Skip to main content
Erschienen in: Breast Cancer Research and Treatment 2/2012

Open Access 01.06.2012 | Brief Report

Importance of highly selective LC–MS/MS analysis for the accurate quantification of tamoxifen and its metabolites: focus on endoxifen and 4-hydroxytamoxifen

verfasst von: N. G. L. Jager, H. Rosing, S. C. Linn, J. H. M. Schellens, J. H. Beijnen

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 2/2012

Abstract

The antiestrogenic effect of tamoxifen is mainly attributable to the active metabolites endoxifen and 4-hydroxytamoxifen. This effect is assumed to be concentration-dependent and therefore quantitative analysis of tamoxifen and metabolites for clinical studies and therapeutic drug monitoring is increasing. We investigated the large discrepancies in reported mean endoxifen and 4-hydroxytamoxifen concentrations. Two published LC–MS/MS methods are used to analyse a set of 75 serum samples from patients treated with tamoxifen. The method from Teunissen et al. (J Chrom B, 879:1677–1685, 2011) separates endoxifen and 4-hydroxytamoxifen from other tamoxifen metabolites with similar masses and fragmentation patterns. The second method, published by Gjerde et al. (J Chrom A, 1082:6–14, 2005) however lacks selectivity, resulting in a factor 2–3 overestimation of the endoxifen and 4-hydroxytamoxifen levels, respectively. We emphasize the use of highly selective LC–MS/MS methods for the quantification of tamoxifen and its metabolites in biological samples.

Introduction

Tamoxifen is widely administered in the treatment and chemoprevention of estrogen receptor positive breast cancer, which accounts for about 60–70% of all breast cancers [13]. Tamoxifen is considered to be a prodrug that is converted into many metabolites. The most therapeutically active metabolites are N-desmethyl-4-hydroxytamoxifen (endoxifen) and 4-hydroxytamoxifen, being 30- to 100-fold more potent than tamoxifen itself. The antiestrogenic activities of endoxifen and 4-hydroxytamoxifen are similar, although endoxifen, unlike 4-hydroxytamoxifen, is also a potent inhibitor of aromatase and is present at a higher steady state concentration in patients than 4-hydroxytamoxifen [47].
The steady state levels of the active tamoxifen metabolites are proposed predictors of the clinical outcomes of tamoxifen treatment; it is suggested that there is a minimum concentration threshold above which endoxifen is effective against the recurrence of breast cancer. [8] It is well known from the literature that there is a considerable inter-patient variability in steady state levels of tamoxifen and its metabolites [5, 810]. However, the mean levels reported by recent studies [8, 1014], that all included patients using 20 mg tamoxifen per day and analysed patient samples with liquid chromatography–tandem mass spectrometry (LC–MS/MS), differ more than expected purely based on the inter-patient variability. Three of these studies report mean endoxifen concentrations between 7.10 and 14.5 ng/mL and mean 4-hydroxytamoxifen levels between 1.55 and 2.25 ng/mL [911], similar to the levels we find in our laboratory, whereas another recent study reports concentrations twice as high [14]. Two studies from Norway, both using the LC–MS/MS assay developed by Gjerde et al. [15], report even higher concentrations; median concentrations of around 50 ng/mL for endoxifen and around 5.75 ng/mL for 4-hydroxytamoxifen [12, 13].
In this article we describe the investigation of these discrepancies, by analysing a set of 75 patient samples with the assay published by Gjerde et al. [15] and with an assay developed in our laboratory [16].

Methods

Patient samples

Serum samples were obtained in the period between December 2010 and September 2011 from patients treated with tamoxifen in the Netherlands Cancer Institute, Amsterdam, the Netherlands. The samples were collected in serum gel tubes and blood was allowed to coagulate for 30 min at room temperature. After coagulation, serum gel tubes were centrifuged for 10 min at 2,500–3,000 g (temperature was allowed to range from 4°C to ambient temperature). Serum was transferred into polypropylene tubes, which were stored at −70°C until the time of analysis.

