Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2010

01.03.2010

Lung cancer: From single-gene methylation to methylome profiling

verfasst von: Gerwin Heller, Christoph C. Zielinski, Sabine Zöchbauer-Müller

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

DNA methylation as part of the epigenetic gene-silencing complex is a universal occurring change in lung cancer. Numerous studies investigated methylation of specific genes in primary tumors, in serum or plasma samples, and in specimens from the aerodigestive tract epithelium of lung cancer patients. In most studies, single genes or small numbers of genes were analyzed. Moreover, it has been observed that methylation of certain genes can already be detected in samples from the upper aerodigestive tract epithelium of cancer-free heavy smokers. These findings indicated that methylation of certain genes may be a useful biomarker for prognosis, disease recurrence, early detection, and lung cancer risk assessment. So far, several genes were identified which seem to be of worse prognostic relevance when they were found to be methylated. In addition, it has been shown that a panel of markers may be relevant to predict disease recurrence after surgery. In comparison to analysis of single or small numbers of genes, methods for genome-wide detection of methylation were developed recently. These approaches are focused on either pharmacological re-activation of methylated genes followed by expression microarray analysis or on microarray analysis of sodium bisulfite-treated or affinity-enriched methylated DNA sequences. With currently available methods for the simultaneous detection of methylation, up to 28,000 CpG islands can be analyzed. Overall, we are just at the beginning of translating these findings into the clinic and there is hope that future patients will benefit from these results.
Literatur
1.
Zurück zum Zitat Travis, W. D., Travis, L. B., & Devesa, S. S. (1995). Lung cancer. Cancer, 75, 191–202.PubMed Travis, W. D., Travis, L. B., & Devesa, S. S. (1995). Lung cancer. Cancer, 75, 191–202.PubMed
2.
Zurück zum Zitat Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311, 844–847.PubMed Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311, 844–847.PubMed
3.
Zurück zum Zitat Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., & Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo Journal, 15, 2508–2518.PubMed Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., & Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo Journal, 15, 2508–2518.PubMed
4.
Zurück zum Zitat Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358, 1148–1159.PubMed Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358, 1148–1159.PubMed
5.
Zurück zum Zitat Espada, J., Ballestar, E., Fraga, M. F., Villar-Garea, A., Juarranz, A., Stockert, J. C., et al. (2004). Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. Journal of Biological Chemistry, 279, 37175–37184.PubMed Espada, J., Ballestar, E., Fraga, M. F., Villar-Garea, A., Juarranz, A., Stockert, J. C., et al. (2004). Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. Journal of Biological Chemistry, 279, 37175–37184.PubMed
6.
Zurück zum Zitat Ikegami, K., Ohgane, J., Tanaka, S., Yagi, S., & Shiota, K. (2009). Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development. International Journal of Developmental Biology, 53, 203–214.PubMed Ikegami, K., Ohgane, J., Tanaka, S., Yagi, S., & Shiota, K. (2009). Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development. International Journal of Developmental Biology, 53, 203–214.PubMed
7.
Zurück zum Zitat Eden, S., Hashimshony, T., Keshet, I., Cedar, H., & Thorne, A. W. (1998). DNA methylation models histone acetylation. Nature, 394, 842.PubMed Eden, S., Hashimshony, T., Keshet, I., Cedar, H., & Thorne, A. W. (1998). DNA methylation models histone acetylation. Nature, 394, 842.PubMed
8.
Zurück zum Zitat Rhee, I., Jair, K. W., Yen, R. W., Lengauer, C., Herman, J. G., Kinzler, K. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404, 1003–1007.PubMed Rhee, I., Jair, K. W., Yen, R. W., Lengauer, C., Herman, J. G., Kinzler, K. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature, 404, 1003–1007.PubMed
9.
Zurück zum Zitat Gowher, H., & Jeltsch, A. (2001). Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. Journal of Molecular Biology, 309, 1201–1208.PubMed Gowher, H., & Jeltsch, A. (2001). Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. Journal of Molecular Biology, 309, 1201–1208.PubMed
10.
Zurück zum Zitat Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19, 219–220.PubMed Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19, 219–220.PubMed
11.
Zurück zum Zitat Matsuo, K., Clay, O., Takahashi, T., Silke, J., & Schaffner, W. (1993). Evidence for erosion of mouse CpG islands during mammalian evolution. Somatic Cell and Molecular Genetics, 19, 543–555.PubMed Matsuo, K., Clay, O., Takahashi, T., Silke, J., & Schaffner, W. (1993). Evidence for erosion of mouse CpG islands during mammalian evolution. Somatic Cell and Molecular Genetics, 19, 543–555.PubMed
12.
Zurück zum Zitat Wang, Y., & Leung, F. C. (2004). An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics, 20, 1170–1177.PubMed Wang, Y., & Leung, F. C. (2004). An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics, 20, 1170–1177.PubMed
13.
Zurück zum Zitat Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMed Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMed
14.
Zurück zum Zitat Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.PubMed Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.PubMed
15.
Zurück zum Zitat Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321, 209–213.PubMed Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321, 209–213.PubMed
16.
Zurück zum Zitat Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196, 261–282.PubMed Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196, 261–282.PubMed
17.
Zurück zum Zitat Razin, A., & Cedar, H. (1994). DNA methylation and genomic imprinting. Cell, 77, 473–476.PubMed Razin, A., & Cedar, H. (1994). DNA methylation and genomic imprinting. Cell, 77, 473–476.PubMed
18.
Zurück zum Zitat Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews. Genetics, 3, 415–428.PubMed Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews. Genetics, 3, 415–428.PubMed
19.
Zurück zum Zitat Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 37, 391–400.PubMed Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 37, 391–400.PubMed
20.
