat Asanuma K, Mundel P (2003) The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 7(4):255–259PubMedCrossRef Asanuma K, Mundel P (2003) The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 7(4):255–259PubMedCrossRef
7.
Zurück zum Zitat Fogo AB (2003) Animal models of FSGS: lessons for pathogenesis and treatment. Semin Nephrol 23(2):161–171PubMedCrossRef Fogo AB (2003) Animal models of FSGS: lessons for pathogenesis and treatment. Semin Nephrol 23(2):161–171PubMedCrossRef
8.
Zurück zum Zitat Meyrier A (2003) E pluribus unum: the riddle of focal segmental glomerulosclerosis. Semin Nephrol 23(2):135–140PubMedCrossRef Meyrier A (2003) E pluribus unum: the riddle of focal segmental glomerulosclerosis. Semin Nephrol 23(2):135–140PubMedCrossRef
9.
Zurück zum Zitat Kwoh C, Shannon MB, Miner JH, Shaw A (2006) Pathogenesis of nonimmune glomerulopathies. Annu Rev Pathol Mech Dis 1:349–374CrossRef Kwoh C, Shannon MB, Miner JH, Shaw A (2006) Pathogenesis of nonimmune glomerulopathies. Annu Rev Pathol Mech Dis 1:349–374CrossRef
10.
Zurück zum Zitat Tryggvason K, Patrakka J, Wartiovaara J (2006) Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 354(13):1387–1401PubMedCrossRef Tryggvason K, Patrakka J, Wartiovaara J (2006) Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 354(13):1387–1401PubMedCrossRef
11.
Zurück zum Zitat Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan C, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1(4):575–582PubMedCrossRef Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan C, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1(4):575–582PubMedCrossRef
12.
Zurück zum Zitat Karle SM, Uetz B, Ronner V, Glaeser L, Hildebrandt F, Fuchshuber A (2002) Novel mutations in NPHS2 detected in both familial and sporadic steroid-resistant nephrotic syndrome. J Am Soc Nephrol 13(2):388–393PubMed Karle SM, Uetz B, Ronner V, Glaeser L, Hildebrandt F, Fuchshuber A (2002) Novel mutations in NPHS2 detected in both familial and sporadic steroid-resistant nephrotic syndrome. J Am Soc Nephrol 13(2):388–393PubMed
13.
Zurück zum Zitat Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286(5438):312–315PubMedCrossRef Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286(5438):312–315PubMedCrossRef
14.
Zurück zum Zitat Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, Unanue ER, Shaw AS (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300(5623):1298–1300CrossRefPubMed Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, Unanue ER, Shaw AS (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300(5623):1298–1300CrossRefPubMed
15.
Zurück zum Zitat Ghiggeri GM, Artero M, Carraro M, Perfumo F (2001) Permeability plasma factors in nephrotic syndrome: more than one factor, more than one inhibitor. Nephrol Dial Transplant 16(5):882–885PubMedCrossRef Ghiggeri GM, Artero M, Carraro M, Perfumo F (2001) Permeability plasma factors in nephrotic syndrome: more than one factor, more than one inhibitor. Nephrol Dial Transplant 16(5):882–885PubMedCrossRef
16.
Zurück zum Zitat Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodriguez-Perez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24(3):251–256PubMedCrossRef Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodriguez-Perez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24(3):251–256PubMedCrossRef
17.
Zurück zum Zitat Yao J, Le TC, Kos CH, Henderson JM, Allen PG, Denker BM, Pollak MR (2004) Alpha-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol 2(6):787–794CrossRef Yao J, Le TC, Kos CH, Henderson JM, Allen PG, Denker BM, Pollak MR (2004) Alpha-actinin-4-mediated FSGS: an inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol 2(6):787–794CrossRef
18.
Zurück zum Zitat Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 17(5729):1801–1804CrossRef Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 17(5729):1801–1804CrossRef
19.
Zurück zum Zitat Savin VJ, McCarthy ET, Sharma M (2003) Permeability factors in focal segmental glomerulosclerosis. Semin Nephrol 23(2):147–160PubMedCrossRef Savin VJ, McCarthy ET, Sharma M (2003) Permeability factors in focal segmental glomerulosclerosis. Semin Nephrol 23(2):147–160PubMedCrossRef
20.