Extraction and measurement of tamoxifen and metabolites

Tamoxifen and its metabolites were analysed in 75 patient samples. All patient samples, 20 calibration standards and 6 quality control samples were handled according to the method described by Teunissen et al. [16]. A volume of 50 μL human serum was processed. Sample pre-treatment involved protein precipitation with acetonitrile. After mixing, samples were centrifuged and the clear supernatant was evaporated to dryness under a gentle stream of nitrogen (30°C). The extracts were reconstituted in acetonitrile—4 mM ammonium formate buffer pH 3.5 (3:7 v/v). The final extracts were analysed by two different LC–MS/MS assays, method 1 from Teunissen et al. [16] and method 2 from Gjerde et al. [15], during consecutive days.

Method 1

The assay for the determination of tamoxifen (5–500 ng/mL), N-desmethyltamoxifen (10–1,000 ng/mL), (E)-endoxifen (1–100 ng/mL), (Z)-endoxifen (1–100 ng/mL), N-desmethyl-4′-hydroxytamoxifen (1–100 ng/mL), 4-hydroxytamoxifen (0.4–40 ng/mL) and 4′-hydroxytamoxifen (0.4–40 ng/mL), from Teunissen et al. [16] was used with slight modifications. A volume of 5 μL of the final extract was injected onto a Kinetex C18 100 Å column (100 × 4.6 mm ID) and detection was performed on a triple-quadrupole MS/MS detector with an electrospray ionization source (API4000, AB Sciex, Foster City, USA) operating in the positive ion mode. A partial validation was executed and all requirements for acceptance, as defined in the FDA and EMA guidelines on Bioanalytical Method Validation [17, 18] were fulfilled.

Method 2

The assay for the determination of tamoxifen (5–500 ng/mL), N-desmethyltamoxifen (10–1000 ng/mL), endoxifen (1–100 ng/mL), and 4-hydroxytamoxifen (0.4–40 ng/mL) from Gjerde et al. [15] was used.
Online extraction was not executed in order to analyse the identical final extracts that were used when method 1 was applied. The flow rate was set at 0.8 mL/min, to obtain comparable retention times.
A volume of 5 μL of each sample was injected onto a Chromolith Performance RP 18-e column (100 × 4.6 mm ID) and a gradient elution similar to the separation mode of the method used by Gjerde et al. was applied. The separation was performed at room temperature and the autosampler was thermostatted at 7°C. Detection was performed on a triple-quadrupole MS/MS detector with an electrospray ionization source (API4000, AB Sciex, Foster City, USA) operating in the positive ion mode.