Zurück zum Zitat Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21, 103–107.PubMed Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21, 103–107.PubMed
21.
Zurück zum Zitat Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6, 857–866.PubMed Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6, 857–866.PubMed
22.
Zurück zum Zitat He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics, 5, 522–531.PubMed He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews. Genetics, 5, 522–531.PubMed
23.
Zurück zum Zitat Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132, 9–14.PubMed Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132, 9–14.PubMed
24.
Zurück zum Zitat Bueno, M. J., Perez de Castro, I., Gomez de Cedron, M., Santos, J., Calin, G. A., Cigudosa, J. C., et al. (2008). Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell, 13, 496–506.PubMed Bueno, M. J., Perez de Castro, I., Gomez de Cedron, M., Santos, J., Calin, G. A., Cigudosa, J. C., et al. (2008). Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell, 13, 496–506.PubMed
25.
Zurück zum Zitat Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., et al. (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Research, 67, 1419–1423.PubMed Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., et al. (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Research, 67, 1419–1423.PubMed
26.
Zurück zum Zitat Fazi, F., Racanicchi, S., Zardo, G., Starnes, L. M., Mancini, M., Travaglini, L., et al. (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 12, 457–466.PubMed Fazi, F., Racanicchi, S., Zardo, G., Starnes, L. M., Mancini, M., Travaglini, L., et al. (2007). Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 12, 457–466.PubMed
27.
Zurück zum Zitat Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67, 1424–1429.PubMed Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67, 1424–1429.PubMed
28.
Zurück zum Zitat Lodygin, D., Tarasov, V., Epanchintsev, A., Berking, C., Knyazeva, T., Korner, H., et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7, 2591–2600.PubMed Lodygin, D., Tarasov, V., Epanchintsev, A., Berking, C., Knyazeva, T., Korner, H., et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7, 2591–2600.PubMed
29.
Zurück zum Zitat Corney, D. C., Flesken-Nikitin, A., Godwin, A. K., Wang, W., & Nikitin, A. Y. (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Research, 67, 8433–8438.PubMed Corney, D. C., Flesken-Nikitin, A., Godwin, A. K., Wang, W., & Nikitin, A. Y. (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Research, 67, 8433–8438.PubMed
30.
Zurück zum Zitat Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104, 15805–15810.PubMed Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104, 15805–15810.PubMed
31.
Zurück zum Zitat Shames, D. S., Minna, J. D., & Gazdar, A. F. (2007). Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer Letters, 251, 187–198.PubMed Shames, D. S., Minna, J. D., & Gazdar, A. F. (2007). Methods for detecting DNA methylation in tumors: from bench to bedside. Cancer Letters, 251, 187–198.PubMed
32.
Zurück zum Zitat Herman, J. G., & Baylin, S. B. (2001). Methylation-specific PCR. Current Protocols in Human Genetics, Chapter 10, Unit 10 16. Herman, J. G., & Baylin, S. B. (2001). Methylation-specific PCR. Current Protocols in Human Genetics, Chapter 10, Unit 10 16.
33.
Zurück zum Zitat Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., & Baylin, S. B. (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America, 93, 9821–9826.PubMed Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., & Baylin, S. B. (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proceedings of the National Academy of Sciences of the United States of America, 93, 9821–9826.PubMed
34.
Zurück zum Zitat Fraga, M. F., & Esteller, M (2002). DNA methylation: a profile of methods and applications. Biotechniques, 33, 632, 634, 636-649. Fraga, M. F., & Esteller, M (2002). DNA methylation: a profile of methods and applications. Biotechniques, 33, 632, 634, 636-649.
35.
Zurück zum Zitat Campan, M., Weisenberger, D. J., Trinh, B., & Laird, P. W. (2009). MethyLight. Methods in Molecular Biology, 507, 325–337.PubMed Campan, M., Weisenberger, D. J., Trinh, B., & Laird, P. W. (2009). MethyLight. Methods in Molecular Biology, 507, 325–337.PubMed
36.
Zurück zum Zitat Dammann, R., Li, C., Yoon, J. H., Chin, P. L., Bates, S., & Pfeifer, G. P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genetics, 25, 315–319.PubMed Dammann, R., Li, C., Yoon, J. H., Chin, P. L., Bates, S., & Pfeifer, G. P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genetics, 25, 315–319.PubMed
37.
Zurück zum Zitat Esteller, M., Corn, P. G., Baylin, S. B., & Herman, J. G. (2001). A gene hypermethylation profile of human cancer. Cancer Research, 61, 3225–3229.PubMed Esteller, M., Corn, P. G., Baylin, S. B., & Herman, J. G. (2001). A gene hypermethylation profile of human cancer. Cancer Research, 61, 3225–3229.PubMed
38.
Zurück zum Zitat Zöchbauer-Müller, S., Fong, K. M., Virmani, A. K., Geradts, J., Gazdar, A. F., & Minna, J. D. (2001). Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Research, 61, 249–255.PubMed Zöchbauer-Müller, S., Fong, K. M., Virmani, A. K., Geradts, J., Gazdar, A. F., & Minna, J. D. (2001). Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Research, 61, 249–255.PubMed
39.
Zurück zum Zitat Virmani, A. K., Rathi, A., Sathyanarayana, U. G., Padar, A., Huang, C. X., Cunnigham, H. T., et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research, 7, 1998–2004.PubMed Virmani, A. K., Rathi, A., Sathyanarayana, U. G., Padar, A., Huang, C. X., Cunnigham, H. T., et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research, 7, 1998–2004.PubMed
40.
