Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2011

01.12.2011

The cytochrome P450 pathway in angiogenesis and endothelial cell biology

verfasst von: Ingrid Fleming

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2011

Einloggen, um Zugang zu erhalten

Abstract

Long thought to be biologically important only as xenobiotic metabolizing enzymes, it is now clear that extrahepatic cytochrome P450 epoxygenases can utilize endogenous substrates such as arachidonic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid to generate bioactive lipid mediators. The epoxides thus generated can acutely affect vascular tone, and stimulate a spectrum of signaling pathways that affect growth-promoting kinase and transcription factor activity in vascular as well as cancer cells. Endogenous epoxide levels are largely controlled by the activity of the soluble epoxide hydrolase, and specific inhibitors of the enzyme as well as knockout mice are helping to determine the roles of these lipids in physiological and pathological angiogenesis. This review summarizes current knowledge on the aspects of the cytochrome P450/soluble epoxide hydrolase pathway related to vascular homeostasis and cancer.
Literatur
1.
Zurück zum Zitat Fer, M., Dreano, Y., Lucas, D., Corcos, L., Salaun, J. P., Berthou, F., et al. (2008). Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Archives of Biochemistry and Biophysics, 471, 116–125.PubMed Fer, M., Dreano, Y., Lucas, D., Corcos, L., Salaun, J. P., Berthou, F., et al. (2008). Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Archives of Biochemistry and Biophysics, 471, 116–125.PubMed
2.
Zurück zum Zitat VanRollins, M., Baker, R. C., Sprecher, H. W., & Murphy, R. C. (1984). Oxidation of docosahexaenoic acid by rat liver microsomes. Journal of Biological Chemistry, 259, 5776–5783.PubMed VanRollins, M., Baker, R. C., Sprecher, H. W., & Murphy, R. C. (1984). Oxidation of docosahexaenoic acid by rat liver microsomes. Journal of Biological Chemistry, 259, 5776–5783.PubMed
3.
Zurück zum Zitat Barbosa-Sicard, E., Markovic, M., Honeck, H., Christ, B., Muller, D. N., & Schunck, W. H. (2005). Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily. Biochemical and Biophysical Research Communications, 329, 1275–1281.PubMed Barbosa-Sicard, E., Markovic, M., Honeck, H., Christ, B., Muller, D. N., & Schunck, W. H. (2005). Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily. Biochemical and Biophysical Research Communications, 329, 1275–1281.PubMed
4.
Zurück zum Zitat Konkel, A., & Schunck, W. H. (2011). Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 1814, 210–222. Konkel, A., & Schunck, W. H. (2011). Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 1814, 210–222.
5.
Zurück zum Zitat Lauterbach, B., Barbosa-Sicard, E., Wang, M. H., Honeck, H., Kargel, E., Theuer, J., et al. (2002). Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension, 39, 609–613.PubMed Lauterbach, B., Barbosa-Sicard, E., Wang, M. H., Honeck, H., Kargel, E., Theuer, J., et al. (2002). Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension, 39, 609–613.PubMed
6.
Zurück zum Zitat Ye, D., Zhang, D., Oltman, C., Dellsperger, K., Lee, H. C., & VanRollins, M. (2002). Cytochrome P450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. Journal of Pharmacology and Experimental Therapeutics, 303, 768–776.PubMed Ye, D., Zhang, D., Oltman, C., Dellsperger, K., Lee, H. C., & VanRollins, M. (2002). Cytochrome P450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. Journal of Pharmacology and Experimental Therapeutics, 303, 768–776.PubMed
7.