Quantification of tamoxifen and metabolites

Tamoxifen, N-desmethyltamoxifen-HCl, N-desmethyl-4-hydroxytamoxifen (endoxifen, E/Z mixture 1:1), N-desmethyl-4′-hydroxytamoxifen, 4-hydroxytamoxifen, 4′-hydroxytamoxifen, tamoxifen-N-oxide, tamoxifen-d5, N-desmethyltamoxifen-d5, N-desmethyl-4-hydroxytamoxifen-d5 (endoxifen-d5, E/Z mixture 1:1) and 4-hydroxytamoxifen-d5 were purchased from Toronto Research Chemicals (North York, ON, Canada). The chemical structures of the analytes are shown in Table 1. Characterization of the peaks in patient samples was based on comparison with the retention times and MS fragmentation patterns of the reference standards. When no reference standard was available, identification was based on MS fragmentation and data found in the literature [10, 19]. The reference standard of endoxifen was a racemic mixture (1:1), resulting in baseline separated peaks when using method 1, but in a single peak when using method 2. For the quantification of (Z)-endoxifen in patient samples analysed with method 2, the analyte peak area of the calibration standards and quality control samples was divided by a factor 2.
Table 1
Trivial names, chemical structures and retention times of tamoxifen and metabolites with molecular mass 371.5, 357.5, 373.5 or 387.5 (reprinted and adjusted from Teunissen et al. [5], used with permission)
https://static-content.springer.com/image/art%3A10.1007%2Fs10549-012-2000-1/MediaObjects/10549_2012_2000_Figa_HTML.gif
Trivial name
R1
R2
R3
R4
R5
R6
R7
Formula
Mol. Mass
Transition (m/z)
RT1 (min)
RT2 (min)
Tamoxifen
O–CH2–CH2–N(CH3)2
CH2–CH3
H
H
H
H
H
C26H29NO
371.5
372/72
8.00
2.99
N-desmethyltamoxifen
O–CH2–CH2–NH–CH3
CH2–CH3
H
H
H
H
H
C25H27NO
357.5
358/58
7.91
2.96
N-desmethyl-α-hydroxytamoxifena
O–CH2–CH2–NH–CH3
CH(OH)–CH3
H
H
H
H
H
C25H27NO2
373.5
374/58
6.65
2.81
N-desmethyl-4-hydroxytamoxifen (Endoxifen)
O–CH2–CH2–NH–CH3
CH2–CH3
H
H
OH
H
H
C25H27NO2
373.5
374/58
5.79
2.81
N-desmethyl-3-hydroxytamoxifena
O–CH2–CH2–NH–CH3
CH2–CH3
H
OH
H
H
H
C25H27NO2
373.5
374/58
5.85
2.81
N-desmethyl-4′-hydroxytamoxifen
O–CH2–CH2–NH–CH3
CH2–CH3
H
H
H
H
OH
C25H27NO2
373.5
374/58
6.41
2.81
α-Hydroxytamoxifena
O–CH2–CH2–N(CH3)2
CH(OH)–CH3
H
H
H
H
H
C26H29NO2
387.5
388/72
3.91
2.84
4-Hydroxytamoxifen
O–CH2–CH2–N(CH3)2
CH2–CH3
H
H
OH
H
H
C26H29NO2
387.5
388/72
6.03
2.84
3-Hydroxytamoxifena
O–CH2–CH2–N(CH3)2
CH2–CH3
H
OH
H
H
H
C26H29NO2
387.5
388/72
6.17
2.84
4′-Hydroxytamoxifen
O–CH2–CH2–N(CH3)2
CH2–CH3
H
H
H
H
OH
C26H29NO2
387.5
388/72
6.66
2.84
Tamoxifen-N-oxide
O–CH2–CH2–NO(CH3)2
CH2–CH3
H
H
H
H
H
C26H29NO2
387.5
388/72
8.32
3.06
β-Hydroxytamoxifenb
O–CH2–CH2–N(CH3)2
CH2–CH2–OH
H
H
H
H
H
C26H29NO2
387.5
388/72
2-Hydroxytamoxifenb
O–CH2–CH2–N(CH3)2
CH2–CH3
OH
H
H
H
H
C26H29NO2
387.5
388/72
1,2-Epoxytamoxifenb
O–CH2–CH2–N(CH3)2
CH2–CH3
H
H
H
H
H
C26H29NO2
387.5
388/72
RT 1 retention time obtained with method 1, based on the method developed by Teunissen et al. [16]. RT 2 retention time obtained with method 2, based on the method developed by Gjerde et al. [15]
aNo reference standard available, identification was based on MS fragmentation and data found in the literature [10, 19]
bThe levels of these metabolites are below the LLOD of current LC–MS platforms [11, 20], therefore retention times are unknown
Multiple reaction monitoring chromatograms were acquired at unit resolution (0.7 Da) for quantification.

Results and discussion

There are large differences in reported mean steady-state concentrations of the therapeutically active tamoxifen metabolites, endoxifen and 4-hydroxytamoxifen. These discrepancies can only partly be assigned to inter-patient variability in the biotransformation of tamoxifen. For this article, we investigated the bioanalytical variability, by analysing a set of 75 patient samples with two different LC–MS/MS methods; method 1 from Teunissen et al. [16] and method 2 from Gjerde et al. [15]. The bioanalytical data were accepted for both methods, since the back-calculated concentrations of the calibration standards and quality control samples were all within ±15%. The results are presented in Table 2.
Table 2
Mean concentrations of tamoxifen and three of its metabolites analysed with the two described methods, from serum samples of 75 patients treated with tamoxifen
 
