Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2009

01.06.2009

Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility

verfasst von: T. Y. Kim, D. Vigil, C. J. Der, R. L. Juliano

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2009

Einloggen, um Zugang zu erhalten

Abstract

DLC-1 was originally identified as a potential tumor suppressor. One of the key biochemical functions of DLC-1 is to serve as a GTPase activating protein (GAP) for members of the Rho family of GTPases, particularly Rho A-C and Cdc 42. Since these GTPases are critically involved in regulation of the cytoskeleton and cell migration, it seems clear that DLC-1 will also influence these processes. In this review we examine basic aspects of the actin cyoskeleton and how it relates to cell motility. We then delineate the characteristics of DLC-1 and other members of its family, and describe how they may have multiple effects on the regulation of cell polarity, actin organization, and cell migration.
Literatur
1.
Zurück zum Zitat Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.PubMedCrossRef Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.PubMedCrossRef
3.
Zurück zum Zitat Vicente-Manzanares, M., Webb, D. J., & Horwitz, A. R. (2005). Cell migration at a glance. Journal of Cell Science, 118(Pt 21), 4917–4919.PubMedCrossRef Vicente-Manzanares, M., Webb, D. J., & Horwitz, A. R. (2005). Cell migration at a glance. Journal of Cell Science, 118(Pt 21), 4917–4919.PubMedCrossRef
4.
Zurück zum Zitat Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: integrating signals from front to back. Science, 302(5651), 1704–1709.PubMedCrossRef Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., et al. (2003). Cell migration: integrating signals from front to back. Science, 302(5651), 1704–1709.PubMedCrossRef
5.
Zurück zum Zitat Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of Cellular Physiology, 213(3), 565–573.PubMedCrossRef Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of Cellular Physiology, 213(3), 565–573.PubMedCrossRef
6.
Zurück zum Zitat Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef
7.
Zurück zum Zitat Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247–269.PubMedCrossRef Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247–269.PubMedCrossRef
8.
Zurück zum Zitat Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Molecular Medicine, 11(5), 1185–1207.PubMedCrossRef Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Molecular Medicine, 11(5), 1185–1207.PubMedCrossRef
9.
Zurück zum Zitat Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.PubMedCrossRef Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.PubMedCrossRef
10.
Zurück zum Zitat Larsen, M., Artym, V. V., Green, J. A., & Yamada, K. M. (2006). The matrix reorganized: extracellular matrix remodeling and integrin signaling. Current Opinion in Cell Biology, 18(5), 463–471.PubMedCrossRef Larsen, M., Artym, V. V., Green, J. A., & Yamada, K. M. (2006). The matrix reorganized: extracellular matrix remodeling and integrin signaling. Current Opinion in Cell Biology, 18(5), 463–471.PubMedCrossRef
11.
Zurück zum Zitat Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions, 32(Pt3), 416–420.PubMedCrossRef Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions, 32(Pt3), 416–420.PubMedCrossRef
12.
Zurück zum Zitat Del Pozo, M. A., & Schwartz, M. A. (2007). Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology, 17(5), 246–250.PubMedCrossRef Del Pozo, M. A., & Schwartz, M. A. (2007). Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends in Cell Biology, 17(5), 246–250.PubMedCrossRef
13.
Zurück zum Zitat Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt3), 443–446.PubMedCrossRef Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt3), 443–446.PubMedCrossRef
14.
Zurück zum Zitat Moissoglu, K., & Schwartz, M. A. (2006). Integrin signalling in directed cell migration. Biology of the Cell, 98(9), 547–555.PubMedCrossRef Moissoglu, K., & Schwartz, M. A. (2006). Integrin signalling in directed cell migration. Biology of the Cell, 98(9), 547–555.PubMedCrossRef
15.
Zurück zum Zitat Ridley, A. J., & Hall, A. (2004). Snails, Swiss, and serum: the solution for Rac ‘n’ Rho. Cell, 116(2 Suppl), S23–25, 22 p following S25.PubMedCrossRef Ridley, A. J., & Hall, A. (2004). Snails, Swiss, and serum: the solution for Rac ‘n’ Rho. Cell, 116(2 Suppl), S23–25, 22 p following S25.PubMedCrossRef