Zurück zum Zitat Morin, C., Sirois, M., Echave, V., Rizcallah, E., & Rousseau, E. (2009). Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296, L130–L139.PubMed Morin, C., Sirois, M., Echave, V., Rizcallah, E., & Rousseau, E. (2009). Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296, L130–L139.PubMed
8.
Zurück zum Zitat Liclican, E. L., & Gronert, K. (2010). Molecular circuits of resolution in the eye. The Scientific World Journal, 10, 1029–1047. Liclican, E. L., & Gronert, K. (2010). Molecular circuits of resolution in the eye. The Scientific World Journal, 10, 1029–1047.
9.
Zurück zum Zitat Tian, H., Lu, Y., Shah, S. P., & Hong, S. (2010). Novel 14S,21-dihydroxy-docosahexaenoic acid rescues wound healing and associated angiogenesis impaired by acute ethanol intoxication/exposure. Journal of Cellular Biochemistry, 111, 266–273.PubMed Tian, H., Lu, Y., Shah, S. P., & Hong, S. (2010). Novel 14S,21-dihydroxy-docosahexaenoic acid rescues wound healing and associated angiogenesis impaired by acute ethanol intoxication/exposure. Journal of Cellular Biochemistry, 111, 266–273.PubMed
10.
Zurück zum Zitat McLennan, P., Howe, P., Abeywardena, M., Muggli, R., Raederstorff, D., Mano, M., et al. (1996). The cardiovascular protective role of docosahexaenoic acid. European Journal of Pharmacology, 300, 83–89.PubMed McLennan, P., Howe, P., Abeywardena, M., Muggli, R., Raederstorff, D., Mano, M., et al. (1996). The cardiovascular protective role of docosahexaenoic acid. European Journal of Pharmacology, 300, 83–89.PubMed
11.
Zurück zum Zitat Hashimoto, M., Shinozuka, K., Gamoh, S., Tanabe, Y., Hossain, M. S., Kwon, Y. M., et al. (1999). The hypotensive effect of docosahexaenoic acid is associated with the enhanced release of ATP from the caudal artery of aged rats. Journal of Nutrition, 129, 70–76.PubMed Hashimoto, M., Shinozuka, K., Gamoh, S., Tanabe, Y., Hossain, M. S., Kwon, Y. M., et al. (1999). The hypotensive effect of docosahexaenoic acid is associated with the enhanced release of ATP from the caudal artery of aged rats. Journal of Nutrition, 129, 70–76.PubMed
12.
Zurück zum Zitat Frenoux, J. M., Prost, E. D., Belleville, J. L., & Prost, J. L. (2001). A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. Journal of Nutrition, 131, 39–45.PubMed Frenoux, J. M., Prost, E. D., Belleville, J. L., & Prost, J. L. (2001). A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. Journal of Nutrition, 131, 39–45.PubMed
13.
Zurück zum Zitat Oliw, E. H., Bylund, J., & Herman, C. (1996). Bisallylic hydroxylation and epoxidation of polyunsaturated fatty acids by cytochrome P450. Lipids, 31, 1003–1021.PubMed Oliw, E. H., Bylund, J., & Herman, C. (1996). Bisallylic hydroxylation and epoxidation of polyunsaturated fatty acids by cytochrome P450. Lipids, 31, 1003–1021.PubMed
14.
Zurück zum Zitat Bylund, J., Kunz, T., Valmsen, K., & Oliw, E. H. (1998). Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes. Journal of Pharmacology and Experimental Therapeutics, 284, 51–60.PubMed Bylund, J., Kunz, T., Valmsen, K., & Oliw, E. H. (1998). Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes. Journal of Pharmacology and Experimental Therapeutics, 284, 51–60.PubMed
15.
Zurück zum Zitat Bylund, J., Ericsson, J., & Oliw, E. H. (1998). Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography–mass spectrometry with ion trap MS. Analytical Biochemistry, 265, 55–68.PubMed Bylund, J., Ericsson, J., & Oliw, E. H. (1998). Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography–mass spectrometry with ion trap MS. Analytical Biochemistry, 265, 55–68.PubMed
16.
