Skip to main content
Erschienen in: Lasers in Medical Science 3/2021

27.06.2020 | Original Article

Thermal field and tissue damage analysis of moving laser in cancer thermal therapy

verfasst von: Ali Kabiri, Mohammad Reza Talaee

Erschienen in: Lasers in Medical Science | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

In this paper, a closed-form analytical solution of hyperbolic Pennes bioheat equation is obtained for spatial evolution of temperature distributions during moving laser thermotherapy of the skin and kidney tissues. The three-dimensional cubic homogeneous perfused biological tissue is adopted as a media and the Gaussian distributed function in surface and exponentially distributed in depth is used for modeling of laser moving heat source. The solution procedure is Eigen value method which leads to a closed form solution. The effect of moving velocity, perfusion rate, laser intensity, absorption and scattering coefficients, and thermal relaxation time on temperature profiles and tissue thermal damage are investigated. Results are illustrated that the moving velocity and the perfusion rate of the tissues are the main important parameters in produced temperatures under moving heat source. The higher perfusion rate of kidney compared with skin may lead to lower induced temperature amplitude in moving path of laser due to the convective role of the perfusion term. Furthermore, the analytical solution can be a powerful tool for analysis and optimization of practical treatment in the clinical setting and laser procedure therapeutic applications and can be used for verification of other numerical heating models.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Singh, S., Repaka, R., & Al-Jumaily, A. (2019). Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. International Journal of RF and Microwave Computer-Aided Engineering, 29(4), e21581 Singh, S., Repaka, R., & Al-Jumaily, A. (2019). Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. International Journal of RF and Microwave Computer-Aided Engineering, 29(4), e21581
2.
Zurück zum Zitat Patel JM, Evrensel CA, Fuchs A, Sutrisno J (2015) Laser irradiation of ferrous particles for hyperthermia as cancer therapy, a theoretical study. Lasers Med Sci 30(1):165–172PubMedCrossRef Patel JM, Evrensel CA, Fuchs A, Sutrisno J (2015) Laser irradiation of ferrous particles for hyperthermia as cancer therapy, a theoretical study. Lasers Med Sci 30(1):165–172PubMedCrossRef
3.
Zurück zum Zitat Singh R, Das K, Okajima J, Maruyama S, Mishra SC (2015) Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue. Appl Therm Eng 89:28–35CrossRef Singh R, Das K, Okajima J, Maruyama S, Mishra SC (2015) Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue. Appl Therm Eng 89:28–35CrossRef
4.
Zurück zum Zitat Wang Z, Zhao G, Wang T, Yu Q, Su M, He X (2015) Three-dimensional numerical simulation of the effects of fractal vascular trees on tissue temperature and intracelluar ice formation during combined cancer therapy of cryosurgery and hyperthermia. Appl Therm Eng 90:296–304CrossRef Wang Z, Zhao G, Wang T, Yu Q, Su M, He X (2015) Three-dimensional numerical simulation of the effects of fractal vascular trees on tissue temperature and intracelluar ice formation during combined cancer therapy of cryosurgery and hyperthermia. Appl Therm Eng 90:296–304CrossRef
5.
Zurück zum Zitat Xia Y, Liu B, Ye P, Xu B (2018) Thermal field and tissue damage analysis of cryoballoon ablation for atrial fibrillation. Appl Therm Eng 142:524–529CrossRef Xia Y, Liu B, Ye P, Xu B (2018) Thermal field and tissue damage analysis of cryoballoon ablation for atrial fibrillation. Appl Therm Eng 142:524–529CrossRef
6.
Zurück zum Zitat Deng ZS, Liu J (2000) Parametric studies on the phase shift method to measure the blood perfusion of biological bodies. Med Eng Phys 22(10):693–702PubMedCrossRef Deng ZS, Liu J (2000) Parametric studies on the phase shift method to measure the blood perfusion of biological bodies. Med Eng Phys 22(10):693–702PubMedCrossRef
7.
Zurück zum Zitat Liu J, Xu LX (1999) Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating at the skin surface. IEEE Trans Biomed Eng 46(9):1037–1043PubMedCrossRef Liu J, Xu LX (1999) Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating at the skin surface. IEEE Trans Biomed Eng 46(9):1037–1043PubMedCrossRef
8.