16.
Zurück zum Zitat Wennerberg, K., & Der, C. J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). Journal of Cell Science, 117(Pt 8), 1301–1312.PubMedCrossRef Wennerberg, K., & Der, C. J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). Journal of Cell Science, 117(Pt 8), 1301–1312.PubMedCrossRef
17.
Zurück zum Zitat Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116(2), 167–179.PubMedCrossRef Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116(2), 167–179.PubMedCrossRef
18.
Zurück zum Zitat Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A., & Hahn, K. M. (2004). Activation of endogenous Cdc42 visualized in living cells. Science, 305(5690), 1615–1619.PubMedCrossRef Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A., & Hahn, K. M. (2004). Activation of endogenous Cdc42 visualized in living cells. Science, 305(5690), 1615–1619.PubMedCrossRef
19.
Zurück zum Zitat Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440(7087), 1069–1072.PubMedCrossRef Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440(7087), 1069–1072.PubMedCrossRef
20.
Zurück zum Zitat Weaver, A. M., Young, M. E., Lee, W. L., & Cooper, J. A. (2003). Integration of signals to the Arp2/3 complex. Current Opinion in Cell Biology, 15(1), 23–30.PubMedCrossRef Weaver, A. M., Young, M. E., Lee, W. L., & Cooper, J. A. (2003). Integration of signals to the Arp2/3 complex. Current Opinion in Cell Biology, 15(1), 23–30.PubMedCrossRef
21.
Zurück zum Zitat Bensenor, L. B., Kan, H. M., Wang, N., Wallrabe, H., Davidson, L. A., Cai, Y., et al. (2007). IQGAP1 regulates cell motility by linking growth factor signaling to actin assembly. Journal of Cell Science, 120(Pt 4), 658–669.PubMedCrossRef Bensenor, L. B., Kan, H. M., Wang, N., Wallrabe, H., Davidson, L. A., Cai, Y., et al. (2007). IQGAP1 regulates cell motility by linking growth factor signaling to actin assembly. Journal of Cell Science, 120(Pt 4), 658–669.PubMedCrossRef
22.
Zurück zum Zitat Huang, T. Y., DerMardirossian, C., & Bokoch, G. M. (2006). Cofilin phosphatases and regulation of actin dynamics. Current Opinion in Cell Biology, 18(1), 26–31.PubMedCrossRef Huang, T. Y., DerMardirossian, C., & Bokoch, G. M. (2006). Cofilin phosphatases and regulation of actin dynamics. Current Opinion in Cell Biology, 18(1), 26–31.PubMedCrossRef
23.
Zurück zum Zitat Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773(5), 642–652.PubMed Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773(5), 642–652.PubMed
24.
Zurück zum Zitat Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature Reviews Cancer, 6(6), 459–471.PubMedCrossRef Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature Reviews Cancer, 6(6), 459–471.PubMedCrossRef
25.
Zurück zum Zitat Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A., & Bear, J. E. (2007). Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell, 128(5), 915–929.PubMedCrossRef Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A., & Bear, J. E. (2007). Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell, 128(5), 915–929.PubMedCrossRef
26.
Zurück zum Zitat Krause, M., Dent, E. W., Bear, J. E., Loureiro, J. J., & Gertler, F. B. (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annual Review of Cell and Developmental Biology, 19, 541–564.PubMedCrossRef Krause, M., Dent, E. W., Bear, J. E., Loureiro, J. J., & Gertler, F. B. (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annual Review of Cell and Developmental Biology, 19, 541–564.PubMedCrossRef
27.
Zurück zum Zitat Fukata, Y., Amano, M., & Kaibuchi, K. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends in Pharmacological Sciences, 22(1), 32–39.PubMedCrossRef Fukata, Y., Amano, M., & Kaibuchi, K. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends in Pharmacological Sciences, 22(1), 32–39.PubMedCrossRef
28.
Zurück zum Zitat Pellegrin, S., & Mellor, H. (2007). Actin stress fibres. Journal of Cell Science, 120(Pt 20), 3491–3499.PubMedCrossRef Pellegrin, S., & Mellor, H. (2007). Actin stress fibres. Journal of Cell Science, 120(Pt 20), 3491–3499.PubMedCrossRef
29.
Zurück zum Zitat Watanabe, N., & Higashida, C. (2004). Formins: processive cappers of growing actin filaments. Experimental Cell Research, 301(1), 16–22.PubMedCrossRef Watanabe, N., & Higashida, C. (2004). Formins: processive cappers of growing actin filaments. Experimental Cell Research, 301(1), 16–22.PubMedCrossRef
