Skip to main content
Erschienen in: Lasers in Medical Science 8/2015

01.11.2015 | Original Article

Laser all-ceramic crown removal and pulpal temperature—a laboratory proof-of-principle study

verfasst von: P. Rechmann, N. C. H. Buu, B. M. T. Rechmann, F. C. Finzen

Erschienen in: Lasers in Medical Science | Ausgabe 8/2015

Einloggen, um Zugang zu erhalten

Abstract

The objective of this proof-of-principle laboratory pilot study was to evaluate the temperature increase in the pulp chamber in a worst case scenario during Er:YAG laser debonding of all-ceramic crowns. Twenty extracted molars were prepared to receive all-ceramic IPS E.max CAD full contour crowns. The crowns were bonded to the teeth with Ivoclar Multilink Automix. Times for laser debonding and temperature rise in the pulp chamber using micro-thermocouples were measured. The Er:YAG was used with 560 mJ/pulse. The irradiation was applied at a distance of 5 mm from the crown surface. Additional air–water spray for cooling was utilized. Each all-ceramic crown was successfully laser debonded with an average debonding time of 135 ± 35 s. No crown fractured, and no damage to the underlying dentin was detected. The bonding cement deteriorated, but no carbonization at the dentin/cement interface occurred. The temperature rise in the pulp chamber averaged 5.4° ± 2.2 °C. During 8 out of the 20 crown removals, the temperature rise exceeded 5.5 °C, lasting 5 to 43 s (average 18.8 ± 11.6 s). A temperature rise of 11.5 °C occurred only once, while seven times the temperature rise was limited to 6.8 ± 0.5 °C. Temperature rises above 5.5 °C occurred only when the laser was applied from one side and additional cooling from the side opposite the irradiation. Er:YAG laser energy can successfully be used to efficiently debond all-ceramic crowns from natural teeth. Temperature rises exceeding 5.5 °C only occur when an additional air/water cooling from a dental syringe is inaccurately directed. To avoid possible thermal damage and to allow further heat diffusion, clinically temperature-reduced water might be applied.
Literatur
1.
Zurück zum Zitat Deany IL (1996) Recent advances in ceramics for dentistry. Crit Rev Oral Biol Med 7(2):134–143CrossRefPubMed Deany IL (1996) Recent advances in ceramics for dentistry. Crit Rev Oral Biol Med 7(2):134–143CrossRefPubMed
3.
Zurück zum Zitat Bachhav VC, Aras MA (2011) Zirconia-based fixed partial dentures: a clinical review. Quintessence Int 42(2):173–182PubMed Bachhav VC, Aras MA (2011) Zirconia-based fixed partial dentures: a clinical review. Quintessence Int 42(2):173–182PubMed
4.
Zurück zum Zitat Seghi RR, Denry IL, Rosenstiel SF (1995) Relative fracture toughness and hardness of new dental ceramics. J Prosthet Dent 74(2):145–150CrossRefPubMed Seghi RR, Denry IL, Rosenstiel SF (1995) Relative fracture toughness and hardness of new dental ceramics. J Prosthet Dent 74(2):145–150CrossRefPubMed
6.
Zurück zum Zitat Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP (2010) Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 23(5):434–442PubMed Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP (2010) Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 23(5):434–442PubMed
8.
Zurück zum Zitat Siegel SC, von Fraunhofer JA (1999) Comparison of sectioning rates among carbide and diamond burs using three casting alloys. J Prosthodont 8(4):240–244CrossRefPubMed Siegel SC, von Fraunhofer JA (1999) Comparison of sectioning rates among carbide and diamond burs using three casting alloys. J Prosthodont 8(4):240–244CrossRefPubMed
