Skip to main content
Erschienen in: Lasers in Medical Science 4/2014

01.07.2014 | Original Article

Numerical simulations on conformable laser-induced interstitial thermotherapy through combined use of multi-beam heating and biodegradable nanoparticles

verfasst von: Jie Zhang, Chao Jin, Zhi-Zhu He, Jing Liu

Erschienen in: Lasers in Medical Science | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Clinically, precisely heating and thus completely ablating diseased tumor tissue through laser beam is still facing many technical challenges. In this study, numerical simulation of a conformal heating modality based on multi-beam laser along with biodegradable magnesium nanoparticles (Mg-NPs) was put forward to treat liver tumor with large size or irregular shape. Further, a Gaussian-like distribution was proposed to investigate the influence of Mg-NP deposition on the nanoenhanced laser-induced interstitial thermotherapy (LITT). A temperature feedback system was adopted to control the temperature range to avoid overheating. To preliminarily validate the heating enhancement induced by the applied multi-beam laser and Mg-NPs, a conceptual experiment was performed. Both theoretical simulation and experimental measurements demonstrated that multi-beam laser with Mg-NPs could improve efficiency in the conformal heating of tumors with irregular shape or large size. In addition, the distribution and content of Mg-NPs produced significant impact on thermotherapy: (1) The adjustable parameter σ in the Gaussian-like distribution could reflect various practical situations and diffusivities of Mg-NPs; (2) under the premise of the same concentration of Mg-NPs and short time to heat a small-sized target, the whole liver tumor containing Mg-NPs could not improve the efficiency as the nanoparticles limited the photons to be absorbed only around the fibers, while liver tumor partially containing Mg-NPs could improve the thermotherapy efficiency up to 20 %; and (3) the addition of Mg-NPs was rather beneficial for realizing a conformal heating as the residual thermal energy was much less than that without Mg-NPs. This study suggests a feasible and promising modality for planning a high-performance LITT in future clinics.
Literatur
2.
Zurück zum Zitat Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805PubMedCrossRef Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805PubMedCrossRef
3.
Zurück zum Zitat Anderson RR, Parrish JA (1983) Selective photothermolysis—precise microsurgery by selective absorption of pulsed radiation. Science 220(4596):524–527PubMedCrossRef Anderson RR, Parrish JA (1983) Selective photothermolysis—precise microsurgery by selective absorption of pulsed radiation. Science 220(4596):524–527PubMedCrossRef
4.
Zurück zum Zitat Alora MB, Anderson RR (2000) Recent developments in cutaneous lasers. Lasers Surg Med 26(2):108–118PubMedCrossRef Alora MB, Anderson RR (2000) Recent developments in cutaneous lasers. Lasers Surg Med 26(2):108–118PubMedCrossRef
5.
Zurück zum Zitat Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554PubMedCentralPubMedCrossRef Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40PubMed Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40PubMed
7.
Zurück zum Zitat O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176PubMedCrossRef O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176PubMedCrossRef
8.
Zurück zum Zitat Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120PubMedCrossRef Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120PubMedCrossRef
9.
Zurück zum Zitat Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine UK 2(1):125–132CrossRef Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine UK 2(1):125–132CrossRef
10.
Zurück zum Zitat Dickerson EB, Dreaden EC, Huang XH, El-Sayed IH, Chu HH, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66PubMedCentralPubMedCrossRef Dickerson EB, Dreaden EC, Huang XH, El-Sayed IH, Chu HH, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Chen JY, Wang DL, Xi JF, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia YN, Li XD (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322PubMedCentralPubMedCrossRef Chen JY, Wang DL, Xi JF, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia YN, Li XD (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29CrossRef Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29CrossRef
13.
