Skip to main content
Erschienen in: Brain Topography 1/2017

04.11.2016 | Original Paper

Clinical Factors Underlying the Inter-individual Variability of the Resting Motor Threshold in Navigated Transcranial Magnetic Stimulation Motor Mapping

verfasst von: Nico Sollmann, Noriko Tanigawa, Lucia Bulubas, Jamil Sabih, Claus Zimmer, Florian Ringel, Bernhard Meyer, Sandro M. Krieg

Erschienen in: Brain Topography | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Correctly determining individual’s resting motor threshold (rMT) is crucial for accurate and reliable mapping by navigated transcranial magnetic stimulation (nTMS), which is especially true for preoperative motor mapping in brain tumor patients. However, systematic data analysis on clinical factors underlying inter-individual rMT variability in neurosurgical motor mapping is sparse. The present study examined 14 preselected clinical factors that may underlie inter-individual rMT variability by performing multiple regression analysis (backward, followed by forward model comparisons) on the nTMS motor mapping data of 100 brain tumor patients. Data were collected from preoperative motor mapping of abductor pollicis brevis (APB), abductor digiti minimi (ADM), and flexor carpi radialis (FCR) muscle representations among these patients. While edema and age at exam in the ADM model only jointly reduced the unexplained variance significantly, the other factors kept in the ADM model (gender, antiepileptic drug intake, and motor deficit) and each of the factors kept in the APB and FCR models independently significantly reduced the unexplained variance. Hence, several clinical parameters contribute to inter-individual rMT variability and should be taken into account during initial and follow-up motor mappings. Thus, the present study adds basic evidence on inter-individual rMT variability, whereby some of the parameters are specific to brain tumor patients.
Literatur
Zurück zum Zitat Abramowitz M, Stegun IA (1965) Handbook of mathematical functions, 1st edn. Dover Publications, New York Abramowitz M, Stegun IA (1965) Handbook of mathematical functions, 1st edn. Dover Publications, New York
Zurück zum Zitat Amassian VE, Cracco RQ, Maccabee PJ (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol 74:401–416CrossRefPubMed Amassian VE, Cracco RQ, Maccabee PJ (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol 74:401–416CrossRefPubMed
Zurück zum Zitat Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus–response properties of the human corticospinal system. Clin Neurophysiol 112:931–937CrossRefPubMed Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus–response properties of the human corticospinal system. Clin Neurophysiol 112:931–937CrossRefPubMed
Zurück zum Zitat Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale
Zurück zum Zitat Cohen J, Cohen P, West SG, Aiken LS (2003) Applied multiple regression/correlation analysis for the behavioral sciences, 3rd edn. Lawrence Erlbaum Associates, Mahwah Cohen J, Cohen P, West SG, Aiken LS (2003) Applied multiple regression/correlation analysis for the behavioral sciences, 3rd edn. Lawrence Erlbaum Associates, Mahwah
Zurück zum Zitat Conforto AB, Z’Graggen WJ, Kohl AS, Rosler KM, Kaelin-Lang A (2004) Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clin Neurophysiol 115:812–819. doi:10.1016/j.clinph.2003.11.010 CrossRefPubMed Conforto AB, Z’Graggen WJ, Kohl AS, Rosler KM, Kaelin-Lang A (2004) Impact of coil position and electrophysiological monitoring on determination of motor thresholds to transcranial magnetic stimulation. Clin Neurophysiol 115:812–819. doi:10.​1016/​j.​clinph.​2003.​11.​010 CrossRefPubMed
Zurück zum Zitat Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611PubMed Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611PubMed
Zurück zum Zitat Forster MT, Senft C, Hattingen E, Lorei M, Seifert V, Szelenyi A (2012) Motor cortex evaluation by nTMS after surgery of central region tumors: a feasibility study. Acta Neurochir (Wien) 154:1351–1359. doi:10.1007/s00701-012-1403-4 CrossRefPubMed Forster MT, Senft C, Hattingen E, Lorei M, Seifert V, Szelenyi A (2012) Motor cortex evaluation by nTMS after surgery of central region tumors: a feasibility study. Acta Neurochir (Wien) 154:1351–1359. doi:10.​1007/​s00701-012-1403-4 CrossRefPubMed
Zurück zum Zitat Fox J (2003) Effects displays in R for generalized linear models. J Stat Softw 8:1–27CrossRef Fox J (2003) Effects displays in R for generalized linear models. J Stat Softw 8:1–27CrossRef