Mean concentration (ng/mL)
Analyte
Method 1 [16] ± s.d.
Method 2 [15] ± s.d.
Tamoxifen
99.7 ± 39.3
103.3 ± 40.4
N-desmethyltamoxifen
184.0 ± 74.7
187.1 ± 77.9
Endoxifen
9.0 ± 4.5
18.1 ± 6.4
4-Hydroxytamoxifen
1.7 ± 0.7
4.6 ± 1.7

Tamoxifen and N-desmethyltamoxifen

The measured concentration of tamoxifen and N-desmethyltamoxifen in each serum sample was very similar for both methods (Fig. 2), resulting in comparable mean concentrations (Table 2). There are no tamoxifen metabolites described in the literature [6, 20] that have molecular masses similar to tamoxifen or N-desmethyltamoxifen, therefore co-elution of tamoxifen analogues with fragmentation patterns similar to tamoxifen or N-desmethyltamoxifen is not expected.

Endoxifen (m/z 374 → 58)

There are several metabolites with close resemblance in molecular structure to endoxifen (Table 1). These compounds also have similar molecular masses and fragmentation patterns, making chromatographic separation of crucial importance for selective analysis.
The chromatogram obtained with the method from Teunissen et al. [16] (Fig. 1a) shows separate peaks for the metabolites with mass transition 374/58, whereas the chromatogram obtained with the method from Gjerde et al. [15] (Fig. 1b) shows only a single peak, consisting of N-desmethyl-α-hydroxytamoxifen, endoxifen, N-desmethyl-3-hydroxytamoxifen and N-desmethyl-4′-hydroxytamoxifen eluting at the same retention time. This lack of selectivity leads to a consequent overestimation of the endoxifen level of around a factor 2 (Fig. 2; Table 2). Furthermore, method 1 separates (E)-endoxifen from the therapeutically active (Z)-endoxifen, whereas method 2 does not separate these isoforms. However, for all 75 patient samples the (E)-endoxifen level was below the lower limit of quantitation (1.0 ng/mL), which is in agreement with the literature [10, 19].

4-Hydroxytamoxifen (m/z 388 → 72)

As shown in Table 1, there are at least seven tamoxifen metabolites with masses and fragmentation patterns similar to 4-hydroxytamoxifen. From these metabolites, the levels of β-hydroxytamoxifen, 2-hydroxytamoxifen and 1,2-epoxytamoxifen are below the lower limit of detection (LLOD) of current LC–MS platforms (±0.05 ng/mL) [11, 20]. The chromatogram obtained with method 1 (Fig. 1c) shows separate peaks for the other four metabolites with mass transition 388/72, whereas the chromatogram obtained with method 2 (Fig. 1d) shows only two separated peaks. Tamoxifen-N-oxide elutes at 3.06 min and α-hydroxytamoxifen, 4-hydroxytamoxifen, 3-hydroxytamoxifen and 4′-hydroxytamoxifen are co-eluting at 2.84 min. This co-elution leads to a consequent overestimation of the 4-hydroxytamoxifen levels of around a factor 3 (Fig. 2) and therefore the mean 4-hydroxytamoxifen concentration obtained with method 2 is a factor 3 higher (Table 2).
The results obtained with method 1 are in good agreement with the levels reported by three recent published studies. The analytical methods used in these studies all separated endoxifen and 4-hydroxytamoxifen from compounds with similar masses and fragmentation patterns [8, 10, 11].
When investigating correlations between the levels of the active tamoxifen metabolites and efficacy and toxicity parameters, it is crucial to distinguish between the active metabolites and the 4′-hydroxylated metabolites, which are about ten times less active than 4-hydroxytamoxifen and endoxifen. [10, 11] Also, for therapeutic drug monitoring based on reaching a sufficient endoxifen level, it is important to use a highly selective analysis in order to accurately quantify endoxifen in the patient sample.

Conclusions

This article demonstrates that high selectivity is of major importance for the analysis of tamoxifen metabolites, some of which show marked resemblance in molecular structure and have similar masses and fragmentation patterns. Lack of high selectivity results in an overestimation of the concentration of the therapeutically active metabolites, endoxifen and 4-hydroxytamoxifen, in patient samples.

