Skip to main content
Erschienen in: Japanese Journal of Ophthalmology 6/2017

05.10.2017 | Clinical Investigation

Measurement repeatability of the dynamic Scheimpflug analyzer

verfasst von: Atsuya Miki, Naoyuki Maeda, Tomoko Asai, Yasushi Ikuno, Kohji Nishida

Erschienen in: Japanese Journal of Ophthalmology | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To evaluate the repeatability of corneal deformation parameters measured using a dynamic Scheimpflug analyzer and the impact of baseline clinical factors on the repeatability of each parameter.

Study design

Retrospective, cross-sectional study.

Methods

Forty-eight eyes (48 healthy subjects; mean age, 49.0 ± 19.5 years) underwent repeated examinations with the Scheimpflug analyzer to evaluate the test–retest variability. The intraclass correlation coefficient (ICC) and repeatability coefficient as indicators of variability were computed for 35 parameters measured with the Scheimpflug analyzer. The associations between the magnitude of the test–retest variability and baseline factors, such as age, axial length (AL), intraocular pressure (IOP), and central corneal thickness (CCT), were analyzed.

Results

The test–retest repeatability was excellent for 22 (62.9%) of 35 parameters (ICC ≥ 0.75), good for seven (20%), (ICC ≥ 0.6), fair for four (11.4%), (ICC ≥ 0.4), and poor for two (5.7%) parameters (ICC < 0.4). Age was associated positively with the magnitude of variability in 13 (37.1%) parameters; measurement variability was affected significantly by AL (5 parameters, 14.3%) and CCT (7 parameters, 20%) but, except for one parameter not by IOP.