9.
Zurück zum Zitat Yener ES, Ozcan M, Kazazoglu E (2011) The effect of glazing on the biaxial flexural strength of different zirconia core materials. Acta Odontol Latinoam 24(2):133–140PubMed Yener ES, Ozcan M, Kazazoglu E (2011) The effect of glazing on the biaxial flexural strength of different zirconia core materials. Acta Odontol Latinoam 24(2):133–140PubMed
10.
Zurück zum Zitat Tysowsky GW (2009) The science behind lithium disilicate: a metal-free alternative. Dent Today 28(3):112–113PubMed Tysowsky GW (2009) The science behind lithium disilicate: a metal-free alternative. Dent Today 28(3):112–113PubMed
11.
Zurück zum Zitat Engelberg B (2013) An effective removal system for zirconia and lithium-disilicate restorations. Inside Dent :92–98 Engelberg B (2013) An effective removal system for zirconia and lithium-disilicate restorations. Inside Dent :92–98
12.
Zurück zum Zitat Keller U, Hibst R (1995) Histological findings of pulpal changes after Er:YAG laser irradiation. J Dent Res 74(1159):545 Keller U, Hibst R (1995) Histological findings of pulpal changes after Er:YAG laser irradiation. J Dent Res 74(1159):545
13.
Zurück zum Zitat Hibst R, Keller U (1991) Removal of dental filling materials by Er:YAG laser radiation. In: O’Brien SJ, Dederich DN, Wigdor HA, Trent AM (eds), Bellingham, Washington. SPIE Proceedings of Lasers in Orthopedic, Dental and Veterinary Medicine. SPIE 1424, pp 120–126 Hibst R, Keller U (1991) Removal of dental filling materials by Er:YAG laser radiation. In: O’Brien SJ, Dederich DN, Wigdor HA, Trent AM (eds), Bellingham, Washington. SPIE Proceedings of Lasers in Orthopedic, Dental and Veterinary Medicine. SPIE 1424, pp 120–126
16.
Zurück zum Zitat Buu NC, Morford CK, Finzen FC, Sharma A, Rechmann P (2010) Er:YAG laser debonding of porcelain veneers. Lasers in Dentistry XVI, SPIE Proceedings 7549, San Francisco Buu NC, Morford CK, Finzen FC, Sharma A, Rechmann P (2010) Er:YAG laser debonding of porcelain veneers. Lasers in Dentistry XVI, SPIE Proceedings 7549, San Francisco
17.
Zurück zum Zitat Rechmann P, Buu NC, Rechmann BM, Le CQ, Finzen FC, Featherstone JD (2014) Laser all-ceramic crown removal-a laboratory proof-of-principle study-phase 1 material characteristics. Lasers Surg Med 46(8):628–635. doi:10.1002/lsm.22279 Rechmann P, Buu NC, Rechmann BM, Le CQ, Finzen FC, Featherstone JD (2014) Laser all-ceramic crown removal-a laboratory proof-of-principle study-phase 1 material characteristics. Lasers Surg Med 46(8):628–635. doi:10.​1002/​lsm.​22279
18.
Zurück zum Zitat Rechmann P, Buu NC, Rechmann BM, Finzen FC (2014) Laser all-ceramic crown removal—a laboratory proof-of-principle study-phase 2 crown debonding time. Lasers Surg Med 46(8):636–643. doi:10.1002/lsm.22280 Rechmann P, Buu NC, Rechmann BM, Finzen FC (2014) Laser all-ceramic crown removal—a laboratory proof-of-principle study-phase 2 crown debonding time. Lasers Surg Med 46(8):636–643. doi:10.​1002/​lsm.​22280
19.
Zurück zum Zitat Fried D, Zuerlein MJ, Featherstone DB, Seka W, Duhn C, McCormack SM (1998) IR laser ablation of dental enamel: mechanistic dependence on the primary absorber. Appl Surf Sci 127–129:852–856CrossRef Fried D, Zuerlein MJ, Featherstone DB, Seka W, Duhn C, McCormack SM (1998) IR laser ablation of dental enamel: mechanistic dependence on the primary absorber. Appl Surf Sci 127–129:852–856CrossRef
20.