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Peng J, Sengupta S, Jordan VC (2009) Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anticancer Agents Med Chem 9(5):481–499PubMed Peng J, Sengupta S, Jordan VC (2009) Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anticancer Agents Med Chem 9(5):481–499PubMed
2.
Zurück zum Zitat Shao W, Brown M (2004) Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res 6(1):39–52PubMedCrossRef Shao W, Brown M (2004) Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res 6(1):39–52PubMedCrossRef
3.
Zurück zum Zitat Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784PubMed Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784PubMed
4.
Zurück zum Zitat Johnson MD, Zuo H, Lee KH, Trebley JP, Rae JM, Weatherman RV (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85(2):151–159PubMedCrossRef Johnson MD, Zuo H, Lee KH, Trebley JP, Rae JM, Weatherman RV (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85(2):151–159PubMedCrossRef
5.
Zurück zum Zitat Teunissen SF, Rosing H, Seoane MD, Brunsveld L, Schellens JHM, Schinkel AH, Beijnen JH (2011) Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques. J Pharm Biomed Anal 55(3):518–526PubMedCrossRef Teunissen SF, Rosing H, Seoane MD, Brunsveld L, Schellens JHM, Schinkel AH, Beijnen JH (2011) Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques. J Pharm Biomed Anal 55(3):518–526PubMedCrossRef
6.
Zurück zum Zitat Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55(5):471–478PubMedCrossRef Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55(5):471–478PubMedCrossRef
7.
Zurück zum Zitat Lu WJ, Desta Z, Flockhart DA (2012) Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res Treat 131(2):473–481PubMedCrossRef Lu WJ, Desta Z, Flockhart DA (2012) Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res Treat 131(2):473–481PubMedCrossRef
8.
Zurück zum Zitat Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, Nikoloff DM, Hillman G, Fontecha MR, Lawrence HJ, Parker BA, Wu AH, Pierce JP (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89(5):718–725PubMedCrossRef Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, Nikoloff DM, Hillman G, Fontecha MR, Lawrence HJ, Parker BA, Wu AH, Pierce JP (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89(5):718–725PubMedCrossRef
9.
Zurück zum Zitat Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Jin Y, Storniolo AM, Nikoloff DM, Wu L, Hillman G, Hayes DF, Stearns V, Flockhart DA (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80(1):61–74PubMedCrossRef Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Jin Y, Storniolo AM, Nikoloff DM, Wu L, Hillman G, Hayes DF, Stearns V, Flockhart DA (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80(1):61–74PubMedCrossRef
10.
Zurück zum Zitat Murdter TE, Schroth W, Bacchus-Gerybadze L, Winter S, Heinkele G, Simon W, Fasching PA, Fehm T, Eichelbaum M, Schwab M, Brauch H (2011) Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 89(5):708–717PubMedCrossRef Murdter TE, Schroth W, Bacchus-Gerybadze L, Winter S, Heinkele G, Simon W, Fasching PA, Fehm T, Eichelbaum M, Schwab M, Brauch H (2011) Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 89(5):708–717PubMedCrossRef
11.
Zurück zum Zitat Barginear MF, Jaremko M, Peter I, Yu C, Kasai Y, Kemeny M, Raptis G, Desnick RJ (2011) Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the antiestrogenic activity score. Clin Pharmacol Ther 90(4):605–611PubMedCrossRef Barginear MF, Jaremko M, Peter I, Yu C, Kasai Y, Kemeny M, Raptis G, Desnick RJ (2011) Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the antiestrogenic activity score. Clin Pharmacol Ther 90(4):605–611PubMedCrossRef
12.
Zurück zum Zitat Gjerde J, Hauglid M, Breilid H, Lundgren S, Varhaug JE, Kisanga ER, Mellgren G, Steen VM, Lien EA (2008) Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol 19(1):56–61PubMedCrossRef Gjerde J, Hauglid M, Breilid H, Lundgren S, Varhaug JE, Kisanga ER, Mellgren G, Steen VM, Lien EA (2008) Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol 19(1):56–61PubMedCrossRef