Conclusion

Most parameters of the dynamic Scheimpflug analyzer showed favorable measurement reliability in healthy subjects. However, six parameters showed poor-to-fair repeatability. Age, AL, and CCT significantly affected the repeatability of several parameters. These results should be considered when clinicians use this device in clinical practice.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31:146–55.CrossRefPubMed Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31:146–55.CrossRefPubMed
2.
Zurück zum Zitat Dupps WJ. Hysteresis: new mechanospeak for the ophthalmologist. J Cataract Refract Surg. 2007;33:1499–501.CrossRefPubMed Dupps WJ. Hysteresis: new mechanospeak for the ophthalmologist. J Cataract Refract Surg. 2007;33:1499–501.CrossRefPubMed
3.
Zurück zum Zitat Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KCY, Sachdev N. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci. 2008;49:3262–8.CrossRefPubMed Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KCY, Sachdev N. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci. 2008;49:3262–8.CrossRefPubMed
4.
Zurück zum Zitat Abitbol O, Bouden J, Doan S, Hoang-Xuan T, Gatinel D. Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes. Acta Ophthalmol. 2010;88:116–9.CrossRefPubMed Abitbol O, Bouden J, Doan S, Hoang-Xuan T, Gatinel D. Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes. Acta Ophthalmol. 2010;88:116–9.CrossRefPubMed
5.
Zurück zum Zitat Grise-Dula A, Saa A, Abitbol O, Febbrano J-L, Azan E, Moulin-Tyrode C, et al. Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes. J Glaucoma. 2012;21:486–9.CrossRef Grise-Dula A, Saa A, Abitbol O, Febbrano J-L, Azan E, Moulin-Tyrode C, et al. Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes. J Glaucoma. 2012;21:486–9.CrossRef
6.
Zurück zum Zitat Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31:156–62.CrossRefPubMed Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31:156–62.CrossRefPubMed
7.
Zurück zum Zitat Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F. Biomechanical properties of the cornea in high myopia. Vision Res. 2008;48:2167–71.CrossRefPubMed Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F. Biomechanical properties of the cornea in high myopia. Vision Res. 2008;48:2167–71.CrossRefPubMed
8.
Zurück zum Zitat Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, et al. Association between corneal biomechanical properties and myopia in Chinese subjects. Eye. 2011;25:1083–9.CrossRefPubMedPubMedCentral Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, et al. Association between corneal biomechanical properties and myopia in Chinese subjects. Eye. 2011;25:1083–9.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Bochmann F, Ang GS, Azuara-Blanco A. Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefe’s Arch Clin Exp Ophthalmol. 2008;246:735–8.CrossRef Bochmann F, Ang GS, Azuara-Blanco A. Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefe’s Arch Clin Exp Ophthalmol. 2008;246:735–8.CrossRef
10.
Zurück zum Zitat Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J. Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefe’s Arch Clin Exp Ophthalmol. 2014;252:1329–35.CrossRef Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J. Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefe’s Arch Clin Exp Ophthalmol. 2014;252:1329–35.CrossRef
11.
Zurück zum Zitat Sun L, Shen M, Wang J, Fang A, Xu A, Fang H, et al. Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma. Am J Ophthalmol. 2009;147:1061–6, 1066.e1–2. Sun L, Shen M, Wang J, Fang A, Xu A, Fang H, et al. Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma. Am J Ophthalmol. 2009;147:1061–6, 1066.e1–2.
12.
Zurück zum Zitat Huseynova T, Waring GO, Roberts CJ, Krueger RR, Tomita M. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol. 2014;157:885–93.CrossRefPubMed Huseynova T, Waring GO, Roberts CJ, Krueger RR, Tomita M. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol. 2014;157:885–93.CrossRefPubMed
13.
Zurück zum Zitat Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141:868–75.CrossRefPubMed Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141:868–75.CrossRefPubMed
14.
Zurück zum Zitat De Moraes CG, Hill V, Tello C, Liebmann JM, Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21:209–13.CrossRefPubMed De Moraes CG, Hill V, Tello C, Liebmann JM, Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21:209–13.CrossRefPubMed
15.