Zurück zum Zitat Lizarelli RFZ, Moriyama LT, Pelino JEP, Bagnato VS (2005) Ablation rate of morphological aspects of composite resin exposed to Er:YAG laser. J Oral Laser Appl 3:151–160 Lizarelli RFZ, Moriyama LT, Pelino JEP, Bagnato VS (2005) Ablation rate of morphological aspects of composite resin exposed to Er:YAG laser. J Oral Laser Appl 3:151–160
21.
Zurück zum Zitat Pich O, Franzen R, Gutknecht N, Wolfart S (2013) Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation. Lasers Med Sci 30(2):591–597. doi:10.1007/s10103-013-1340-3 Pich O, Franzen R, Gutknecht N, Wolfart S (2013) Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation. Lasers Med Sci 30(2):591–597. doi:10.​1007/​s10103-013-1340-3
24.
Zurück zum Zitat Michalakis K, Pissiotis A, Hirayama H, Kang K, Kafantaris N (2006) Comparison of temperature increase in the pulp chamber during the polymerization of materials used for the direct fabrication of provisional restorations. J Prosthet Dent 96(6):418–423. doi:10.1016/j.prosdent.2006.10.005 CrossRefPubMed Michalakis K, Pissiotis A, Hirayama H, Kang K, Kafantaris N (2006) Comparison of temperature increase in the pulp chamber during the polymerization of materials used for the direct fabrication of provisional restorations. J Prosthet Dent 96(6):418–423. doi:10.​1016/​j.​prosdent.​2006.​10.​005 CrossRefPubMed
25.
Zurück zum Zitat Hansen EK, Asmussen E (1993) Correlation between depth of cure and temperature rise of a light-activated resin. Scand J Dent Res 101(3):176–179PubMed Hansen EK, Asmussen E (1993) Correlation between depth of cure and temperature rise of a light-activated resin. Scand J Dent Res 101(3):176–179PubMed
26.
Zurück zum Zitat Huang TK, Hung CC, Tsai CC (2006) Reducing, by pulse width modulation, the curing temperature of a prototype high-power LED light curing unit. Dent Mater J 25(2):309–315CrossRefPubMed Huang TK, Hung CC, Tsai CC (2006) Reducing, by pulse width modulation, the curing temperature of a prototype high-power LED light curing unit. Dent Mater J 25(2):309–315CrossRefPubMed
27.
Zurück zum Zitat Choi S, Roulet J, Heintze S, Park S (2014) Influence of cavity preparation, light-curing units, and composite filling on intrapulpal temperature increase in an in vitro tooth model. Oper Dent 39(5):E195–205. doi:10.2341/13-068-L Choi S, Roulet J, Heintze S, Park S (2014) Influence of cavity preparation, light-curing units, and composite filling on intrapulpal temperature increase in an in vitro tooth model. Oper Dent 39(5):E195–205. doi:10.​2341/​13-068-L
29.
Zurück zum Zitat Hahn P, Schondelmaier N, Wolkewitz M, Altenburger MJ, Polydorou O (2013) Efficacy of tooth bleaching with and without light activation and its effect on the pulp temperature: an in vitro study. Odontology / Soc Nippon Dent Univ 101(1):67–74. doi:10.1007/s10266-012-0063-4 CrossRef Hahn P, Schondelmaier N, Wolkewitz M, Altenburger MJ, Polydorou O (2013) Efficacy of tooth bleaching with and without light activation and its effect on the pulp temperature: an in vitro study. Odontology / Soc Nippon Dent Univ 101(1):67–74. doi:10.​1007/​s10266-012-0063-4 CrossRef
30.
34.
Zurück zum Zitat Joffe SN (2003) Lasers in medicine, vol 2: Las-Pho. Encyclopedia of optical engineering, vol 3. Marcel Dekker, New York Joffe SN (2003) Lasers in medicine, vol 2: Las-Pho. Encyclopedia of optical engineering, vol 3. Marcel Dekker, New York
35.
Zurück zum Zitat Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530CrossRefPubMed Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530CrossRefPubMed