30.
Zurück zum Zitat Nayal, A., Webb, D. J., Brown, C. M., Schaefer, E. M., Vicente-Manzanares, M., & Horwitz, A. R. (2006). Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. Journal of Cell Biology, 173(4), 587–589.PubMedCrossRef Nayal, A., Webb, D. J., Brown, C. M., Schaefer, E. M., Vicente-Manzanares, M., & Horwitz, A. R. (2006). Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. Journal of Cell Biology, 173(4), 587–589.PubMedCrossRef
31.
Zurück zum Zitat Nishiya, N., Kiosses, W. B., Han, J., & Ginsberg, M. H. (2005). An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nature Cell Biology, 7(4), 343–352.PubMedCrossRef Nishiya, N., Kiosses, W. B., Han, J., & Ginsberg, M. H. (2005). An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nature Cell Biology, 7(4), 343–352.PubMedCrossRef
32.
Zurück zum Zitat Dow, L. E., & Humbert, P. O. (2007). Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. International Review of Cytology, 262, 253–302.PubMedCrossRef Dow, L. E., & Humbert, P. O. (2007). Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. International Review of Cytology, 262, 253–302.PubMedCrossRef
33.
Zurück zum Zitat Myers, K. R., & Casanova, J. E. (2008). Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends in Cell Biology, 18(4), 184–192.PubMedCrossRef Myers, K. R., & Casanova, J. E. (2008). Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends in Cell Biology, 18(4), 184–192.PubMedCrossRef
34.
Zurück zum Zitat Balasubramanian, N., Scott, D. W., Castle, J. D., Casanova, J. E., & Schwartz, M. A. (2007). Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biology, 9(12), 1381–1391.PubMedCrossRef Balasubramanian, N., Scott, D. W., Castle, J. D., Casanova, J. E., & Schwartz, M. A. (2007). Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biology, 9(12), 1381–1391.PubMedCrossRef
35.
Zurück zum Zitat Palamidessi, A., Frittoli, E., Garre, M., Faretta, M., Mione, M., Testa, I., et al. (2008). Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell, 134(1), 135–147.PubMedCrossRef Palamidessi, A., Frittoli, E., Garre, M., Faretta, M., Mione, M., Testa, I., et al. (2008). Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell, 134(1), 135–147.PubMedCrossRef
36.
Zurück zum Zitat Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5), 865–877.PubMedCrossRef Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5), 865–877.PubMedCrossRef
37.
Zurück zum Zitat Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews. Molecular Cell Biology, 6(2), 167–180.PubMedCrossRef Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews. Molecular Cell Biology, 6(2), 167–180.PubMedCrossRef
38.
Zurück zum Zitat Bernards, A., & Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends in Cell Biology, 14(7), 377–385.PubMedCrossRef Bernards, A., & Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends in Cell Biology, 14(7), 377–385.PubMedCrossRef
39.
Zurück zum Zitat Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef
40.
Zurück zum Zitat Kandpal, R. P. (2006). Rho GTPase activating proteins in cancer phenotypes. Current Protein & Peptide Science, 7(4), 355–365.CrossRef Kandpal, R. P. (2006). Rho GTPase activating proteins in cancer phenotypes. Current Protein & Peptide Science, 7(4), 355–365.CrossRef
41.
Zurück zum Zitat Chang, J. H., Gill, S., Settleman, J., & Parsons, S. J. (1995). c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. Journal of Cell Biology, 130(2), 355–368.PubMedCrossRef Chang, J. H., Gill, S., Settleman, J., & Parsons, S. J. (1995). c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. Journal of Cell Biology, 130(2), 355–368.PubMedCrossRef
42.
Zurück zum Zitat Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22(11), 1439–1444.CrossRef Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22(11), 1439–1444.CrossRef
43.
Zurück zum Zitat Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedCrossRef Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMedCrossRef
44.
Zurück zum Zitat Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.PubMedCrossRef Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801–1806.PubMedCrossRef
45.