Zurück zum Zitat Jimenez Lozano JN, Vacas-Jacques P, Anderson RR, Franco W (2013) E ffect of fibrous septa in radiofrequency heating of cutaneous and subcutaneous tissues: computational study. Lasers Surg Med 45(5):326–338PubMedCrossRef Jimenez Lozano JN, Vacas-Jacques P, Anderson RR, Franco W (2013) E ffect of fibrous septa in radiofrequency heating of cutaneous and subcutaneous tissues: computational study. Lasers Surg Med 45(5):326–338PubMedCrossRef
9.
Zurück zum Zitat Singh S, Repaka R (2017) Effect of different breast density compositions on thermal damage of breast tumor during radiofrequency ablation. Appl Therm Eng 125:443–451CrossRef Singh S, Repaka R (2017) Effect of different breast density compositions on thermal damage of breast tumor during radiofrequency ablation. Appl Therm Eng 125:443–451CrossRef
10.
Zurück zum Zitat Jiang SC, Zhang XX (2005) Effects of dynamic changes of tissue properties during laser-induced interstitial thermotherapy (LITT). Lasers Med Sci 19(4):197–202PubMedCrossRef Jiang SC, Zhang XX (2005) Effects of dynamic changes of tissue properties during laser-induced interstitial thermotherapy (LITT). Lasers Med Sci 19(4):197–202PubMedCrossRef
11.
Zurück zum Zitat Fanjul-Vélez F, Arce-Diego JL (2008) Modeling thermotherapy in vocal cords novel laser endoscopic treatment. Lasers Med Sci 23(2):169–177PubMedCrossRef Fanjul-Vélez F, Arce-Diego JL (2008) Modeling thermotherapy in vocal cords novel laser endoscopic treatment. Lasers Med Sci 23(2):169–177PubMedCrossRef
12.
Zurück zum Zitat Zhou J, Chen JK, Zhang Y (2009) Simulation of laser-induced thermotherapy using a dual-reciprocity boundary element model with dynamic tissue properties. IEEE Trans Biomed Eng 57(2):238–245PubMedCrossRef Zhou J, Chen JK, Zhang Y (2009) Simulation of laser-induced thermotherapy using a dual-reciprocity boundary element model with dynamic tissue properties. IEEE Trans Biomed Eng 57(2):238–245PubMedCrossRef
13.
Zurück zum Zitat van Ruijven PW, Poluektova AA, van Gemert MJ, Neumann HM, Nijsten T, van der Geld CW (2014) Optical-thermal mathematical model for endovenous laser ablation of varicose veins. Lasers Med Sci 29(2):431–439PubMedCrossRef van Ruijven PW, Poluektova AA, van Gemert MJ, Neumann HM, Nijsten T, van der Geld CW (2014) Optical-thermal mathematical model for endovenous laser ablation of varicose veins. Lasers Med Sci 29(2):431–439PubMedCrossRef
14.
Zurück zum Zitat Fuentes D, Oden JT, Diller KR, Hazle JD, Elliott A, Shetty A, Stafford RJ (2009) Computational modeling and real-time control of patient-specific laser treatment of cancer. Ann Biomed Eng 37(4):763–782PubMedPubMedCentralCrossRef Fuentes D, Oden JT, Diller KR, Hazle JD, Elliott A, Shetty A, Stafford RJ (2009) Computational modeling and real-time control of patient-specific laser treatment of cancer. Ann Biomed Eng 37(4):763–782PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Marqa MF, Mordon S, Betrouni N (2012) Laser interstitial thermotherapy of small breast fibroadenomas: numerical simulations. Lasers Surg Med 44(10):832–839PubMedCrossRef Marqa MF, Mordon S, Betrouni N (2012) Laser interstitial thermotherapy of small breast fibroadenomas: numerical simulations. Lasers Surg Med 44(10):832–839PubMedCrossRef
16.
Zurück zum Zitat Xu X, Meade A, Bayazitoglu Y (2011) Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatments. Lasers Med Sci 26(2):213–222PubMedCrossRef Xu X, Meade A, Bayazitoglu Y (2011) Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatments. Lasers Med Sci 26(2):213–222PubMedCrossRef
17.