Zurück zum Zitat Frey D et al (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neurooncology 16:1365–1372. doi:10.1093/neuonc/nou110 Frey D et al (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neurooncology 16:1365–1372. doi:10.​1093/​neuonc/​nou110
Zurück zum Zitat Gangitano M, Valero-Cabre A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A (2002) Modulation of input–output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 113:1249–1257CrossRefPubMed Gangitano M, Valero-Cabre A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A (2002) Modulation of input–output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 113:1249–1257CrossRefPubMed
Zurück zum Zitat Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation—a new tool for functional imaging of the brain. Crit Rev Biomed Eng 27:241–284PubMed Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation—a new tool for functional imaging of the brain. Crit Rev Biomed Eng 27:241–284PubMed
Zurück zum Zitat Iuchi T, Kuwabara K, Matsumoto M, Kawasaki K, Hasegawa Y, Sakaida T (2015) Levetiracetam versus phenytoin for seizure prophylaxis during and early after craniotomy for brain tumours: a phase II prospective, randomised study. J Neurol Neurosurg Psychiatry 86:1158–1162. doi:10.1136/jnnp-2014-308584 CrossRefPubMed Iuchi T, Kuwabara K, Matsumoto M, Kawasaki K, Hasegawa Y, Sakaida T (2015) Levetiracetam versus phenytoin for seizure prophylaxis during and early after craniotomy for brain tumours: a phase II prospective, randomised study. J Neurol Neurosurg Psychiatry 86:1158–1162. doi:10.​1136/​jnnp-2014-308584 CrossRefPubMed
Zurück zum Zitat Izumi S, Findley TW, Ikai T, Andrews J, Daum M, Chino N (1995) Facilitatory effect of thinking about movement on motor-evoked potentials to transcranial magnetic stimulation of the brain. Am J Phys Med Rehabil 74:207–213CrossRefPubMed Izumi S, Findley TW, Ikai T, Andrews J, Daum M, Chino N (1995) Facilitatory effect of thinking about movement on motor-evoked potentials to transcranial magnetic stimulation of the brain. Am J Phys Med Rehabil 74:207–213CrossRefPubMed
Zurück zum Zitat Julkunen P, Saisanen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Kononen M (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44:790–795. doi:10.1016/j.neuroimage.2008.09.040 CrossRefPubMed Julkunen P, Saisanen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Kononen M (2009) Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 44:790–795. doi:10.​1016/​j.​neuroimage.​2008.​09.​040 CrossRefPubMed
Zurück zum Zitat Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG (1992) Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 76:502–509CrossRefPubMed Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG (1992) Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 76:502–509CrossRefPubMed
Zurück zum Zitat Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:415–423CrossRefPubMed Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:415–423CrossRefPubMed
Zurück zum Zitat Kiers L, Fernando B, Tomkins D (1997) Facilitatory effect of thinking about movement on magnetic motor-evoked potentials. Electroencephalogr Clin Neurophysiol 105:262–268CrossRefPubMed Kiers L, Fernando B, Tomkins D (1997) Facilitatory effect of thinking about movement on magnetic motor-evoked potentials. Electroencephalogr Clin Neurophysiol 105:262–268CrossRefPubMed
Zurück zum Zitat Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, Ringel F (2012) Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 116:994–1001. doi:10.3171/2011.12.JNS111524 CrossRefPubMed Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, Ringel F (2012) Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 116:994–1001. doi:10.​3171/​2011.​12.​JNS111524 CrossRefPubMed
Zurück zum Zitat Krieg SM et al (2014) Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neurooncology 16:1274–1282. doi:10.1093/neuonc/nou007 Krieg SM et al (2014) Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neurooncology 16:1274–1282. doi:10.​1093/​neuonc/​nou007
Zurück zum Zitat Lauderdale K, Murphy T, Tung T, Davila D, Binder DK, Fiacco TA (2015) Osmotic edema rapidly increases neuronal excitability through activation of NMDA receptor-dependent slow inward currents in juvenile and adult hippocampus. ASN Neuro. doi:10.1177/1759091415605115 PubMedPubMedCentral Lauderdale K, Murphy T, Tung T, Davila D, Binder DK, Fiacco TA (2015) Osmotic edema rapidly increases neuronal excitability through activation of NMDA receptor-dependent slow inward currents in juvenile and adult hippocampus. ASN Neuro. doi:10.​1177/​1759091415605115​ PubMedPubMedCentral