Zurück zum Zitat Medeiros FA, Meira-Freitas D, Lisboa R, Kuang T-M, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120:1533–40.CrossRefPubMedPubMedCentral Medeiros FA, Meira-Freitas D, Lisboa R, Kuang T-M, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120:1533–40.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Song Y, Congdon N, Li L, Zhou Z, Choi K, Lam DSC, et al. Corneal hysteresis and axial length among Chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES) Report no. 4. Am J Ophthalmol. 2008;145:819–26.CrossRefPubMed Song Y, Congdon N, Li L, Zhou Z, Choi K, Lam DSC, et al. Corneal hysteresis and axial length among Chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES) Report no. 4. Am J Ophthalmol. 2008;145:819–26.CrossRefPubMed
17.
Zurück zum Zitat Chang P-Y, Chang S-W, Wang J-Y. Assessment of corneal biomechanical properties and intraocular pressure with the Ocular Response Analyzer in childhood myopia. Br J Ophthalmol. 2010;94:877–81.CrossRefPubMed Chang P-Y, Chang S-W, Wang J-Y. Assessment of corneal biomechanical properties and intraocular pressure with the Ocular Response Analyzer in childhood myopia. Br J Ophthalmol. 2010;94:877–81.CrossRefPubMed
18.
Zurück zum Zitat Lau W, Pye D. A clinical description of Ocular Response Analyzer measurements. Invest Ophthalmol Vis Sci. 2011;52:2911–6.CrossRefPubMed Lau W, Pye D. A clinical description of Ocular Response Analyzer measurements. Invest Ophthalmol Vis Sci. 2011;52:2911–6.CrossRefPubMed
19.
Zurück zum Zitat Leite MT, Alencar LM, Gore C, Weinreb RN, Sample PA, Zangwill LM, et al. Comparison of corneal biomechanical properties between healthy blacks and whites using the Ocular Response Analyzer. Am J Ophthalmol. 2010;150(163–8):e1. Leite MT, Alencar LM, Gore C, Weinreb RN, Sample PA, Zangwill LM, et al. Comparison of corneal biomechanical properties between healthy blacks and whites using the Ocular Response Analyzer. Am J Ophthalmol. 2010;150(163–8):e1.
20.
Zurück zum Zitat Zhang C, Tatham AJ, Abe RY, Diniz-Filho A, Zangwill LM, Weinreb RN, et al. Corneal hysteresis and progressive retinal nerve fiber layer loss in glaucoma. Am J Ophthalmol. 2016;166:29–36.CrossRefPubMed Zhang C, Tatham AJ, Abe RY, Diniz-Filho A, Zangwill LM, Weinreb RN, et al. Corneal hysteresis and progressive retinal nerve fiber layer loss in glaucoma. Am J Ophthalmol. 2016;166:29–36.CrossRefPubMed
21.
Zurück zum Zitat Glass DH, Roberts CJ, Litsky AS, Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci. 2008;49:3919–26.CrossRefPubMed Glass DH, Roberts CJ, Litsky AS, Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci. 2008;49:3919–26.CrossRefPubMed
22.
Zurück zum Zitat Wang W, Du S, Zhang X. Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci. 2015;56:5557–65.CrossRefPubMed Wang W, Du S, Zhang X. Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci. 2015;56:5557–65.CrossRefPubMed
23.
Zurück zum Zitat Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal deformation parameters provided by the Corvis-ST pachy-tonometer in healthy subjects and glaucoma patients. J Glaucoma. 2015;24:568–74.CrossRefPubMed Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal deformation parameters provided by the Corvis-ST pachy-tonometer in healthy subjects and glaucoma patients. J Glaucoma. 2015;24:568–74.CrossRefPubMed
24.
Zurück zum Zitat Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, et al. Corneal biomechanical characteristics measured by the Corvis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016;94:317–24.CrossRef Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, et al. Corneal biomechanical characteristics measured by the Corvis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016;94:317–24.CrossRef
25.
Zurück zum Zitat Lee R, Chang RT, Wong IYH, Lai JSM, Lee JWY, Singh K. Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J Glaucoma. 2016;25:e603–9.CrossRefPubMed Lee R, Chang RT, Wong IYH, Lai JSM, Lee JWY, Singh K. Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J Glaucoma. 2016;25:e603–9.CrossRefPubMed
26.
Zurück zum Zitat Ye C, Yu M, Lai G, Jhanji V. Variability of corneal deformation responses in normal and keratoconic eyes. Optom Vis Sci. 2015;92:149–53.CrossRef Ye C, Yu M, Lai G, Jhanji V. Variability of corneal deformation responses in normal and keratoconic eyes. Optom Vis Sci. 2015;92:149–53.CrossRef
27.
Zurück zum Zitat Perez-Rico C, Gutierrez-Ortiz C, Gonzalez-Mesa A, Zandueta AM, Moreno-Salgueiro A, Germain F. Effect of diabetes mellitus on Corvis ST measurement process. Acta Ophthalmol. 2014;93:193–8.CrossRef Perez-Rico C, Gutierrez-Ortiz C, Gonzalez-Mesa A, Zandueta AM, Moreno-Salgueiro A, Germain F. Effect of diabetes mellitus on Corvis ST measurement process. Acta Ophthalmol. 2014;93:193–8.CrossRef