13.
Zurück zum Zitat Gjerde J, Geisler J, Lundgren S, Ekse D, Varhaug JE, Mellgren G, Steen VM, Lien EA (2010) Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer. BMC Cancer 10:313PubMedCrossRef Gjerde J, Geisler J, Lundgren S, Ekse D, Varhaug JE, Mellgren G, Steen VM, Lien EA (2010) Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer. BMC Cancer 10:313PubMedCrossRef
14.
Zurück zum Zitat Irvin WJ Jr, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC, Moore SG, Olajide OA, Graham ML, Canale ST, Raab RE, Corso SW, Peppercorn JM, Anderson SM, Friedman KJ, Ogburn ET, Desta Z, Flockhart DA, McLeod HL, Evans JP, Carey LA (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29(24):3232–3239PubMedCrossRef Irvin WJ Jr, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC, Moore SG, Olajide OA, Graham ML, Canale ST, Raab RE, Corso SW, Peppercorn JM, Anderson SM, Friedman KJ, Ogburn ET, Desta Z, Flockhart DA, McLeod HL, Evans JP, Carey LA (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29(24):3232–3239PubMedCrossRef
15.
Zurück zum Zitat Gjerde J, Kisanga ER, Hauglid M, Holm PI, Mellgren G, Lien EA (2005) Identification and quantification of tamoxifen and four metabolites in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1082(1):6–14PubMedCrossRef Gjerde J, Kisanga ER, Hauglid M, Holm PI, Mellgren G, Lien EA (2005) Identification and quantification of tamoxifen and four metabolites in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1082(1):6–14PubMedCrossRef
16.
Zurück zum Zitat Teunissen SF, Jager NGL, Rosing H, Schinkel AH, Schellens JHM, Beijnen JH (2011) Development and validation of a quantitative assay for the determination of tamoxifen and its five main phase I metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879(19):1677–1685CrossRef Teunissen SF, Jager NGL, Rosing H, Schinkel AH, Schellens JHM, Beijnen JH (2011) Development and validation of a quantitative assay for the determination of tamoxifen and its five main phase I metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879(19):1677–1685CrossRef
17.
Zurück zum Zitat EMA (2011), Guideline on bioanalytical method validation, European Medicines Agency EMA (2011), Guideline on bioanalytical method validation, European Medicines Agency
18.
Zurück zum Zitat FDA (2001), Guidance for Industry: Bioanalytical Method Validation, U.S. Food and Drug Administration FDA (2001), Guidance for Industry: Bioanalytical Method Validation, U.S. Food and Drug Administration
19.
Zurück zum Zitat Jaremko M, Kasai Y, Barginear MF, Raptis G, Desnick RJ, Yu C (2010) Tamoxifen metabolite isomer separation and quantification by liquid chromatography-tandem mass spectrometry. Anal Chem 82(24):10186–10193PubMedCrossRef Jaremko M, Kasai Y, Barginear MF, Raptis G, Desnick RJ, Yu C (2010) Tamoxifen metabolite isomer separation and quantification by liquid chromatography-tandem mass spectrometry. Anal Chem 82(24):10186–10193PubMedCrossRef
20.
Zurück zum Zitat Teunissen SF, Rosing H, Schinkel AH, Schellens JHM, Beijnen JH (2010) Bioanalytical methods for determination of tamoxifen and its phase I metabolites: a review. Anal Chim Acta 683(1):21–37PubMedCrossRef Teunissen SF, Rosing H, Schinkel AH, Schellens JHM, Beijnen JH (2010) Bioanalytical methods for determination of tamoxifen and its phase I metabolites: a review. Anal Chim Acta 683(1):21–37PubMedCrossRef
Metadaten
Titel
Importance of highly selective LC–MS/MS analysis for the accurate quantification of tamoxifen and its metabolites: focus on endoxifen and 4-hydroxytamoxifen
verfasst von
N. G. L. Jager
H. Rosing
S. C. Linn
J. H. M. Schellens
J. H. Beijnen
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 2/2012
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-012-2000-1

Weitere Artikel der Ausgabe 2/2012

Breast Cancer Research and Treatment 2/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.