Zurück zum Zitat Virmani, A. K., Rathi, A., Zöchbauer-Müller, S., Sacchi, N., Fukuyama, Y., Bryant, D., et al. (2000). Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. Journal of the National Cancer Institute, 92, 1303–1307.PubMed Virmani, A. K., Rathi, A., Zöchbauer-Müller, S., Sacchi, N., Fukuyama, Y., Bryant, D., et al. (2000). Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. Journal of the National Cancer Institute, 92, 1303–1307.PubMed
41.
Zurück zum Zitat Toyooka, K. O., Toyooka, S., Virmani, A. K., Sathyanarayana, U. G., Euhus, D. M., Gilcrease, M., et al. (2001). Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Research, 61, 4556–4560.PubMed Toyooka, K. O., Toyooka, S., Virmani, A. K., Sathyanarayana, U. G., Euhus, D. M., Gilcrease, M., et al. (2001). Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Research, 61, 4556–4560.PubMed
42.
Zurück zum Zitat Toyooka, S., Toyooka, K. O., Miyajima, K., Reddy, J. L., Toyota, M., Sathyanarayana, U. G., et al. (2003). Epigenetic down-regulation of death-associated protein kinase in lung cancers. Clinical Cancer Research, 9, 3034–3041.PubMed Toyooka, S., Toyooka, K. O., Miyajima, K., Reddy, J. L., Toyota, M., Sathyanarayana, U. G., et al. (2003). Epigenetic down-regulation of death-associated protein kinase in lung cancers. Clinical Cancer Research, 9, 3034–3041.PubMed
43.
Zurück zum Zitat Burbee, D. G., Forgacs, E., Zöchbauer-Müller, S., Shivakumar, L., Fong, K. M., Gao, B., et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. Journal of the National Cancer Institute, 93, 691–699.PubMed Burbee, D. G., Forgacs, E., Zöchbauer-Müller, S., Shivakumar, L., Fong, K. M., Gao, B., et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. Journal of the National Cancer Institute, 93, 691–699.PubMed
44.
Zurück zum Zitat Virmani, A., Rathi, A., Sugio, K., Sathyanarayana, U. G., Toyooka, S., Kischel, F. C., et al. (2003). Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer. International Journal of Cancer, 106, 198–204. Virmani, A., Rathi, A., Sugio, K., Sathyanarayana, U. G., Toyooka, S., Kischel, F. C., et al. (2003). Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer. International Journal of Cancer, 106, 198–204.
45.
Zurück zum Zitat Zöchbauer-Müller, S., Fong, K. M., Maitra, A., Lam, S., Geradts, J., Ashfaq, R., et al. (2001). 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Research, 61, 3581–3585.PubMed Zöchbauer-Müller, S., Fong, K. M., Maitra, A., Lam, S., Geradts, J., Ashfaq, R., et al. (2001). 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Research, 61, 3581–3585.PubMed
46.
Zurück zum Zitat Zöchbauer-Müller, S., Fong, K. M., Geradts, J., Xu, X., Seidl, S., End-Pfutzenreuter, A., et al. (2005). Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung cancers with and without DNA methylation. Oncogene, 24, 6249–6255.PubMed Zöchbauer-Müller, S., Fong, K. M., Geradts, J., Xu, X., Seidl, S., End-Pfutzenreuter, A., et al. (2005). Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung cancers with and without DNA methylation. Oncogene, 24, 6249–6255.PubMed
47.
Zurück zum Zitat Heller, G., Fong, K. M., Girard, L., Seidl, S., End-Pfützenreuter, A., Lang, G., et al. (2006). Expression and methylation pattern of TSLC1 cascade genes in lung carcinomas. Oncogene, 25, 959–968.PubMed Heller, G., Fong, K. M., Girard, L., Seidl, S., End-Pfützenreuter, A., Lang, G., et al. (2006). Expression and methylation pattern of TSLC1 cascade genes in lung carcinomas. Oncogene, 25, 959–968.PubMed
48.
Zurück zum Zitat Kikuchi, S., Yamada, D., Fukami, T., Masuda, M., Sakurai-Yageta, M., Williams, Y. N., et al. (2005). Promoter methylation of DAL-1/4.1B predicts poor prognosis in non-small cell lung cancer. Clinical Cancer Research, 11, 2954–2961.PubMed Kikuchi, S., Yamada, D., Fukami, T., Masuda, M., Sakurai-Yageta, M., Williams, Y. N., et al. (2005). Promoter methylation of DAL-1/4.1B predicts poor prognosis in non-small cell lung cancer. Clinical Cancer Research, 11, 2954–2961.PubMed
49.
Zurück zum Zitat Kikuchi, S., Yamada, D., Fukami, T., Maruyama, T., Ito, A., Asamura, H., et al. (2006). Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer, 106, 1751–1758.PubMed Kikuchi, S., Yamada, D., Fukami, T., Maruyama, T., Ito, A., Asamura, H., et al. (2006). Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer, 106, 1751–1758.PubMed
50.
Zurück zum Zitat Esteller, M., Sanchez-Cespedes, M., Rosell, R., Sidransky, D., Baylin, S. B., & Herman, J. G. (1999). Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Research, 59, 67–70.PubMed Esteller, M., Sanchez-Cespedes, M., Rosell, R., Sidransky, D., Baylin, S. B., & Herman, J. G. (1999). Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Research, 59, 67–70.PubMed
51.
Zurück zum Zitat Usadel, H., Brabender, J., Danenberg, K. D., Jeronimo, C., Harden, S., Engles, J., et al. (2002). Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Research, 62, 371–375.PubMed Usadel, H., Brabender, J., Danenberg, K. D., Jeronimo, C., Harden, S., Engles, J., et al. (2002). Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Research, 62, 371–375.PubMed
52.