Zurück zum Zitat Campbell, W. B., & Fleming, I. (2010). Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflügers Archiv - European Journal of Pharmacology, 459, 881–895. Campbell, W. B., & Fleming, I. (2010). Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflügers Archiv - European Journal of Pharmacology, 459, 881–895.
17.
Zurück zum Zitat Beetham, J. K., Tian, T., & Hammock, B. D. (1993). cDNA cloning and expression of a soluble epoxide hydrolase from human liver. Archives of Biochemistry and Biophysics, 305, 197–201.PubMed Beetham, J. K., Tian, T., & Hammock, B. D. (1993). cDNA cloning and expression of a soluble epoxide hydrolase from human liver. Archives of Biochemistry and Biophysics, 305, 197–201.PubMed
18.
Zurück zum Zitat Newman, J. W., Morisseau, C., Harris, T. R., & Hammock, B. D. (2003). The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proceedings of the National Academy of Sciences of the United States of America, 100, 1558–1563.PubMed Newman, J. W., Morisseau, C., Harris, T. R., & Hammock, B. D. (2003). The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proceedings of the National Academy of Sciences of the United States of America, 100, 1558–1563.PubMed
19.
Zurück zum Zitat Cronin, A., Mowbray, S., Durk, H., Homburg, S., Fleming, I., Fisslthaler, B., et al. (2003). The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 100, 1552–1557.PubMed Cronin, A., Mowbray, S., Durk, H., Homburg, S., Fleming, I., Fisslthaler, B., et al. (2003). The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 100, 1552–1557.PubMed
20.
Zurück zum Zitat Enayetallah, A. E., Luria, A., Luo, B., Tsai, H. J., Sura, P., Hammock, B. D., et al. (2008). Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. Journal of Biological Chemistry, 283, 36592–36598.PubMed Enayetallah, A. E., Luria, A., Luo, B., Tsai, H. J., Sura, P., Hammock, B. D., et al. (2008). Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. Journal of Biological Chemistry, 283, 36592–36598.PubMed
21.
Zurück zum Zitat Sinal, C. J., Miyata, M., Tohkin, M., Nagata, K., Bend, J. R., & Gonzalez, F. J. (2000). Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. Journal of Biological Chemistry, 275, 40504–40510.PubMed Sinal, C. J., Miyata, M., Tohkin, M., Nagata, K., Bend, J. R., & Gonzalez, F. J. (2000). Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. Journal of Biological Chemistry, 275, 40504–40510.PubMed
22.
Zurück zum Zitat Luria, A., Morisseau, C., Tsai, H. J., Yang, J., Inceoglu, B., De Taeye, B., et al. (2009). Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase. American Journal of Physiology, Endocrinology and Metabolism, 297, E375–E383. Luria, A., Morisseau, C., Tsai, H. J., Yang, J., Inceoglu, B., De Taeye, B., et al. (2009). Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase. American Journal of Physiology, Endocrinology and Metabolism, 297, E375–E383.
23.
Zurück zum Zitat Enayetallah, A. E., & Grant, D. F. (2006). Effects of human soluble epoxide hydrolase polymorphisms on isoprenoid phosphate hydrolysis. Biochemical and Biophysical Research Communications, 341, 254–260.PubMed Enayetallah, A. E., & Grant, D. F. (2006). Effects of human soluble epoxide hydrolase polymorphisms on isoprenoid phosphate hydrolysis. Biochemical and Biophysical Research Communications, 341, 254–260.PubMed
24.
Zurück zum Zitat Tran, K. L., Aronov, P. A., Tanaka, H., Newman, J. W., Hammock, B. D., & Morisseau, C. (2005). Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the Mammalian soluble epoxide hydrolase. Biochemistry, 44, 12179–12187.PubMed Tran, K. L., Aronov, P. A., Tanaka, H., Newman, J. W., Hammock, B. D., & Morisseau, C. (2005). Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the Mammalian soluble epoxide hydrolase. Biochemistry, 44, 12179–12187.PubMed