Zurück zum Zitat Zhang J, Jin C, He ZZ, Liu J (2014) Numerical simulations on conformable laser-induced interstitial thermotherapy through combined use of multi-beam heating and biodegradable nanoparticles. Lasers Med Sci 29(4):1505–1516PubMedCrossRef Zhang J, Jin C, He ZZ, Liu J (2014) Numerical simulations on conformable laser-induced interstitial thermotherapy through combined use of multi-beam heating and biodegradable nanoparticles. Lasers Med Sci 29(4):1505–1516PubMedCrossRef
18.
Zurück zum Zitat Solovchuk MA, Sheu TW, Thiriet M, Lin WL (2013) On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor. Appl Therm Eng 56(1–2):62–76CrossRef Solovchuk MA, Sheu TW, Thiriet M, Lin WL (2013) On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor. Appl Therm Eng 56(1–2):62–76CrossRef
19.
Zurück zum Zitat Kabiri A, Talaee MR (2019) Theoretical investigation of thermal wave model of microwave ablation applied in prostate Cancer therapy. Heat Mass Transf 55(8):2199–2208CrossRef Kabiri A, Talaee MR (2019) Theoretical investigation of thermal wave model of microwave ablation applied in prostate Cancer therapy. Heat Mass Transf 55(8):2199–2208CrossRef
20.
Zurück zum Zitat Bhowmik A, Singh R, Repaka R, Mishra SC (2013) Conventional and newly developed bioheat transport models in vascularized tissues: a review. J Therm Biol 38(3):107–125CrossRef Bhowmik A, Singh R, Repaka R, Mishra SC (2013) Conventional and newly developed bioheat transport models in vascularized tissues: a review. J Therm Biol 38(3):107–125CrossRef
21.
Zurück zum Zitat Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122PubMedCrossRef Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122PubMedCrossRef
22.
Zurück zum Zitat Talaee, M. R., Kabiri, A., & Khodarahmi, R. (2018). Analytical solution of hyperbolic heat conduction equation in a finite medium under pulsatile heat source. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42(3), 269–277 Talaee, M. R., Kabiri, A., & Khodarahmi, R. (2018). Analytical solution of hyperbolic heat conduction equation in a finite medium under pulsatile heat source. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42(3), 269–277
23.
24.
Zurück zum Zitat Zhu, W., Xu, P., Xu, D., Zhang, M., Liu, H., Gong, L., & Lu, J. (2014). A study on oscillating second-kind boundary condition for Pennes equation considering thermal relaxation. The European Physical Journal Plus, 129(5), 94 Zhu, W., Xu, P., Xu, D., Zhang, M., Liu, H., Gong, L., & Lu, J. (2014). A study on oscillating second-kind boundary condition for Pennes equation considering thermal relaxation. The European Physical Journal Plus, 129(5), 94
25.
Zurück zum Zitat El-Bary AA, Youssef HM, Omar MA, Ramadan KT (2019) Influence of thermal wave emitted by the cellular devices on the human head. Microsyst Technol 25(2):413–422CrossRef El-Bary AA, Youssef HM, Omar MA, Ramadan KT (2019) Influence of thermal wave emitted by the cellular devices on the human head. Microsyst Technol 25(2):413–422CrossRef
26.
Zurück zum Zitat Andreozzi A, Brunese L, Iasiello M, Tucci C, Vanoli GP (2019) Modeling heat transfer in tumors: a review of thermal therapies. Ann Biomed Eng 47(3):676–693PubMedCrossRef Andreozzi A, Brunese L, Iasiello M, Tucci C, Vanoli GP (2019) Modeling heat transfer in tumors: a review of thermal therapies. Ann Biomed Eng 47(3):676–693PubMedCrossRef
27.
Zurück zum Zitat Xu F, Seffen KA, Lu TJ (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Transf 51(9–10):2237–2259CrossRef Xu F, Seffen KA, Lu TJ (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Transf 51(9–10):2237–2259CrossRef
28.