Zurück zum Zitat Yuan, B. Z., Jefferson, A. M., Baldwin, K. T., Thorgeirsson, S. S., Popescu, N. C., & Reynolds, S. H. (2004). DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. Oncogene, 23(7), 1405–1411.PubMedCrossRef Yuan, B. Z., Jefferson, A. M., Baldwin, K. T., Thorgeirsson, S. S., Popescu, N. C., & Reynolds, S. H. (2004). DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. Oncogene, 23(7), 1405–1411.PubMedCrossRef
46.
Zurück zum Zitat Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22(3), 445–450.PubMedCrossRef Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22(3), 445–450.PubMedCrossRef
47.
Zurück zum Zitat Zhou, X., Thorgeirsson, S. S., & Popescu, N. C. (2004). Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene, 23(6), 1308–1313.PubMedCrossRef Zhou, X., Thorgeirsson, S. S., & Popescu, N. C. (2004). Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene, 23(6), 1308–1313.PubMedCrossRef
48.
Zurück zum Zitat Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Molecular Carcinogenesis, 47(5), 326–337.PubMedCrossRef Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Molecular Carcinogenesis, 47(5), 326–337.PubMedCrossRef
49.
Zurück zum Zitat Li, H., Fung, K. L., Jin, D. Y., Chung, S. S., Ching, Y. P., Ng, I. O., et al. (2007). Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins, 67(4), 1154–1166.PubMedCrossRef Li, H., Fung, K. L., Jin, D. Y., Chung, S. S., Ching, Y. P., Ng, I. O., et al. (2007). Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Proteins, 67(4), 1154–1166.PubMedCrossRef
51.
Zurück zum Zitat Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Journal of Cell Biology, 176(1), 43–49.PubMedCrossRef Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Journal of Cell Biology, 176(1), 43–49.PubMedCrossRef
52.
Zurück zum Zitat Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012–9017.PubMedCrossRef Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012–9017.PubMedCrossRef
53.
Zurück zum Zitat Gay, N. J., & Keith, F. J. (1991). Drosophila Toll and IL-1 receptor. Nature, 351(6325), 355–356.PubMedCrossRef Gay, N. J., & Keith, F. J. (1991). Drosophila Toll and IL-1 receptor. Nature, 351(6325), 355–356.PubMedCrossRef
54.
Zurück zum Zitat Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. International Journal of Oncology, 32(6), 1285–1291.PubMed Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. International Journal of Oncology, 32(6), 1285–1291.PubMed
55.
Zurück zum Zitat Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef
56.
Zurück zum Zitat Kim, T. Y., Lee, J. W., Kim, H. P., Jong, H. S., Kim, T. Y., Jung, M., et al. (2007). DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 355(1), 72–77.PubMedCrossRef Kim, T. Y., Lee, J. W., Kim, H. P., Jong, H. S., Kim, T. Y., Jung, M., et al. (2007). DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 355(1), 72–77.PubMedCrossRef
57.
Zurück zum Zitat Syed, V., Mukherjee, K., Lyons-Weiler, J., Lau, K. M., Mashima, T., Tsuruo, T., et al. (2005). Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene, 24(10), 1774–1787.PubMedCrossRef Syed, V., Mukherjee, K., Lyons-Weiler, J., Lau, K. M., Mashima, T., Tsuruo, T., et al. (2005). Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene, 24(10), 1774–1787.PubMedCrossRef
58.
Zurück zum Zitat Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Research, 65(19), 8861–8868.PubMedCrossRef Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Research, 65(19), 8861–8868.PubMedCrossRef
59.
Zurück zum Zitat Euer, N., Schwirzke, M., Evtimova, V., Burtscher, H., Jarsch, M., Tarin, D., et al. (2002). Identification of genes associated with metastasis of mammary carcinoma in metastatic versus non-metastatic cell lines. Anticancer Research, 22(2A), 733–740.PubMed Euer, N., Schwirzke, M., Evtimova, V., Burtscher, H., Jarsch, M., Tarin, D., et al. (2002). Identification of genes associated with metastasis of mammary carcinoma in metastatic versus non-metastatic cell lines. Anticancer Research, 22(2A), 733–740.PubMed
Metadaten
Titel
Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility
verfasst von
T. Y. Kim
D. Vigil
C. J. Der
R. L. Juliano
Publikationsdatum
01.06.2009
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2009
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9167-2

Weitere Artikel der Ausgabe 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.