Zurück zum Zitat Hsu, H. S., Chen, T. P., Hung, C. H., Wen, C. K., Lin, R. K., Lee, H. C., et al. (2007). Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer, 110, 2019–2026.PubMed Hsu, H. S., Chen, T. P., Hung, C. H., Wen, C. K., Lin, R. K., Lee, H. C., et al. (2007). Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer, 110, 2019–2026.PubMed
53.
Zurück zum Zitat Fujiwara, K., Fujimoto, N., Tabata, M., Nishii, K., Matsuo, K., Hotta, K., et al. (2005). Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clinical Cancer Research, 11, 1219–1225.PubMed Fujiwara, K., Fujimoto, N., Tabata, M., Nishii, K., Matsuo, K., Hotta, K., et al. (2005). Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clinical Cancer Research, 11, 1219–1225.PubMed
54.
Zurück zum Zitat Wang, Y., Yu, Z., Wang, T., Zhang, J., Hong, L., & Chen, L. (2007). Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer, 56, 289–294.PubMed Wang, Y., Yu, Z., Wang, T., Zhang, J., Hong, L., & Chen, L. (2007). Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer, 56, 289–294.PubMed
55.
Zurück zum Zitat Belinsky, S. A., Klinge, D. M., Dekker, J. D., Smith, M. W., Bocklage, T. J., Gilliland, F. D., et al. (2005). Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clinical Cancer Research, 11, 6505–6511.PubMed Belinsky, S. A., Klinge, D. M., Dekker, J. D., Smith, M. W., Bocklage, T. J., Gilliland, F. D., et al. (2005). Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clinical Cancer Research, 11, 6505–6511.PubMed
56.
Zurück zum Zitat Anglim, P. P., Alonzo, T. A., & Laird-Offringa, I. A. (2008). DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer, 7, 81.PubMed Anglim, P. P., Alonzo, T. A., & Laird-Offringa, I. A. (2008). DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer, 7, 81.PubMed
57.
Zurück zum Zitat Wang, Y. C., Lu, Y. P., Tseng, R. C., Lin, R. K., Chang, J. W., Chen, J. T., et al. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. Journal of Clinical Investigation, 111, 887–895.PubMed Wang, Y. C., Lu, Y. P., Tseng, R. C., Lin, R. K., Chang, J. W., Chen, J. T., et al. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. Journal of Clinical Investigation, 111, 887–895.PubMed
58.
Zurück zum Zitat Belinsky, S. A., Liechty, K. C., Gentry, F. D., Wolf, H. J., Rogers, J., Vu, K., et al. (2006). Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Research, 66, 3338–3344.PubMed Belinsky, S. A., Liechty, K. C., Gentry, F. D., Wolf, H. J., Rogers, J., Vu, K., et al. (2006). Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Research, 66, 3338–3344.PubMed
59.
Zurück zum Zitat Belinsky, S. A., Grimes, M. J., Casas, E., Stidley, C. A., Franklin, W. A., Bocklage, T. J., et al. (2007). Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum. British Journal of Cancer, 96, 1278–1283.PubMed Belinsky, S. A., Grimes, M. J., Casas, E., Stidley, C. A., Franklin, W. A., Bocklage, T. J., et al. (2007). Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum. British Journal of Cancer, 96, 1278–1283.PubMed
60.
Zurück zum Zitat Machida, E. O., Brock, M. V., Hooker, C. M., Nakayama, J., Ishida, A., Amano, J., et al. (2006). Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Research, 66, 6210–6218.PubMed Machida, E. O., Brock, M. V., Hooker, C. M., Nakayama, J., Ishida, A., Amano, J., et al. (2006). Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Research, 66, 6210–6218.PubMed
61.
Zurück zum Zitat Shivapurkar, N., Stastny, V., Suzuki, M., Wistuba, I. I., Li, L., Zheng, Y., et al. (2007). Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Letter, 247, 56–71. Shivapurkar, N., Stastny, V., Suzuki, M., Wistuba, I. I., Li, L., Zheng, Y., et al. (2007). Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Letter, 247, 56–71.
62.
Zurück zum Zitat Schmiemann, V., Bocking, A., Kazimirek, M., Onofre, A. S., Gabbert, H. E., Kappes, R., et al. (2005). Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study. Clinical Cancer Research, 11, 7728–7734.PubMed Schmiemann, V., Bocking, A., Kazimirek, M., Onofre, A. S., Gabbert, H. E., Kappes, R., et al. (2005). Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study. Clinical Cancer Research, 11, 7728–7734.PubMed
63.
Zurück zum Zitat Grote, H. J., Schmiemann, V., Geddert, H., Rohr, U. P., Kappes, R., Gabbert, H. E., et al. (2005). Aberrant promoter methylation of p16(INK4a), RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. International Journal of Cancer, 116, 720–725. Grote, H. J., Schmiemann, V., Geddert, H., Rohr, U. P., Kappes, R., Gabbert, H. E., et al. (2005). Aberrant promoter methylation of p16(INK4a), RARB2 and SEMA3B in bronchial aspirates from patients with suspected lung cancer. International Journal of Cancer, 116, 720–725.
64.
Zurück zum Zitat Grote, H. J., Schmiemann, V., Kiel, S., Bocking, A., Kappes, R., Gabbert, H. E., et al. (2004). Aberrant methylation of the adenomatous polyposis coli promoter 1A in bronchial aspirates from patients with suspected lung cancer. International Journal of Cancer, 110, 751–755. Grote, H. J., Schmiemann, V., Kiel, S., Bocking, A., Kappes, R., Gabbert, H. E., et al. (2004). Aberrant methylation of the adenomatous polyposis coli promoter 1A in bronchial aspirates from patients with suspected lung cancer. International Journal of Cancer, 110, 751–755.