Zurück zum Zitat Zhou J, Chen JK, Zhang Y (2009) Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput Biol Med 39(3):286–293PubMedCrossRef Zhou J, Chen JK, Zhang Y (2009) Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput Biol Med 39(3):286–293PubMedCrossRef
29.
Zurück zum Zitat Ströher GR, Ströher GL (2014) Numerical thermal analysis of skin tissue using parabolic and hyperbolic approaches. Int Commun Heat Mass Transf 57:193–199CrossRef Ströher GR, Ströher GL (2014) Numerical thermal analysis of skin tissue using parabolic and hyperbolic approaches. Int Commun Heat Mass Transf 57:193–199CrossRef
30.
Zurück zum Zitat Askarizadeh H, Ahmadikia H (2015) Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations. Appl Math Model 39(13):3704–3720CrossRef Askarizadeh H, Ahmadikia H (2015) Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations. Appl Math Model 39(13):3704–3720CrossRef
31.
Zurück zum Zitat Lee HL, Lai TH, Chen WL, Yang YC (2013) An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue. Appl Math Model 37(5):2630–2643CrossRef Lee HL, Lai TH, Chen WL, Yang YC (2013) An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue. Appl Math Model 37(5):2630–2643CrossRef
32.
Zurück zum Zitat Jaunich M, Raje S, Kim K, Mitra K, Guo Z (2008) Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int J Heat Mass Transf 51(23–24):5511–5521CrossRef Jaunich M, Raje S, Kim K, Mitra K, Guo Z (2008) Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int J Heat Mass Transf 51(23–24):5511–5521CrossRef
33.
Zurück zum Zitat Talaee, M. R., & Kabiri, A. (2017). Analytical solution of hyperbolic bioheat equation in spherical coordinates applied in radiofrequency heating. Journal of Mechanics in Medicine and Biology, 17(04), 1750072 Talaee, M. R., & Kabiri, A. (2017). Analytical solution of hyperbolic bioheat equation in spherical coordinates applied in radiofrequency heating. Journal of Mechanics in Medicine and Biology, 17(04), 1750072
34.
Zurück zum Zitat Talaee, M. R., & Kabiri, A. (2017). Exact analytical solution of bioheat equation subjected to intensive moving heat source. Journal of Mechanics in Medicine and Biology, 17(05), 1750081 Talaee, M. R., & Kabiri, A. (2017). Exact analytical solution of bioheat equation subjected to intensive moving heat source. Journal of Mechanics in Medicine and Biology, 17(05), 1750081
35.
Zurück zum Zitat Brix G, Seebass M, Hellwig G, Griebel J (2002) Estimation of heat transfer and temperature rise in partial-body regions during MR procedures: an analytical approach with respect to safety considerations. Magn Reson Imaging 20(1):65–76PubMedCrossRef Brix G, Seebass M, Hellwig G, Griebel J (2002) Estimation of heat transfer and temperature rise in partial-body regions during MR procedures: an analytical approach with respect to safety considerations. Magn Reson Imaging 20(1):65–76PubMedCrossRef
36.
Zurück zum Zitat Ahmadikia H, Moradi A, Fazlali R, Parsa AB (2012) Analytical solution of non-Fourier and Fourier bioheat transfer analysis during laser irradiation of skin tissue. J Mech Sci Technol 26(6):1937–1947CrossRef Ahmadikia H, Moradi A, Fazlali R, Parsa AB (2012) Analytical solution of non-Fourier and Fourier bioheat transfer analysis during laser irradiation of skin tissue. J Mech Sci Technol 26(6):1937–1947CrossRef
37.
Zurück zum Zitat Liu KC (2008) Thermal propagation analysis for living tissue with surface heating. Int J Therm Sci 47(5):507–513CrossRef Liu KC (2008) Thermal propagation analysis for living tissue with surface heating. Int J Therm Sci 47(5):507–513CrossRef
38.
Zurück zum Zitat Hooshmand P, Moradi A, Khezry B (2015) Bioheat transfer analysis of biological tissues induced by laser irradiation. Int J Therm Sci 90:214–223CrossRef Hooshmand P, Moradi A, Khezry B (2015) Bioheat transfer analysis of biological tissues induced by laser irradiation. Int J Therm Sci 90:214–223CrossRef
39.