Zurück zum Zitat Visaria R, Bischof JC, Loren M, Williams B, Ebbini E, Paciotti G, Griffin R (2007) Nanotherapeutics for enhancing thermal therapy of cancer. Int J Hyperth 23(6):501–511CrossRef Visaria R, Bischof JC, Loren M, Williams B, Ebbini E, Paciotti G, Griffin R (2007) Nanotherapeutics for enhancing thermal therapy of cancer. Int J Hyperth 23(6):501–511CrossRef
14.
Zurück zum Zitat Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24(2):62–67PubMedCrossRef Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24(2):62–67PubMedCrossRef
15.
Zurück zum Zitat Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247CrossRef Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247CrossRef
16.
Zurück zum Zitat Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17(20):5167–5179CrossRef Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17(20):5167–5179CrossRef
17.
Zurück zum Zitat Harris N, Ford MJ, Cortie MB (2006) Optimization of plasmonic heating by gold nanospheres and nanoshells. J Phys Chem B 110(22):10701–10707PubMedCrossRef Harris N, Ford MJ, Cortie MB (2006) Optimization of plasmonic heating by gold nanospheres and nanoshells. J Phys Chem B 110(22):10701–10707PubMedCrossRef
18.
Zurück zum Zitat Khlebtsov NG (2008) Optics and biophotonics of nanoparticles with a plasmon resonance. Quant Electron 38(6):504–529CrossRef Khlebtsov NG (2008) Optics and biophotonics of nanoparticles with a plasmon resonance. Quant Electron 38(6):504–529CrossRef
19.
20.
Zurück zum Zitat Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900PubMedCrossRef Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900PubMedCrossRef
21.
Zurück zum Zitat Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076PubMedCrossRef Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076PubMedCrossRef
22.
Zurück zum Zitat Ma P, Luo Q, Chen JE, Gan YP, Du J, Ding SM, Xi ZG, Yang X (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine 7:4809–4818PubMedCentralPubMed Ma P, Luo Q, Chen JE, Gan YP, Du J, Ding SM, Xi ZG, Yang X (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine 7:4809–4818PubMedCentralPubMed
23.
Zurück zum Zitat Wang Q, Xie LP, He ZZ, Di DR, Liu J (2012) Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy. Int J Nanomedicine 7:4715–4725PubMedCentralPubMed Wang Q, Xie LP, He ZZ, Di DR, Liu J (2012) Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy. Int J Nanomedicine 7:4715–4725PubMedCentralPubMed
24.
Zurück zum Zitat Pacella CM, Bizzarri G, Cecconi P, Caspani B, Magnolfi F, Bianchini A, Anelli V, Pacella S, Rossi Z (2001) Hepatocellular carcinoma: long-term results of combined treatment with laser thermal ablation and transcatheter arterial chemoembolization. Radiology 219(3):669–678PubMedCrossRef Pacella CM, Bizzarri G, Cecconi P, Caspani B, Magnolfi F, Bianchini A, Anelli V, Pacella S, Rossi Z (2001) Hepatocellular carcinoma: long-term results of combined treatment with laser thermal ablation and transcatheter arterial chemoembolization. Radiology 219(3):669–678PubMedCrossRef
25.
Zurück zum Zitat Heisterkamp J, van Hillegersberg R, Sinofsky EL, Ijzermans JNM (1999) Interstitial laser photocoagulation with four cylindrical diffusing fibre tips: importance of mutual fibre distance. Laser Med Sci 14(3):216–220CrossRef Heisterkamp J, van Hillegersberg R, Sinofsky EL, Ijzermans JNM (1999) Interstitial laser photocoagulation with four cylindrical diffusing fibre tips: importance of mutual fibre distance. Laser Med Sci 14(3):216–220CrossRef
26.
Zurück zum Zitat London RA, Glinsky ME, Zimmerman GB, Bailey DS, Eder DC, Jacques SL (1997) Laser–tissue interaction modeling with LATIS. Appl Opt 36(34):9068–9074PubMedCrossRef London RA, Glinsky ME, Zimmerman GB, Bailey DS, Eder DC, Jacques SL (1997) Laser–tissue interaction modeling with LATIS. Appl Opt 36(34):9068–9074PubMedCrossRef
27.
Zurück zum Zitat Ivarsson K, Olsrud J, Sturesson C, Moller PH, Persson BR, Tranberg KG (1998) Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four-fibers. Laser Surg Med 22(2):86–96CrossRef Ivarsson K, Olsrud J, Sturesson C, Moller PH, Persson BR, Tranberg KG (1998) Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four-fibers. Laser Surg Med 22(2):86–96CrossRef
28.
Zurück zum Zitat Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophys J 93(1):70–83CrossRef Henyey LG, Greenstein JL (1941) Diffuse radiation in the galaxy. Astrophys J 93(1):70–83CrossRef
31.
Zurück zum Zitat Pfefer TJ, Barton JK, Chan EK, Ducros MG, Sorg BS, Milner TE, Nelson JS, Welch AJ (1996) A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue. IEEE J Sel Top Quant 2(4):934–942. doi:10.1109/2944.577318 CrossRef Pfefer TJ, Barton JK, Chan EK, Ducros MG, Sorg BS, Milner TE, Nelson JS, Welch AJ (1996) A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue. IEEE J Sel Top Quant 2(4):934–942. doi:10.​1109/​2944.​577318 CrossRef