Zurück zum Zitat Livingston SC, Friedlander DL, Gibson BC, Melvin JR (2013) Motor evoked potential response latencies demonstrate moderate correlations with height and limb length in healthy young adults. Neurodiagn J 53:63–78PubMed Livingston SC, Friedlander DL, Gibson BC, Melvin JR (2013) Motor evoked potential response latencies demonstrate moderate correlations with height and limb length in healthy young adults. Neurodiagn J 53:63–78PubMed
Zurück zum Zitat Madeja M, Margineanu DG, Gorji A, Siep E, Boerrigter P, Klitgaard H, Speckmann EJ (2003) Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology 45:661–671CrossRefPubMed Madeja M, Margineanu DG, Gorji A, Siep E, Boerrigter P, Klitgaard H, Speckmann EJ (2003) Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology 45:661–671CrossRefPubMed
Zurück zum Zitat Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20:570–576CrossRefPubMed Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20:570–576CrossRefPubMed
Zurück zum Zitat Mills KR, Murray NM, Hess CW (1987) Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery 20:164–168CrossRefPubMed Mills KR, Murray NM, Hess CW (1987) Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery 20:164–168CrossRefPubMed
Zurück zum Zitat Muller V, Birbaumer N, Preissl H, Braun C, Lang F (2002) Effects of water on cortical excitability in humans. Eur J Neurosci 15:528–538CrossRefPubMed Muller V, Birbaumer N, Preissl H, Braun C, Lang F (2002) Effects of water on cortical excitability in humans. Eur J Neurosci 15:528–538CrossRefPubMed
Zurück zum Zitat Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A (2011) Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 22:233–251, ix. doi:10.1016/j.nec.2011.01.002 Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A (2011) Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 22:233–251, ix. doi:10.​1016/​j.​nec.​2011.​01.​002
Zurück zum Zitat Niespodziany I, Klitgaard H, Margineanu DG (2001) Levetiracetam inhibits the high-voltage-activated Ca(2+) current in pyramidal neurones of rat hippocampal slices. Neurosci Lett 306:5–8CrossRefPubMed Niespodziany I, Klitgaard H, Margineanu DG (2001) Levetiracetam inhibits the high-voltage-activated Ca(2+) current in pyramidal neurones of rat hippocampal slices. Neurosci Lett 306:5–8CrossRefPubMed
Zurück zum Zitat Niskanen E, Julkunen P, Saisanen L, Vanninen R, Karjalainen P, Kononen M (2010) Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study. Hum Brain Mapp 31:1272–1280. doi:10.1002/hbm.20942 PubMed Niskanen E, Julkunen P, Saisanen L, Vanninen R, Karjalainen P, Kononen M (2010) Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study. Hum Brain Mapp 31:1272–1280. doi:10.​1002/​hbm.​20942 PubMed
Zurück zum Zitat Picht T, Strack V, Schulz J, Zdunczyk A, Frey D, Schmidt S, Vajkoczy P (2012) Assessing the functional status of the motor system in brain tumor patients using transcranial magnetic stimulation. Acta Neurochir (Wien) 154:2075–2081. doi:10.1007/s00701-012-1494-y CrossRef Picht T, Strack V, Schulz J, Zdunczyk A, Frey D, Schmidt S, Vajkoczy P (2012) Assessing the functional status of the motor system in brain tumor patients using transcranial magnetic stimulation. Acta Neurochir (Wien) 154:2075–2081. doi:10.​1007/​s00701-012-1494-y CrossRef
Zurück zum Zitat Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input–output characteristics. J Physiol 546:605–613CrossRefPubMed Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input–output characteristics. J Physiol 546:605–613CrossRefPubMed
Zurück zum Zitat Raudenbush S, Bryk A (2002) Hierarchical linear models, 2nd edn. Sage Publications, Thousand Oaks Raudenbush S, Bryk A (2002) Hierarchical linear models, 2nd edn. Sage Publications, Thousand Oaks
Zurück zum Zitat Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A (2002) Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol 113:101–107CrossRefPubMed Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A (2002) Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol 113:101–107CrossRefPubMed
Zurück zum Zitat Rossini PM et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN Committee. Electroencephalogr Clin Neurophysiol 91:79–92CrossRefPubMed Rossini PM et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN Committee. Electroencephalogr Clin Neurophysiol 91:79–92CrossRefPubMed
Zurück zum Zitat Rossini PM et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107. doi:10.1016/j.clinph.2015.02.001 CrossRefPubMed Rossini PM et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107. doi:10.​1016/​j.​clinph.​2015.​02.​001 CrossRefPubMed