Zurück zum Zitat Trujillo, M., Rivera, M. J., Molina, J. A. L., & Berjano, E. J. (2009). Analytical thermal–optic model for laser heating of biological tissue using the hyperbolic heat transfer equation. Math Med Biol, 26(3), 187–200 Trujillo, M., Rivera, M. J., Molina, J. A. L., & Berjano, E. J. (2009). Analytical thermal–optic model for laser heating of biological tissue using the hyperbolic heat transfer equation. Math Med Biol, 26(3), 187–200
40.
Zurück zum Zitat Manns F, Borja D, Parel JMA, Smiddy WE, Culbertson W (2003) Semianalytical thermal model for subablative laser heating of homogeneous nonperfused biological tissue: application to laser thermokeratoplasty. J Biomed Opt 8(2):288–298PubMedCrossRef Manns F, Borja D, Parel JMA, Smiddy WE, Culbertson W (2003) Semianalytical thermal model for subablative laser heating of homogeneous nonperfused biological tissue: application to laser thermokeratoplasty. J Biomed Opt 8(2):288–298PubMedCrossRef
41.
Zurück zum Zitat Talaee MR, Sarafrazi V, Bakhshandeh S (2016) Exact analytical hyperbolic temperature profile in a three-dimensional media under pulse surface heat flux. J Mech 32(3):339–347CrossRef Talaee MR, Sarafrazi V, Bakhshandeh S (2016) Exact analytical hyperbolic temperature profile in a three-dimensional media under pulse surface heat flux. J Mech 32(3):339–347CrossRef
42.
Zurück zum Zitat Talaee MR, Sarafrazi V (2017) Analytical solution for three-dimensional hyperbolic heat conduction equation with time-dependent and distributed heat source. J Mech 33(1):65–75CrossRef Talaee MR, Sarafrazi V (2017) Analytical solution for three-dimensional hyperbolic heat conduction equation with time-dependent and distributed heat source. J Mech 33(1):65–75CrossRef
43.
Zurück zum Zitat Lopes A, Gomes R, Castiñeras M, Coelho JM, Santos JP, Vieira P (2020) Probing deep tissues with laser-induced thermotherapy using near-infrared light. Lasers Med Sci 35(1):43–49PubMedCrossRef Lopes A, Gomes R, Castiñeras M, Coelho JM, Santos JP, Vieira P (2020) Probing deep tissues with laser-induced thermotherapy using near-infrared light. Lasers Med Sci 35(1):43–49PubMedCrossRef
44.
Zurück zum Zitat Keangin P, Wessapan T, Rattanadecho P (2011) Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna. Appl Therm Eng 31(16):3243–3254CrossRef Keangin P, Wessapan T, Rattanadecho P (2011) Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna. Appl Therm Eng 31(16):3243–3254CrossRef
45.
Zurück zum Zitat Jiang SC, Zhang XX (2005) Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis. Lasers Med Sci 20(3–4):122–131PubMedCrossRef Jiang SC, Zhang XX (2005) Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis. Lasers Med Sci 20(3–4):122–131PubMedCrossRef
46.
Zurück zum Zitat Ganguly M, Miller S, Mitra K (2015) Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers. Lasers Surg Med 47(9):711–722PubMedCrossRef Ganguly M, Miller S, Mitra K (2015) Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers. Lasers Surg Med 47(9):711–722PubMedCrossRef
47.
Zurück zum Zitat Cline HE, Anthony T (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48(9):3895–3900CrossRef Cline HE, Anthony T (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48(9):3895–3900CrossRef
48.
Zurück zum Zitat Shibib KS (2013) Finite element analysis of cornea thermal damage due to pulse incidental far IR laser. Lasers Med Sci 28(3):871–877PubMedCrossRef Shibib KS (2013) Finite element analysis of cornea thermal damage due to pulse incidental far IR laser. Lasers Med Sci 28(3):871–877PubMedCrossRef
49.
Zurück zum Zitat Asmar, Nakhlé H (2005) Partial differential equations with Fourier series and boundary value problems. Prentice Hall, pp 691–755 Asmar, Nakhlé H (2005) Partial differential equations with Fourier series and boundary value problems. Prentice Hall, pp 691–755
50.