32.
Zurück zum Zitat Zhou JH, Liu J (2004) Numerical study on 3-D light and heat transport in biological tissues embedded with large blood vessels during laser-induced thermotherapy. Numer Heat Transf A Appl 45(5):415–449. doi:10.1080/10407780490269030 CrossRef Zhou JH, Liu J (2004) Numerical study on 3-D light and heat transport in biological tissues embedded with large blood vessels during laser-induced thermotherapy. Numer Heat Transf A Appl 45(5):415–449. doi:10.​1080/​1040778049026903​0 CrossRef
33.
Zurück zum Zitat Guo Z, Kumar S, San KC (2000) Multidimensional Monte Carlo simulation of short-pulse laser transport in scattering media. J Thermophys Heat Transf 14(4):504–511. doi:10.2514/2.6573 CrossRef Guo Z, Kumar S, San KC (2000) Multidimensional Monte Carlo simulation of short-pulse laser transport in scattering media. J Thermophys Heat Transf 14(4):504–511. doi:10.​2514/​2.​6573 CrossRef
34.
Zurück zum Zitat Andra W, d’Ambly CG, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194(1–3):197–203CrossRef Andra W, d’Ambly CG, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194(1–3):197–203CrossRef
35.
Zurück zum Zitat Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Physiol 1:93–122PubMed Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Physiol 1:93–122PubMed
37.
Zurück zum Zitat Cetingul MP, Herman C (2010) A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis. Phys Med Biol 55(19):5933–5951PubMedCrossRef Cetingul MP, Herman C (2010) A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis. Phys Med Biol 55(19):5933–5951PubMedCrossRef
38.
Zurück zum Zitat Jiang SC, Zhang XX (2005) Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis. Laser Med Sci 20(3–4):122–131. doi:10.1007/s10103-005-0359-5 CrossRef Jiang SC, Zhang XX (2005) Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis. Laser Med Sci 20(3–4):122–131. doi:10.​1007/​s10103-005-0359-5 CrossRef
39.
Zurück zum Zitat Henriques FC (1947) Studies of thermal injury: V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol 43(5):489–502 Henriques FC (1947) Studies of thermal injury: V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol 43(5):489–502
40.
Zurück zum Zitat Zhang R, Verkruysse W, Aguilar G, Nelson JS (2005) Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels. Phys Med Biol 50(17):4075–4086PubMedCrossRef Zhang R, Verkruysse W, Aguilar G, Nelson JS (2005) Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels. Phys Med Biol 50(17):4075–4086PubMedCrossRef
41.
Zurück zum Zitat Saccomandi P, Schena E, Caponero MA, di Matteo FM, Martino M, Pandolfi M, Silvestri S (2012) Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas. IEEE Trans Biomed Eng 59(10):2958–2964PubMedCrossRef Saccomandi P, Schena E, Caponero MA, di Matteo FM, Martino M, Pandolfi M, Silvestri S (2012) Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas. IEEE Trans Biomed Eng 59(10):2958–2964PubMedCrossRef
42.
Zurück zum Zitat Roggan A, Muller G (1995) Dosimetry and computer based irradiation planning for laser-induced interstitial thermotherapy (LITT). Laser-induced interstitial thermotherapy. SPIE Optical Engineering Press, Bellingham, pp 114–156 Roggan A, Muller G (1995) Dosimetry and computer based irradiation planning for laser-induced interstitial thermotherapy (LITT). Laser-induced interstitial thermotherapy. SPIE Optical Engineering Press, Bellingham, pp 114–156
43.
Zurück zum Zitat Germer CT, Roggan A, Ritz JP, Isbert C, Albrecht D, Muller G, Buhr HJ (1998) Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Laser Surg Med 23(4):194–203CrossRef Germer CT, Roggan A, Ritz JP, Isbert C, Albrecht D, Muller G, Buhr HJ (1998) Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Laser Surg Med 23(4):194–203CrossRef
44.
Zurück zum Zitat Gu XN, Zheng YF (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci China 4(2):111–115CrossRef Gu XN, Zheng YF (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci China 4(2):111–115CrossRef
Metadaten
Titel
Numerical simulations on conformable laser-induced interstitial thermotherapy through combined use of multi-beam heating and biodegradable nanoparticles
verfasst von
Jie Zhang
Chao Jin
Zhi-Zhu He
Jing Liu
Publikationsdatum
01.07.2014
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 4/2014
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1558-8

Weitere Artikel der Ausgabe 4/2014

Lasers in Medical Science 4/2014 Zur Ausgabe