Skip to main content
Erschienen in: Lasers in Medical Science 6/2016

25.05.2016 | Original Article

Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise

Erschienen in: Lasers in Medical Science | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm2, 60 J/cm2 per site of 13.6 cm2); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85–90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η 2  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η 2  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly.
Literatur
1.
Zurück zum Zitat Castaneda AE, Tuulio-Henriksson A, Marttunen M, Suvisaari J, Lönnqvist J (2008) A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J Affect Disord 106:1–27CrossRefPubMed Castaneda AE, Tuulio-Henriksson A, Marttunen M, Suvisaari J, Lönnqvist J (2008) A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J Affect Disord 106:1–27CrossRefPubMed
2.
Zurück zum Zitat Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280:4761–4771CrossRefPubMed Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT (2005) Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 280:4761–4771CrossRefPubMed
3.
Zurück zum Zitat Rojas JC, Gonzalez-Lima F (2011) Low-level light therapy of the eye and brain. Eye Brain 3:49–67 Rojas JC, Gonzalez-Lima F (2011) Low-level light therapy of the eye and brain. Eye Brain 3:49–67
4.
Zurück zum Zitat Rojas JC, Bruchey AK, Gonzalez-Lima F (2012) Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis 32:741–752PubMed Rojas JC, Bruchey AK, Gonzalez-Lima F (2012) Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis 32:741–752PubMed
5.
Zurück zum Zitat Barrett DW, Gonzalez-Lima F (2013) Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 230:13–23CrossRefPubMed Barrett DW, Gonzalez-Lima F (2013) Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 230:13–23CrossRefPubMed
6.
Zurück zum Zitat Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y, Soya H (2010) Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 50:1702–1710CrossRefPubMed Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y, Soya H (2010) Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 50:1702–1710CrossRefPubMed
7.
Zurück zum Zitat Coles K, Tomporowski PD (2008) Effects of acute exercise on executive processing, short-term and long-term memory. J Sports Sci 26:333–344CrossRefPubMed Coles K, Tomporowski PD (2008) Effects of acute exercise on executive processing, short-term and long-term memory. J Sports Sci 26:333–344CrossRefPubMed
8.
Zurück zum Zitat Pontifex MB, Hillman CH, Fernhall B, Thompson KM, Valentini TA (2009) The effect of acute aerobic and resistance exercise on working memory. Med Sci Sports Exerc 41:927–934CrossRefPubMed Pontifex MB, Hillman CH, Fernhall B, Thompson KM, Valentini TA (2009) The effect of acute aerobic and resistance exercise on working memory. Med Sci Sports Exerc 41:927–934CrossRefPubMed
9.
Zurück zum Zitat Sibley BA, Beilock SL (2007) Exercise and working memory: an individual differences investigation. J Sport Exerc Psychol 29:783–791PubMed Sibley BA, Beilock SL (2007) Exercise and working memory: an individual differences investigation. J Sport Exerc Psychol 29:783–791PubMed
10.
Zurück zum Zitat Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39:728–734CrossRefPubMed Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39:728–734CrossRefPubMed
11.
Zurück zum Zitat Chang YK, Pesce C, Chiang YT, Kuo CY, Fong DY (2015) Antecedent acute cycling exercise affects attention control: an ERP study using attention network test. Front Hum Neurosci 9:156CrossRefPubMedPubMedCentral Chang YK, Pesce C, Chiang YT, Kuo CY, Fong DY (2015) Antecedent acute cycling exercise affects attention control: an ERP study using attention network test. Front Hum Neurosci 9:156CrossRefPubMedPubMedCentral
12.
13.
Zurück zum Zitat Picard M, McEwen BS (2014) Mitochondria impact brain function and cognition. Proc Natl Acad Sci U S A 111:7–8CrossRefPubMed Picard M, McEwen BS (2014) Mitochondria impact brain function and cognition. Proc Natl Acad Sci U S A 111:7–8CrossRefPubMed
14.
Zurück zum Zitat Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414CrossRefPubMed Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414CrossRefPubMed
15.