Zurück zum Zitat Atefi G, Talaee MR (2011) Non-fourier temperature field in a solid homogeneous finite hollow cylinder. Arch Appl Mech 81(5):569–583CrossRef Atefi G, Talaee MR (2011) Non-fourier temperature field in a solid homogeneous finite hollow cylinder. Arch Appl Mech 81(5):569–583CrossRef
51.
Zurück zum Zitat Talaee MR, Atefi G (2011) Non-Fourier heat conduction in a finite hollow cylinder with periodic surface heat flux. Arch Appl Mech 81(12):1793–1806CrossRef Talaee MR, Atefi G (2011) Non-Fourier heat conduction in a finite hollow cylinder with periodic surface heat flux. Arch Appl Mech 81(12):1793–1806CrossRef
52.
Zurück zum Zitat Talaee MR, Kabiri A, Ebrahimi M, Hakimzadeh B (2019) Analysis of induced interior air flow in subway train cabin due to accelerating and decelerating. Int J Vent 18(3):204–219 Talaee MR, Kabiri A, Ebrahimi M, Hakimzadeh B (2019) Analysis of induced interior air flow in subway train cabin due to accelerating and decelerating. Int J Vent 18(3):204–219
53.
Zurück zum Zitat Sadeghzadeh, S., & Kabiri, A. (2016). Application of higher order Hamiltonian approach to the nonlinear vibration of micro electro mechanical systems. Latin Am J Solids Struct, 13(3), 478–497 Sadeghzadeh, S., & Kabiri, A. (2016). Application of higher order Hamiltonian approach to the nonlinear vibration of micro electro mechanical systems. Latin Am J Solids Struct, 13(3), 478–497
54.
Zurück zum Zitat Sadeghzadeh S, Kabiri A (2017) A hybrid solution for analyzing nonlinear dynamics of electrostatically-actuated microcantilevers. Appl Math Model 48:593–606CrossRef Sadeghzadeh S, Kabiri A (2017) A hybrid solution for analyzing nonlinear dynamics of electrostatically-actuated microcantilevers. Appl Math Model 48:593–606CrossRef
55.
Zurück zum Zitat Modanloo A, Talaee MR (2020) Analytical thermal analysis of advanced disk brake in high speed vehicles. Mech Adv Mater Struct 27(3):209–217CrossRef Modanloo A, Talaee MR (2020) Analytical thermal analysis of advanced disk brake in high speed vehicles. Mech Adv Mater Struct 27(3):209–217CrossRef
56.
Zurück zum Zitat Talaee MR, Hosseinli SA (2019) Theoretical simulation of temperature distribution in a gun barrel based on the DPL model. J Theor Appl Mech:57 Talaee MR, Hosseinli SA (2019) Theoretical simulation of temperature distribution in a gun barrel based on the DPL model. J Theor Appl Mech:57
57.
Zurück zum Zitat Talaee, M., Alizadeh, M., & Bakhshandeh, S. (2014). An exact analytical solution of non-Fourier thermal stress in cylindrical shell under periodic boundary condition. Engineering Solid Mechanics, 2(4), 293–302 Talaee, M., Alizadeh, M., & Bakhshandeh, S. (2014). An exact analytical solution of non-Fourier thermal stress in cylindrical shell under periodic boundary condition. Engineering Solid Mechanics, 2(4), 293–302
58.
Zurück zum Zitat Gheitaghy AM, Talaee MR (2013) Solving hyperbolic heat conduction using electrical simulation. J Mech Sci Technol 27(12):3885–3891CrossRef Gheitaghy AM, Talaee MR (2013) Solving hyperbolic heat conduction using electrical simulation. J Mech Sci Technol 27(12):3885–3891CrossRef
59.
Zurück zum Zitat Atefi, G., Bahrami, A., & Talaee, M. R. (2010). Analytical solution of dual phase lagging heat conduction in a hollow sphere with time-dependent heat flux. New Aspects of Fluid Mechanics, Heat Transfer and Environment, 1, 114–126 Atefi, G., Bahrami, A., & Talaee, M. R. (2010). Analytical solution of dual phase lagging heat conduction in a hollow sphere with time-dependent heat flux. New Aspects of Fluid Mechanics, Heat Transfer and Environment, 1, 114–126
60.