28.
Zurück zum Zitat Hassan Z, Modis L, Szalai E, Berta A, Nemeth G. Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery. Cont Lens Anterior Eye. 2014;37:337–41.CrossRefPubMed Hassan Z, Modis L, Szalai E, Berta A, Nemeth G. Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery. Cont Lens Anterior Eye. 2014;37:337–41.CrossRefPubMed
29.
Zurück zum Zitat Shen Y, Zhao J, Yao P, Miao H, Niu L, Wang X, et al. Changes in corneal deformation parameters after lenticule creation and extraction during small incision lenticule extraction (SMILE) procedure. PLoS One. 2014;9:e103893.CrossRefPubMedPubMedCentral Shen Y, Zhao J, Yao P, Miao H, Niu L, Wang X, et al. Changes in corneal deformation parameters after lenticule creation and extraction during small incision lenticule extraction (SMILE) procedure. PLoS One. 2014;9:e103893.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Maeda N, Ueki R, Fuchihata M, Fujimoto H, Koh S, Nishida K. Corneal biomechanical properties in 3 corneal transplantation techniques with a dynamic Scheimpflug analyzer. Jpn J Ophthalmol. 2014;58:483–9.CrossRefPubMed Maeda N, Ueki R, Fuchihata M, Fujimoto H, Koh S, Nishida K. Corneal biomechanical properties in 3 corneal transplantation techniques with a dynamic Scheimpflug analyzer. Jpn J Ophthalmol. 2014;58:483–9.CrossRefPubMed
31.
Zurück zum Zitat Ali NQ, Patel DV, McGhee CNJ. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact Scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55:3651–9.CrossRefPubMed Ali NQ, Patel DV, McGhee CNJ. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact Scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55:3651–9.CrossRefPubMed
32.
Zurück zum Zitat Kling S, Marcos S. Contributing factors to corneal deformation in air puff measurements. Invest Ophthalmol Vis Sci. 2013;54:5078–85.CrossRefPubMed Kling S, Marcos S. Contributing factors to corneal deformation in air puff measurements. Invest Ophthalmol Vis Sci. 2013;54:5078–85.CrossRefPubMed
33.
Zurück zum Zitat Leung CK-S, Ye C, Weinreb RN. An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest Ophthalmol Vis Sci. 2013;54:2885–92. Leung CK-S, Ye C, Weinreb RN. An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest Ophthalmol Vis Sci. 2013;54:2885–92.
34.
Zurück zum Zitat Valbon BF, Ambrósio R, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol. 2013;76:229–32.CrossRefPubMed Valbon BF, Ambrósio R, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol. 2013;76:229–32.CrossRefPubMed
35.
Zurück zum Zitat Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea. 2015;34:71–7.CrossRefPubMed Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea. 2015;34:71–7.CrossRefPubMed
36.
Zurück zum Zitat Hon Y, Lam AKC. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci. 2013;90:e1–8.CrossRefPubMed Hon Y, Lam AKC. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci. 2013;90:e1–8.CrossRefPubMed
37.
Zurück zum Zitat Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.CrossRefPubMed Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.CrossRefPubMed
38.
39.
Zurück zum Zitat Bland JM, Altman DG. Measurement error proportional to the mean. Br Med J. 1996;313:106.CrossRef Bland JM, Altman DG. Measurement error proportional to the mean. Br Med J. 1996;313:106.CrossRef
40.
Zurück zum Zitat Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6:284–90.CrossRef Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6:284–90.CrossRef
41.
Zurück zum Zitat Kim BJ, Ryu I-H, Kim SW. Age-related differences in corneal epithelial thickness measurements with anterior segment optical coherence tomography. Jpn J Ophthalmol. 2016;60:357–64.CrossRefPubMed Kim BJ, Ryu I-H, Kim SW. Age-related differences in corneal epithelial thickness measurements with anterior segment optical coherence tomography. Jpn J Ophthalmol. 2016;60:357–64.CrossRefPubMed
Metadaten
Titel
Measurement repeatability of the dynamic Scheimpflug analyzer
verfasst von
Atsuya Miki
Naoyuki Maeda
Tomoko Asai
Yasushi Ikuno
Kohji Nishida
Publikationsdatum
05.10.2017
Verlag
Springer Japan
Erschienen in
Japanese Journal of Ophthalmology / Ausgabe 6/2017
Print ISSN: 0021-5155
Elektronische ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-017-0534-9

Weitere Artikel der Ausgabe 6/2017

Japanese Journal of Ophthalmology 6/2017 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.