Zurück zum Zitat Ando S, Hatamoto Y, Sudo M, Kiyonaga A, Tanaka H, Higaki Y (2013) The effects of exercise under hypoxia on cognitive function. PLoS One 8, e63630CrossRefPubMedPubMedCentral Ando S, Hatamoto Y, Sudo M, Kiyonaga A, Tanaka H, Higaki Y (2013) The effects of exercise under hypoxia on cognitive function. PLoS One 8, e63630CrossRefPubMedPubMedCentral
16.
17.
Zurück zum Zitat Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, Knight JA, Meehan WP 3rd, Baker EH (2014) Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma 31:1008–1017CrossRefPubMedPubMedCentral Naeser MA, Zafonte R, Krengel MH, Martin PI, Frazier J, Hamblin MR, Knight JA, Meehan WP 3rd, Baker EH (2014) Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J Neurotrauma 31:1008–1017CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR (2010) Role of low-level laser therapy in neurorehabilitation. PM&R 2:S292–S305CrossRef Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR (2010) Role of low-level laser therapy in neurorehabilitation. PM&R 2:S292–S305CrossRef
19.
Zurück zum Zitat Gonzalez-Lima F, Barksdale BR, Rojas JC (2014) Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 88:584–593CrossRefPubMed Gonzalez-Lima F, Barksdale BR, Rojas JC (2014) Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 88:584–593CrossRefPubMed
20.
Zurück zum Zitat Griffin ÉW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM (2011) Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav 104:934–941CrossRefPubMed Griffin ÉW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM (2011) Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav 104:934–941CrossRefPubMed
21.
Zurück zum Zitat Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR (2015) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8:502–511CrossRefPubMed Xuan W, Agrawal T, Huang L, Gupta GK, Hamblin MR (2015) Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J Biophotonics 8:502–511CrossRefPubMed
22.
Zurück zum Zitat Li L, Men WW, Chang YK, Fan MX, Ji L, Wei GX (2014) Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students. PLoS One 9, e99222CrossRefPubMedPubMedCentral Li L, Men WW, Chang YK, Fan MX, Ji L, Wei GX (2014) Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students. PLoS One 9, e99222CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Dinges D, Powell J (1985) Microcomputer analyses of performance on portable, simple visual RT task during sustained operations. Behav Res Methods Instrum 17:652–655CrossRef Dinges D, Powell J (1985) Microcomputer analyses of performance on portable, simple visual RT task during sustained operations. Behav Res Methods Instrum 17:652–655CrossRef
24.
Zurück zum Zitat Drummond SP, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick SC, Meloy MJ (2005) The neural basis of the psychomotor vigilance task. Sleep 28:1059–1068PubMed Drummond SP, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick SC, Meloy MJ (2005) The neural basis of the psychomotor vigilance task. Sleep 28:1059–1068PubMed
25.
26.
Zurück zum Zitat Scott JP, McNaughton LR, Polman RC (2006) Effects of sleep deprivation and exercise on cognitive, motor performance and mood. Physiol Behav 87:396–408CrossRefPubMed Scott JP, McNaughton LR, Polman RC (2006) Effects of sleep deprivation and exercise on cognitive, motor performance and mood. Physiol Behav 87:396–408CrossRefPubMed
27.
Zurück zum Zitat Basner M, Mollicone D, Dinges DF (2011) Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation. Acta Astronaut 69:949–959CrossRefPubMedPubMedCentral Basner M, Mollicone D, Dinges DF (2011) Validity and sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep deprivation. Acta Astronaut 69:949–959CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Lara T, Madrid JA, Correa Á (2014) The vigilance decrement in executive function is attenuated when individual chronotypes perform at their optimal time of day. PLoS ONE 9, e88820CrossRefPubMedPubMedCentral Lara T, Madrid JA, Correa Á (2014) The vigilance decrement in executive function is attenuated when individual chronotypes perform at their optimal time of day. PLoS ONE 9, e88820CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Miller LS, Lombardo TW, Fowler SC (1992) Time of day effects on a human force discrimination task. Physiol Behav 52:839–841CrossRefPubMed Miller LS, Lombardo TW, Fowler SC (1992) Time of day effects on a human force discrimination task. Physiol Behav 52:839–841CrossRefPubMed
30.