65.
Zurück zum Zitat Kim, H., Kwon, Y. M., Kim, J. S., Lee, H., Park, J. H., Shim, Y. M., et al. (2004). Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. Journal of Clinical Oncology, 22, 2363–2370.PubMed Kim, H., Kwon, Y. M., Kim, J. S., Lee, H., Park, J. H., Shim, Y. M., et al. (2004). Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. Journal of Clinical Oncology, 22, 2363–2370.PubMed
66.
Zurück zum Zitat Chan, E. C., Lam, S. Y., Tsang, K. W., Lam, B., Ho, J. C., Fu, K. H., et al. (2002). Aberrant promoter methylation in Chinese patients with non-small cell lung cancer: patterns in primary tumors and potential diagnostic application in bronchoalevolar lavage. Clinical Cancer Research, 8, 3741–3746.PubMed Chan, E. C., Lam, S. Y., Tsang, K. W., Lam, B., Ho, J. C., Fu, K. H., et al. (2002). Aberrant promoter methylation in Chinese patients with non-small cell lung cancer: patterns in primary tumors and potential diagnostic application in bronchoalevolar lavage. Clinical Cancer Research, 8, 3741–3746.PubMed
67.
Zurück zum Zitat Han, W., Wang, T., Reilly, A. A., Keller, S. M., & Spivack, S. D. (2009). Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients. Respiratory Research, 10, 86.PubMed Han, W., Wang, T., Reilly, A. A., Keller, S. M., & Spivack, S. D. (2009). Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients. Respiratory Research, 10, 86.PubMed
68.
Zurück zum Zitat Toyooka, S., Toyooka, K. O., Maruyama, R., Virmani, A. K., Girard, L., Miyajima, K., et al. (2001). DNA methylation profiles of lung tumors. Mol Cancer Therapeutics, 1, 61–67. Toyooka, S., Toyooka, K. O., Maruyama, R., Virmani, A. K., Girard, L., Miyajima, K., et al. (2001). DNA methylation profiles of lung tumors. Mol Cancer Therapeutics, 1, 61–67.
69.
Zurück zum Zitat Gu, J., Berman, D., Lu, C., Wistuba, I. I., Roth, J. A., Frazier, M., et al. (2006). Aberrant promoter methylation profile and association with survival in patients with non-small cell lung cancer. Clinical Cancer Research, 12, 7329–7338.PubMed Gu, J., Berman, D., Lu, C., Wistuba, I. I., Roth, J. A., Frazier, M., et al. (2006). Aberrant promoter methylation profile and association with survival in patients with non-small cell lung cancer. Clinical Cancer Research, 12, 7329–7338.PubMed
70.
Zurück zum Zitat Ehrich, M., Field, J. K., Liloglou, T., Xinarianos, G., Oeth, P., Nelson, M. R., et al. (2006). Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Research, 66, 10911–10918.PubMed Ehrich, M., Field, J. K., Liloglou, T., Xinarianos, G., Oeth, P., Nelson, M. R., et al. (2006). Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Research, 66, 10911–10918.PubMed
71.
Zurück zum Zitat Toyooka, S., Tokumo, M., Shigematsu, H., Matsuo, K., Asano, H., Tomii, K., et al. (2006). Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Research, 66, 1371–1375.PubMed Toyooka, S., Tokumo, M., Shigematsu, H., Matsuo, K., Asano, H., Tomii, K., et al. (2006). Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Research, 66, 1371–1375.PubMed
72.
Zurück zum Zitat Tang, X., Khuri, F. R., Lee, J. J., Kemp, B. L., Liu, D., Hong, W. K., et al. (2000). Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. Journal of the National Cancer Institute, 92, 1511–1516.PubMed Tang, X., Khuri, F. R., Lee, J. J., Kemp, B. L., Liu, D., Hong, W. K., et al. (2000). Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. Journal of the National Cancer Institute, 92, 1511–1516.PubMed
73.
Zurück zum Zitat Lu, C., Soria, J. C., Tang, X., Xu, X. C., Wang, L., Mao, L., et al. (2004). Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers. Journal of Clinical Oncology, 22, 4575–4583.PubMed Lu, C., Soria, J. C., Tang, X., Xu, X. C., Wang, L., Mao, L., et al. (2004). Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers. Journal of Clinical Oncology, 22, 4575–4583.PubMed
74.
Zurück zum Zitat Kim, D. H., Kim, J. S., Ji, Y. I., Shim, Y. M., Kim, H., Han, J., et al. (2003). Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Research, 63, 3743–3746.PubMed Kim, D. H., Kim, J. S., Ji, Y. I., Shim, Y. M., Kim, H., Han, J., et al. (2003). Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Research, 63, 3743–3746.PubMed
75.
Zurück zum Zitat Tomizawa, Y., Kohno, T., Kondo, H., Otsuka, A., Nishioka, M., Niki, T., et al. (2002). Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clinical Cancer Research, 8, 2362–2368.PubMed Tomizawa, Y., Kohno, T., Kondo, H., Otsuka, A., Nishioka, M., Niki, T., et al. (2002). Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clinical Cancer Research, 8, 2362–2368.PubMed
76.
Zurück zum Zitat Toyooka, S., Suzuki, M., Maruyama, R., Toyooka, K. O., Tsukuda, K., Fukuyama, Y., et al. (2004). The relationship between aberrant methylation and survival in non-small-cell lung cancers. British Journal of Cancer, 91, 771–774.PubMed Toyooka, S., Suzuki, M., Maruyama, R., Toyooka, K. O., Tsukuda, K., Fukuyama, Y., et al. (2004). The relationship between aberrant methylation and survival in non-small-cell lung cancers. British Journal of Cancer, 91, 771–774.PubMed
77.