36.
Zurück zum Zitat Lloyd CH, Joshi A, McGlynn E (1986) Temperature rises produced by light sources and composites during curing. Dent Mater J 2(4):170–174CrossRef Lloyd CH, Joshi A, McGlynn E (1986) Temperature rises produced by light sources and composites during curing. Dent Mater J 2(4):170–174CrossRef
37.
Zurück zum Zitat Baldissara P, Catapano S, Scotti R (1997) Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. J Oral Rehabil 24(11):791–801CrossRefPubMed Baldissara P, Catapano S, Scotti R (1997) Clinical and histological evaluation of thermal injury thresholds in human teeth: a preliminary study. J Oral Rehabil 24(11):791–801CrossRefPubMed
38.
Zurück zum Zitat Henriques FC Jr (1947) Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol 43(5):489–502 Henriques FC Jr (1947) Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol 43(5):489–502
39.
Zurück zum Zitat Denton ML, Clark CD, Foltz MS, Schuster KJ, Noojin GD, Estlack LE, Thomas RJ (2010) In-vitro retinal model reveals a sharp transition between laser damage mechanisms. J Biomed Opt 15(3):030512. doi:10.1117/1.3449107 CrossRefPubMed Denton ML, Clark CD, Foltz MS, Schuster KJ, Noojin GD, Estlack LE, Thomas RJ (2010) In-vitro retinal model reveals a sharp transition between laser damage mechanisms. J Biomed Opt 15(3):030512. doi:10.​1117/​1.​3449107 CrossRefPubMed
40.
Zurück zum Zitat Hennig T, Rechmann P, Abel M (1994) Caries selective ablation: effects of water cooling. In: Bown SG, Escourrou J, Frank F et al (eds), Bellingham, Washington, 1994. SPIE Proceedings of Medical Applications of Lasers II. SPIE, pp 70–75 Hennig T, Rechmann P, Abel M (1994) Caries selective ablation: effects of water cooling. In: Bown SG, Escourrou J, Frank F et al (eds), Bellingham, Washington, 1994. SPIE Proceedings of Medical Applications of Lasers II. SPIE, pp 70–75
41.
Zurück zum Zitat Hennig T, Rechmann P, Holtermann A (1994) Caries selective ablation: temperature in the pulp chamber. In: Anderson R, Katzir A (eds), Bellingham, Washington, 1994. SPIE Proceedings of Laser Surgery: Advanced, Characterization, Therapeutics, and Systems IV. SPIE, pp 397–402 Hennig T, Rechmann P, Holtermann A (1994) Caries selective ablation: temperature in the pulp chamber. In: Anderson R, Katzir A (eds), Bellingham, Washington, 1994. SPIE Proceedings of Laser Surgery: Advanced, Characterization, Therapeutics, and Systems IV. SPIE, pp 397–402
42.
Zurück zum Zitat Hennig T, Rechmann P, Holtermann A, Dramburg R (1994) Caries selective ablation—temperature in the pulp chamber. P Soc Photo-Opt Ins 2128:397–402. doi:10.1117/12.184923 Hennig T, Rechmann P, Holtermann A, Dramburg R (1994) Caries selective ablation—temperature in the pulp chamber. P Soc Photo-Opt Ins 2128:397–402. doi:10.​1117/​12.​184923
44.
Zurück zum Zitat Raab WH (1992) Temperature related changes in pulpal microcirculation. Proc Finn Dent Soc 88(Suppl 1):469–479PubMed Raab WH (1992) Temperature related changes in pulpal microcirculation. Proc Finn Dent Soc 88(Suppl 1):469–479PubMed
Metadaten
Titel
Laser all-ceramic crown removal and pulpal temperature—a laboratory proof-of-principle study
verfasst von
P. Rechmann
N. C. H. Buu
B. M. T. Rechmann
F. C. Finzen
Publikationsdatum
01.11.2015
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 8/2015
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-015-1738-1

Weitere Artikel der Ausgabe 8/2015

Lasers in Medical Science 8/2015 Zur Ausgabe