Zurück zum Zitat Ruohonen J, Ilmoniemi RJ (1999) Modeling of the stimulating field generation in TMS. Electroencephalogr Clin Neurophysiol Suppl 51:30–40PubMed Ruohonen J, Ilmoniemi RJ (1999) Modeling of the stimulating field generation in TMS. Electroencephalogr Clin Neurophysiol Suppl 51:30–40PubMed
Zurück zum Zitat Saisanen L et al (2008) Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 25:367–372. doi:10.1097/WNP.0b013e31818e7944 Saisanen L et al (2008) Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 25:367–372. doi:10.​1097/​WNP.​0b013e31818e7944​
Zurück zum Zitat Schmidt S, Bathe-Peters R, Fleischmann R, Ronnefarth M, Scholz M, Brandt SA (2015) Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates. Hum Brain Mapp 36:40–49. doi:10.1002/hbm.22611 CrossRefPubMed Schmidt S, Bathe-Peters R, Fleischmann R, Ronnefarth M, Scholz M, Brandt SA (2015) Nonphysiological factors in navigated TMS studies; confounding covariates and valid intracortical estimates. Hum Brain Mapp 36:40–49. doi:10.​1002/​hbm.​22611 CrossRefPubMed
Zurück zum Zitat Smith MJ, Keel JC, Greenberg BD, Adams LF, Schmidt PJ, Rubinow DA, Wassermann EM (1999) Menstrual cycle effects on cortical excitability. Neurology 53:2069–2072CrossRefPubMed Smith MJ, Keel JC, Greenberg BD, Adams LF, Schmidt PJ, Rubinow DA, Wassermann EM (1999) Menstrual cycle effects on cortical excitability. Neurology 53:2069–2072CrossRefPubMed
Zurück zum Zitat Sohn YH, Kaelin-Lang A, Jung HY, Hallett M (2001) Effect of levetiracetam on human corticospinal excitability. Neurology 57:858–863CrossRefPubMed Sohn YH, Kaelin-Lang A, Jung HY, Hallett M (2001) Effect of levetiracetam on human corticospinal excitability. Neurology 57:858–863CrossRefPubMed
Zurück zum Zitat Sommer M, Wu T, Tergau F, Paulus W (2002) Intra- and interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 113:265–269CrossRefPubMed Sommer M, Wu T, Tergau F, Paulus W (2002) Intra- and interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 113:265–269CrossRefPubMed
Zurück zum Zitat Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS (2015) Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg. doi:10.3171/2015.5.JNS142833 PubMed Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS (2015) Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg. doi:10.​3171/​2015.​5.​JNS142833 PubMed
Zurück zum Zitat Takahashi S, Jussen D, Vajkoczy P, Picht T (2012) Plastic relocation of motor cortex in a patient with LGG (low grade glioma) confirmed by NBS (navigated brain stimulation). Acta Neurochir (Wien) 154:2003–2008; discussion 2008. doi:10.1007/s00701-012-1492-0 Takahashi S, Jussen D, Vajkoczy P, Picht T (2012) Plastic relocation of motor cortex in a patient with LGG (low grade glioma) confirmed by NBS (navigated brain stimulation). Acta Neurochir (Wien) 154:2003–2008; discussion 2008. doi:10.​1007/​s00701-012-1492-0
Zurück zum Zitat Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117:354–362. doi:10.3171/2012.5.JNS112124 CrossRefPubMedPubMedCentral Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS (2012) Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 117:354–362. doi:10.​3171/​2012.​5.​JNS112124 CrossRefPubMedPubMedCentral
Zurück zum Zitat Tobimatsu S, Sun SJ, Fukui R, Kato M (1998) Effects of sex, height and age on motor evoked potentials with magnetic stimulation. J Neurol 245:256–261CrossRefPubMed Tobimatsu S, Sun SJ, Fukui R, Kato M (1998) Effects of sex, height and age on motor evoked potentials with magnetic stimulation. J Neurol 245:256–261CrossRefPubMed
Zurück zum Zitat van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13:164–171CrossRefPubMed van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13:164–171CrossRefPubMed
Zurück zum Zitat Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRef Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRef
Zurück zum Zitat Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113:1165–1171CrossRefPubMed Wassermann EM (2002) Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 113:1165–1171CrossRefPubMed
Metadaten
Titel
Clinical Factors Underlying the Inter-individual Variability of the Resting Motor Threshold in Navigated Transcranial Magnetic Stimulation Motor Mapping
verfasst von
Nico Sollmann
Noriko Tanigawa
Lucia Bulubas
Jamil Sabih
Claus Zimmer
Florian Ringel
Bernhard Meyer
Sandro M. Krieg
Publikationsdatum
04.11.2016
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 1/2017
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0536-9

Weitere Artikel der Ausgabe 1/2017

Brain Topography 1/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.