Zurück zum Zitat Yanagawa, N., Tamura, G., Oizumi, H., Kanauchi, N., Endoh, M., Sadahiro, M., et al. (2007). Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer, 58, 131–138.PubMed Yanagawa, N., Tamura, G., Oizumi, H., Kanauchi, N., Endoh, M., Sadahiro, M., et al. (2007). Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer, 58, 131–138.PubMed
78.
Zurück zum Zitat Seng, T. J., Currey, N., Cooper, W. A., Lee, C. S., Chan, C., Horvath, L., et al. (2008). DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. British Journal of Cancer, 99, 375–382.PubMed Seng, T. J., Currey, N., Cooper, W. A., Lee, C. S., Chan, C., Horvath, L., et al. (2008). DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. British Journal of Cancer, 99, 375–382.PubMed
79.
Zurück zum Zitat Brock, M. V., Hooker, C. M., Ota-Machida, E., Han, Y., Guo, M., Ames, S., et al. (2008). DNA methylation markers and early recurrence in stage I lung cancer. New England Journal of Medicine, 358, 1118–1128.PubMed Brock, M. V., Hooker, C. M., Ota-Machida, E., Han, Y., Guo, M., Ames, S., et al. (2008). DNA methylation markers and early recurrence in stage I lung cancer. New England Journal of Medicine, 358, 1118–1128.PubMed
80.
Zurück zum Zitat Parkin, D. M., Pisani, P., Lopez, A. D., & Masuyer, E. (1994). At least one in seven cases of cancer is caused by smoking. Global estimates for 1985. International Journal of Cancer, 59, 494–504. Parkin, D. M., Pisani, P., Lopez, A. D., & Masuyer, E. (1994). At least one in seven cases of cancer is caused by smoking. Global estimates for 1985. International Journal of Cancer, 59, 494–504.
81.
Zurück zum Zitat Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 7, 778–790.PubMed Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 7, 778–790.PubMed
82.
Zurück zum Zitat Toyooka, S., Maruyama, R., Toyooka, K. O., McLerran, D., Feng, Z., Fukuyama, Y., et al. (2003). Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. International Journal of Cancer, 103, 153–160. Toyooka, S., Maruyama, R., Toyooka, K. O., McLerran, D., Feng, Z., Fukuyama, Y., et al. (2003). Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. International Journal of Cancer, 103, 153–160.
83.
Zurück zum Zitat Belinsky, S. A., Palmisano, W. A., Gilliland, F. D., Crooks, L. A., Divine, K. K., Winters, S. A., et al. (2002). Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research, 62, 2370–2377.PubMed Belinsky, S. A., Palmisano, W. A., Gilliland, F. D., Crooks, L. A., Divine, K. K., Winters, S. A., et al. (2002). Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research, 62, 2370–2377.PubMed
84.
Zurück zum Zitat Damiani, L. A., Yingling, C. M., Leng, S., Romo, P. E., Nakamura, J., & Belinsky, S. A. (2008). Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Research, 68, 9005–9014.PubMed Damiani, L. A., Yingling, C. M., Leng, S., Romo, P. E., Nakamura, J., & Belinsky, S. A. (2008). Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Research, 68, 9005–9014.PubMed
85.
Zurück zum Zitat Shen, H., Spitz, M. R., Qiao, Y., Guo, Z., Wang, L. E., Bosken, C. H., et al. (2003). Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. International Journal of Cancer, 107, 84–88. Shen, H., Spitz, M. R., Qiao, Y., Guo, Z., Wang, L. E., Bosken, C. H., et al. (2003). Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. International Journal of Cancer, 107, 84–88.
86.
Zurück zum Zitat Leng, S., Stidley, C. A., Willink, R., Bernauer, A., Do, K., Picchi, M. A., et al. (2008). Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation. Cancer Research, 68, 3049–3056.PubMed Leng, S., Stidley, C. A., Willink, R., Bernauer, A., Do, K., Picchi, M. A., et al. (2008). Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation. Cancer Research, 68, 3049–3056.PubMed
87.
Zurück zum Zitat Kersting, M., Friedl, C., Kraus, A., Behn, M., Pankow, W., & Schuermann, M. (2000). Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. Journal of Clinical Oncology, 18, 3221–3229.PubMed Kersting, M., Friedl, C., Kraus, A., Behn, M., Pankow, W., & Schuermann, M. (2000). Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. Journal of Clinical Oncology, 18, 3221–3229.PubMed
88.
Zurück zum Zitat Honorio, S., Agathanggelou, A., Schuermann, M., Pankow, W., Viacava, P., Maher, E. R., et al. (2003). Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene, 22, 147–150.PubMed Honorio, S., Agathanggelou, A., Schuermann, M., Pankow, W., Viacava, P., Maher, E. R., et al. (2003). Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene, 22, 147–150.PubMed
89.
Zurück zum Zitat Lamy, A., Sesboue, R., Bourguignon, J., Dautreaux, B., Metayer, J., Frebourg, T., et al. (2002). Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. International Journal of Cancer, 100, 189–193. Lamy, A., Sesboue, R., Bourguignon, J., Dautreaux, B., Metayer, J., Frebourg, T., et al. (2002). Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. International Journal of Cancer, 100, 189–193.
90.
Zurück zum Zitat Soria, J. C., Rodriguez, M., Liu, D. D., Lee, J. J., Hong, W. K., & Mao, L. (2002). Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Research, 62, 351–355.PubMed Soria, J. C., Rodriguez, M., Liu, D. D., Lee, J. J., Hong, W. K., & Mao, L. (2002). Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Research, 62, 351–355.PubMed
91.