Zurück zum Zitat Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301CrossRefPubMed Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301CrossRefPubMed
31.
Zurück zum Zitat Kaufman AS, Kaufman NL (1990) Kaufman brief intelligence test. American Guidance Service, Circle Pnes, pp 1–9 Kaufman AS, Kaufman NL (1990) Kaufman brief intelligence test. American Guidance Service, Circle Pnes, pp 1–9
32.
Zurück zum Zitat Chudasama Y (2010) Delayed (non)match-to-sample task. Encyclopedia of Psychopharmacology, I. Springer Berlin Heidelberg, p 372–372 Chudasama Y (2010) Delayed (non)match-to-sample task. Encyclopedia of Psychopharmacology, I. Springer Berlin Heidelberg, p 372–372
33.
Zurück zum Zitat Mueller ST, Piper BJ (2014) The psychology experiment building language (PEBL) and PEBL test battery. J Neurosci Methods 222:250–259CrossRefPubMed Mueller ST, Piper BJ (2014) The psychology experiment building language (PEBL) and PEBL test battery. J Neurosci Methods 222:250–259CrossRefPubMed
34.
Zurück zum Zitat Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR (2009) Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 5:46CrossRefPubMedPubMedCentral Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR (2009) Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 5:46CrossRefPubMedPubMedCentral
35.
36.
Zurück zum Zitat Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359CrossRefPubMed Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359CrossRefPubMed
37.
Zurück zum Zitat Craik FI, Bialystok E (2006) Cognition through the lifespan: mechanisms of change. Trends Cogn Sci 10:131–138CrossRefPubMed Craik FI, Bialystok E (2006) Cognition through the lifespan: mechanisms of change. Trends Cogn Sci 10:131–138CrossRefPubMed
38.
Zurück zum Zitat Lawrence NS, Ross TJ, Hoffmann R, Garavan H, Stein EA (2003) Multiple neuronal networks mediate sustained attention. J Cogn Neurosci 15:1028–1038CrossRefPubMed Lawrence NS, Ross TJ, Hoffmann R, Garavan H, Stein EA (2003) Multiple neuronal networks mediate sustained attention. J Cogn Neurosci 15:1028–1038CrossRefPubMed
40.
Zurück zum Zitat Maguire EA, Frith CD, Morris RG (1999) The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Brain 122:1839–1850CrossRefPubMed Maguire EA, Frith CD, Morris RG (1999) The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Brain 122:1839–1850CrossRefPubMed
41.
Zurück zum Zitat Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482CrossRef Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482CrossRef
42.
Zurück zum Zitat Martins AQ, Kavussanu M, Willoughby A, Ring C (2013) Moderate intensity exercise facilitates working memory. Psychol Sport Exerc 14:323–328CrossRef Martins AQ, Kavussanu M, Willoughby A, Ring C (2013) Moderate intensity exercise facilitates working memory. Psychol Sport Exerc 14:323–328CrossRef
43.
Zurück zum Zitat Ogoh S, Tsukamoto H, Hirasawa A, Hasegawa H, Hirose N, Hashimoto T (2014) The effect of changes in cerebral blood flow on cognitive function during exercise. Physiol Rep 2, e12163CrossRefPubMedPubMedCentral Ogoh S, Tsukamoto H, Hirasawa A, Hasegawa H, Hirose N, Hashimoto T (2014) The effect of changes in cerebral blood flow on cognitive function during exercise. Physiol Rep 2, e12163CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107:1370–1380CrossRefPubMed Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol 107:1370–1380CrossRefPubMed
45.
Zurück zum Zitat Kamijo K, Nishihira Y, Hatta A, Kaneda T, Kida T, Higashiura T, Kuroiwa K (2004) Changes in arousal level by differential exercise intensity. Clin Neurophysiol 115:2693–2698CrossRefPubMed Kamijo K, Nishihira Y, Hatta A, Kaneda T, Kida T, Higashiura T, Kuroiwa K (2004) Changes in arousal level by differential exercise intensity. Clin Neurophysiol 115:2693–2698CrossRefPubMed
46.
Zurück zum Zitat Shansky RM, Lipps J (2013) Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex. Front Hum Neurosci 7:123CrossRefPubMedPubMedCentral Shansky RM, Lipps J (2013) Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex. Front Hum Neurosci 7:123CrossRefPubMedPubMedCentral
Metadaten
Titel
Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise
Publikationsdatum
25.05.2016
Erschienen in
Lasers in Medical Science / Ausgabe 6/2016
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-1962-3

Weitere Artikel der Ausgabe 6/2016

Lasers in Medical Science 6/2016 Zur Ausgabe