Zurück zum Zitat Daskalakis N, Winn MP (2006) Focal and segmental glomerulosclerosis: varying biologic mechanisms underlie a final histopathologic end point. Semin Nephrol 26(2):89–94PubMedCrossRef Daskalakis N, Winn MP (2006) Focal and segmental glomerulosclerosis: varying biologic mechanisms underlie a final histopathologic end point. Semin Nephrol 26(2):89–94PubMedCrossRef
21.
Zurück zum Zitat Barisoni L, Kriz W, Mundel P, D’Agati V (1999) The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10(1):51–61PubMed Barisoni L, Kriz W, Mundel P, D’Agati V (1999) The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10(1):51–61PubMed
22.
Zurück zum Zitat Schwimmer JA, Markowitz GS, Valeri A, Appel GB (2003) Collapsing glomerulopathy. Semin Nephrol 23(2):209–218PubMedCrossRef Schwimmer JA, Markowitz GS, Valeri A, Appel GB (2003) Collapsing glomerulopathy. Semin Nephrol 23(2):209–218PubMedCrossRef
23.
Zurück zum Zitat Dijkman H, Smeets B, van der Laak J, Steenbergen E, Wetzels J (2005) The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int 68(4):1562–1572PubMedCrossRef Dijkman H, Smeets B, van der Laak J, Steenbergen E, Wetzels J (2005) The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int 68(4):1562–1572PubMedCrossRef
24.
Zurück zum Zitat Harris RC, Neilson EG (2006) Toward a unified theory of renal progression. Annu Rev Med 57:365–380PubMedCrossRef Harris RC, Neilson EG (2006) Toward a unified theory of renal progression. Annu Rev Med 57:365–380PubMedCrossRef
25.
Zurück zum Zitat Kang DH, Joly AH, Oh S-W, Hugo C, Kerjaschki D, Gordon KL, Mazzali M, Jefferson JA, Hughes J, Madsen KM, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol 12(7):1434–1447PubMed Kang DH, Joly AH, Oh S-W, Hugo C, Kerjaschki D, Gordon KL, Mazzali M, Jefferson JA, Hughes J, Madsen KM, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol 12(7):1434–1447PubMed
26.
27.
Zurück zum Zitat Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J (2005) Tubulointerstitial damage and progression of renal failure. Kidney Int 68(Supp 99):S82–S86CrossRef Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J (2005) Tubulointerstitial damage and progression of renal failure. Kidney Int 68(Supp 99):S82–S86CrossRef
28.
Zurück zum Zitat Walls J (2001) Relationship between proteinuria and progressive renal disease. Am J Kidney Dis 37(1 Supp 2):S13–S16PubMedCrossRef Walls J (2001) Relationship between proteinuria and progressive renal disease. Am J Kidney Dis 37(1 Supp 2):S13–S16PubMedCrossRef
29.
Zurück zum Zitat Korbet SM (2003) Angiotensin antagonists and steroids in the treatment of focal segmental glomerulosclerosis. Semin Nephrol 23(2):219–228PubMedCrossRef Korbet SM (2003) Angiotensin antagonists and steroids in the treatment of focal segmental glomerulosclerosis. Semin Nephrol 23(2):219–228PubMedCrossRef
30.
Zurück zum Zitat Filler G, Young E, Geier P, Carpenter B, Drukker A, Feber J (2003) Is there really an increase in non-minimal change nephrotic syndrome in children? Am J Kidney Dis 42(6):1107–1113PubMedCrossRef Filler G, Young E, Geier P, Carpenter B, Drukker A, Feber J (2003) Is there really an increase in non-minimal change nephrotic syndrome in children? Am J Kidney Dis 42(6):1107–1113PubMedCrossRef
Metadaten
Titel
Pathophysiology of focal segmental glomerulosclerosis
verfasst von
Kimberly Reidy
Frederick J. Kaskel
Publikationsdatum
01.03.2007
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 3/2007
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-006-0357-2

Weitere Artikel der Ausgabe 3/2007

Pediatric Nephrology 3/2007 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Häufigste Gründe für Brustschmerzen bei Kindern

06.05.2024 Pädiatrische Diagnostik Nachrichten

Akute Brustschmerzen sind ein Alarmsymptom par exellence, schließlich sind manche Auslöser lebensbedrohlich. Auch Kinder klagen oft über Schmerzen in der Brust. Ein Studienteam ist den Ursachen nachgegangen.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Durch übermäßige Internetnutzung wird oft die Schule verpasst

Häufige Fehlzeiten in der Schule können durch physische und psychische Probleme verursacht werden. Wie in einer Studie aus Finnland nun belegt wird, führt auch die exzessive Nutzung des Internets gehäuft zu Abwesenheiten.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.