Zurück zum Zitat Zöchbauer-Müller, S., Lam, S., Toyooka, S., Virmani, A. K., Toyooka, K. O., Seidl, S., et al. (2003). Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. International Journal of Cancer, 107, 612–616. Zöchbauer-Müller, S., Lam, S., Toyooka, S., Virmani, A. K., Toyooka, K. O., Seidl, S., et al. (2003). Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. International Journal of Cancer, 107, 612–616.
92.
Zurück zum Zitat Bhutani, M., Pathak, A. K., Fan, Y. H., Liu, D. D., Lee, J. J., Tang, H., et al. (2008). Oral epithelium as a surrogate tissue for assessing smoking-induced molecular alterations in the lungs. Cancer Prevention Researcg (Philadelphia, PA), 1, 39–44. Bhutani, M., Pathak, A. K., Fan, Y. H., Liu, D. D., Lee, J. J., Tang, H., et al. (2008). Oral epithelium as a surrogate tissue for assessing smoking-induced molecular alterations in the lungs. Cancer Prevention Researcg (Philadelphia, PA), 1, 39–44.
93.
Zurück zum Zitat Licchesi, J. D., Westra, W. H., Hooker, C. M., & Herman, J. G. (2008). Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clinical Cancer Research, 14, 2570–2578.PubMed Licchesi, J. D., Westra, W. H., Hooker, C. M., & Herman, J. G. (2008). Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clinical Cancer Research, 14, 2570–2578.PubMed
94.
Zurück zum Zitat Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Research, 60, 5954–5958.PubMed Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Research, 60, 5954–5958.PubMed
96.
Zurück zum Zitat Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., et al. (2005). Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clinical Cancer Research, 11, 3604–3608.PubMed Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., et al. (2005). Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clinical Cancer Research, 11, 3604–3608.PubMed
97.
Zurück zum Zitat Mann, B. S., Johnson, J. R., He, K., Sridhara, R., Abraham, S., Booth, B. P., et al. (2007). Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clinical Cancer Research, 13, 2318–2322.PubMed Mann, B. S., Johnson, J. R., He, K., Sridhara, R., Abraham, S., Booth, B. P., et al. (2007). Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clinical Cancer Research, 13, 2318–2322.PubMed
98.
Zurück zum Zitat Piekarz R, Wright J, Frye R, Allen SL, Craig M, Geskin L, et al. (2008). Results of a phase 2 NCI multicenter study of romidepsin in patients with relapsed peripheral T-cell lymphoma (PTCL). ASH Annual Meeting Abstracts, 112. Piekarz R, Wright J, Frye R, Allen SL, Craig M, Geskin L, et al. (2008). Results of a phase 2 NCI multicenter study of romidepsin in patients with relapsed peripheral T-cell lymphoma (PTCL). ASH Annual Meeting Abstracts, 112.
99.
Zurück zum Zitat Juergens, R., Vendetti, F., Coleman, B., Sebree, R., Belinsky, S., Rudek, M., et al. (2009). A phase II-trial of 5-azacitidine (5AC) and entinostat (SNDX-275) in relapsed advanced lung cancer (NSCLC): an interim analysis. Abstract# A6.6, 13th World Conference on Lung Cancer (WCLC). Juergens, R., Vendetti, F., Coleman, B., Sebree, R., Belinsky, S., Rudek, M., et al. (2009). A phase II-trial of 5-azacitidine (5AC) and entinostat (SNDX-275) in relapsed advanced lung cancer (NSCLC): an interim analysis. Abstract# A6.6, 13th World Conference on Lung Cancer (WCLC).
100.
Zurück zum Zitat Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24, 132–138.PubMed Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24, 132–138.PubMed
101.
Zurück zum Zitat Dai, Z., Lakshmanan, R. R., Zhu, W. G., Smiraglia, D. J., Rush, L. J., Fruhwald, M. C., et al. (2001). Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia, 3, 314–323.PubMed Dai, Z., Lakshmanan, R. R., Zhu, W. G., Smiraglia, D. J., Rush, L. J., Fruhwald, M. C., et al. (2001). Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia, 3, 314–323.PubMed
102.
Zurück zum Zitat Brena, R. M., Morrison, C., Liyanarachchi, S., Jarjoura, D., Davuluri, R. V., Otterson, G. A., et al. (2007). Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med, 4, e108.PubMed Brena, R. M., Morrison, C., Liyanarachchi, S., Jarjoura, D., Davuluri, R. V., Otterson, G. A., et al. (2007). Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med, 4, e108.PubMed
103.
Zurück zum Zitat Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37, 853–862.PubMed Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37, 853–862.PubMed
104.
Zurück zum Zitat Dammann, R., Yang, G., & Pfeifer, G. P. (2001). Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Research, 61, 3105–3109.PubMed Dammann, R., Yang, G., & Pfeifer, G. P. (2001). Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Research, 61, 3105–3109.PubMed
105.
Zurück zum Zitat Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M. P., et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genetics, 31, 141–149.PubMed Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M. P., et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genetics, 31, 141–149.PubMed
106.
Zurück zum Zitat Shames, D. S., Girard, L., Gao, B., Sato, M., Lewis, C. M., Shivapurkar, N., et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Medicine, 3, e486.PubMed Shames, D. S., Girard, L., Gao, B., Sato, M., Lewis, C. M., Shivapurkar, N., et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Medicine, 3, e486.PubMed
107.
Zurück zum Zitat Zhong, S., Fields, C. R., Su, N., Pan, Y. X., & Robertson, K. D. (2007). Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 26, 2621–2634.PubMed Zhong, S., Fields, C. R., Su, N., Pan, Y. X., & Robertson, K. D. (2007). Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 26, 2621–2634.PubMed
108.