Zurück zum Zitat Van de Sompel D, Kong TY, Ventikos Y (2009) Modelling of experimentally created partial-thickness human skin burns and subsequent therapeutic cooling: a new measure for cooling effectiveness. Med Eng Phys 31(6):624–631PubMedCrossRef Van de Sompel D, Kong TY, Ventikos Y (2009) Modelling of experimentally created partial-thickness human skin burns and subsequent therapeutic cooling: a new measure for cooling effectiveness. Med Eng Phys 31(6):624–631PubMedCrossRef
61.
Zurück zum Zitat Erez, A., & Shitzer, A. (1980). Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulationCrossRef Erez, A., & Shitzer, A. (1980). Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulationCrossRef
62.
Zurück zum Zitat He X, McGee S, Coad JE, Schmidlin F, Iaizzo PA, Swanlund DJ et al (2004) Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int J Hyperth 20(6):567–593CrossRef He X, McGee S, Coad JE, Schmidlin F, Iaizzo PA, Swanlund DJ et al (2004) Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int J Hyperth 20(6):567–593CrossRef
63.
Zurück zum Zitat Henriques Jr, F. C., & Moritz, A. R. (1947). Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. The American journal of pathology, 23(4), 530 Henriques Jr, F. C., & Moritz, A. R. (1947). Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. The American journal of pathology, 23(4), 530
64.
Zurück zum Zitat Su, Y. L., Chen, K. T., Chang, C. J., & Ting, K. (2017). Experiment and simulation of biotissue surface thermal damage during laser surgery. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(3), 581–589 Su, Y. L., Chen, K. T., Chang, C. J., & Ting, K. (2017). Experiment and simulation of biotissue surface thermal damage during laser surgery. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(3), 581–589
65.
Zurück zum Zitat Museux N, Perez L, Autrique L, Agay D (2012) Skin burns after laser exposure: histological analysis and predictive simulation. Burns 38(5):658–667PubMedCrossRef Museux N, Perez L, Autrique L, Agay D (2012) Skin burns after laser exposure: histological analysis and predictive simulation. Burns 38(5):658–667PubMedCrossRef
66.
Zurück zum Zitat Liu KC, Wang JC (2014) Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model. Int J Heat Mass Transf 70:621–628CrossRef Liu KC, Wang JC (2014) Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model. Int J Heat Mass Transf 70:621–628CrossRef
67.
Zurück zum Zitat Tung MM, Trujillo M, Molina JL, Rivera MJ, Berjano EJ (2009) Modeling the heating of biological tissue based on the hyperbolic heat transfer equation. Math Comput Model 50(5):665–672CrossRef Tung MM, Trujillo M, Molina JL, Rivera MJ, Berjano EJ (2009) Modeling the heating of biological tissue based on the hyperbolic heat transfer equation. Math Comput Model 50(5):665–672CrossRef
68.
Zurück zum Zitat Mitra K, Kumar S, Vedevarz A, Moallemi MK (1995) Experimental evidence of hyperbolic heat conduction in processed meat. J Heat Transf 117(3):568–573CrossRef Mitra K, Kumar S, Vedevarz A, Moallemi MK (1995) Experimental evidence of hyperbolic heat conduction in processed meat. J Heat Transf 117(3):568–573CrossRef
69.
Zurück zum Zitat Antaki, P. J. (2005). New interpretation of non-Fourier heat conduction in processed meat. Transactions of the ASME-C-Journal of Heat Transfer, 127(2), 189–193 Antaki, P. J. (2005). New interpretation of non-Fourier heat conduction in processed meat. Transactions of the ASME-C-Journal of Heat Transfer, 127(2), 189–193
Metadaten
Titel
Thermal field and tissue damage analysis of moving laser in cancer thermal therapy
verfasst von
Ali Kabiri
Mohammad Reza Talaee
Publikationsdatum
27.06.2020
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 3/2021
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-020-03070-7

Weitere Artikel der Ausgabe 3/2021

Lasers in Medical Science 3/2021 Zur Ausgabe