Zurück zum Zitat Bestor, T. H. (2003). Unanswered questions about the role of promoter methylation in carcinogenesis. Annals of the New York Academy of Sciences, 983, 22–27.PubMed Bestor, T. H. (2003). Unanswered questions about the role of promoter methylation in carcinogenesis. Annals of the New York Academy of Sciences, 983, 22–27.PubMed
109.
Zurück zum Zitat Sato, N., Fukushima, N., Maitra, A., Matsubayashi, H., Yeo, C. J., Cameron, J. L., et al. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Research, 63, 3735–3742.PubMed Sato, N., Fukushima, N., Maitra, A., Matsubayashi, H., Yeo, C. J., Cameron, J. L., et al. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Research, 63, 3735–3742.PubMed
110.
Zurück zum Zitat Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., et al. (2006). High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16, 383–393.PubMed Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., et al. (2006). High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16, 383–393.PubMed
111.
Zurück zum Zitat Christensen, B. C., Marsit, C. J., Houseman, E. A., Godleski, J. J., Longacker, J. L., Zheng, S., et al. (2009). Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Research, 69, 6315–6321.PubMed Christensen, B. C., Marsit, C. J., Houseman, E. A., Godleski, J. J., Longacker, J. L., Zheng, S., et al. (2009). Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Research, 69, 6315–6321.PubMed
112.
Zurück zum Zitat Mockler, T. C., Chan, S., Sundaresan, A., Chen, H., Jacobsen, S. E., & Ecker, J. R. (2005). Applications of DNA tiling arrays for whole-genome analysis. Genomics, 85, 1–15.PubMed Mockler, T. C., Chan, S., Sundaresan, A., Chen, H., Jacobsen, S. E., & Ecker, J. R. (2005). Applications of DNA tiling arrays for whole-genome analysis. Genomics, 85, 1–15.PubMed
113.
Zurück zum Zitat Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 252–257.PubMed Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 252–257.PubMed
114.
Zurück zum Zitat Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68, 1707–1714.PubMed Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68, 1707–1714.PubMed
115.
Zurück zum Zitat Zhang, Z., Tan, S., & Zhang, L. (2006). Prognostic value of apoptosis-associated speck-like protein containing a CARD gene promoter methylation in resectable non-small-cell lung cancer. Clinical Lung Cancer, 8, 62–65.PubMed Zhang, Z., Tan, S., & Zhang, L. (2006). Prognostic value of apoptosis-associated speck-like protein containing a CARD gene promoter methylation in resectable non-small-cell lung cancer. Clinical Lung Cancer, 8, 62–65.PubMed
116.
Zurück zum Zitat Nakata, S., Sugio, K., Uramoto, H., Oyama, T., Hanagiri, T., Morita, M., et al. (2006). The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance. Cancer, 106, 2190–2199.PubMed Nakata, S., Sugio, K., Uramoto, H., Oyama, T., Hanagiri, T., Morita, M., et al. (2006). The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance. Cancer, 106, 2190–2199.PubMed
117.
Zurück zum Zitat Maruyama, R., Sugio, K., Yoshino, I., Maehara, Y., & Gazdar, A. F. (2004). Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer, 100, 1472–1477.PubMed Maruyama, R., Sugio, K., Yoshino, I., Maehara, Y., & Gazdar, A. F. (2004). Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer, 100, 1472–1477.PubMed
118.
Zurück zum Zitat Brabender, J., Usadel, H., Danenberg, K. D., Metzger, R., Schneider, P. M., Lord, R. V., et al. (2001). Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene, 20, 3528–3532.PubMed Brabender, J., Usadel, H., Danenberg, K. D., Metzger, R., Schneider, P. M., Lord, R. V., et al. (2001). Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene, 20, 3528–3532.PubMed
119.
Zurück zum Zitat Agathanggelou, A., Honorio, S., Macartney, D. P., Martinez, A., Dallol, A., Rader, J., et al. (2001). Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene, 20, 1509–1518.PubMed Agathanggelou, A., Honorio, S., Macartney, D. P., Martinez, A., Dallol, A., Rader, J., et al. (2001). Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene, 20, 1509–1518.PubMed
120.
Zurück zum Zitat Dammann, R., Takahashi, T., & Pfeifer, G. P. (2001). The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene, 20, 3563–3567.PubMed Dammann, R., Takahashi, T., & Pfeifer, G. P. (2001). The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene, 20, 3563–3567.PubMed
121.
Zurück zum Zitat Kashiwabara, K., Oyama, T., Sano, T., Fukuda, T., & Nakajima, T. (1998). Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers. International Journal of Cancer, 79, 215–220. Kashiwabara, K., Oyama, T., Sano, T., Fukuda, T., & Nakajima, T. (1998). Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers. International Journal of Cancer, 79, 215–220.
122.
Zurück zum Zitat Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H. P., et al. (2001). TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nature Genetics, 27, 427–430.PubMed Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H. P., et al. (2001). TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nature Genetics, 27, 427–430.PubMed
123.
Zurück zum Zitat Brabender, J., Usadel, H., Metzger, R., Schneider, P. M., Park, J., Salonga, D., et al. (2003). Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Clinical Cancer Research, 9, 223–227.PubMed Brabender, J., Usadel, H., Metzger, R., Schneider, P. M., Park, J., Salonga, D., et al. (2003). Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Clinical Cancer Research, 9, 223–227.PubMed
Metadaten
Titel
Lung cancer: From single-gene methylation to methylome profiling
verfasst von
Gerwin Heller
Christoph C. Zielinski
Sabine Zöchbauer-Müller
Publikationsdatum
01.03.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9203-x

Weitere Artikel der Ausgabe 1/2010

Cancer and Metastasis Reviews 1/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.