25.
Zurück zum Zitat Kovacs, W. J., Olivier, L. M., & Krisans, S. K. (2002). Central role of peroxisomes in isoprenoid biosynthesis. Progress in Lipid Research, 41, 369–391.PubMed Kovacs, W. J., Olivier, L. M., & Krisans, S. K. (2002). Central role of peroxisomes in isoprenoid biosynthesis. Progress in Lipid Research, 41, 369–391.PubMed
26.
Zurück zum Zitat Przybyla-Zawislak, B. D., Srivastava, P. K., Vazquez-Matias, J., Mohrenweiser, H. W., Maxwell, J. E., Hammock, B. D., et al. (2003). Polymorphisms in human soluble epoxide hydrolase. Molecular Pharmacology, 64, 482–490.PubMed Przybyla-Zawislak, B. D., Srivastava, P. K., Vazquez-Matias, J., Mohrenweiser, H. W., Maxwell, J. E., Hammock, B. D., et al. (2003). Polymorphisms in human soluble epoxide hydrolase. Molecular Pharmacology, 64, 482–490.PubMed
27.
Zurück zum Zitat Keserü, B., Barbosa-Sicard, E., Schermuly, R. T., Tanaka, H., Hammock, B. D., Weissmann, N., et al. (2010). Hypoxia-induced pulmonary hypertension: Comparison of soluble epoxide hydrolase deletion vs. inhibition. Cardiovascular Research, 85, 232–240.PubMed Keserü, B., Barbosa-Sicard, E., Schermuly, R. T., Tanaka, H., Hammock, B. D., Weissmann, N., et al. (2010). Hypoxia-induced pulmonary hypertension: Comparison of soluble epoxide hydrolase deletion vs. inhibition. Cardiovascular Research, 85, 232–240.PubMed
28.
Zurück zum Zitat Campbell, W. B., Gebremedhin, D., Pratt, P. F., & Harder, D. R. (1996). Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circulation Research, 78, 415–423.PubMed Campbell, W. B., Gebremedhin, D., Pratt, P. F., & Harder, D. R. (1996). Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circulation Research, 78, 415–423.PubMed
29.
Zurück zum Zitat Fisslthaler, B., Popp, R., Kiss, L., Potente, M., Harder, D. R., Fleming, I., et al. (1999). Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature, 401, 493–497.PubMed Fisslthaler, B., Popp, R., Kiss, L., Potente, M., Harder, D. R., Fleming, I., et al. (1999). Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature, 401, 493–497.PubMed
30.
Zurück zum Zitat Bauersachs, J., Popp, R., Hecker, M., Sauer, E., Fleming, I., & Busse, R. (1996). Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation, 94, 3341–3347.PubMed Bauersachs, J., Popp, R., Hecker, M., Sauer, E., Fleming, I., & Busse, R. (1996). Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation, 94, 3341–3347.PubMed
31.
Zurück zum Zitat Khojasteh, S., Prabhu, S., Kenny, J., Halladay, J., & Lu, A. (2011). Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: A re-evaluation of P450 isoform selectivity. European Journal of Drug Metabolism and Pharmacokinetics, 36, 1–16.PubMed Khojasteh, S., Prabhu, S., Kenny, J., Halladay, J., & Lu, A. (2011). Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: A re-evaluation of P450 isoform selectivity. European Journal of Drug Metabolism and Pharmacokinetics, 36, 1–16.PubMed
32.
Zurück zum Zitat Passauer, J., Büssemaker, E., Lassig, G., Pistrosch, F., Fauler, J., Gross, P., et al. (2003). Baseline blood flow and bradykinin-induced vasodilator responses in the human forearm are insensitive to the CYP 2C9 inhibitor sulfaphenazole. Clinical Science (London, England), 105, 513–518. Passauer, J., Büssemaker, E., Lassig, G., Pistrosch, F., Fauler, J., Gross, P., et al. (2003). Baseline blood flow and bradykinin-induced vasodilator responses in the human forearm are insensitive to the CYP 2C9 inhibitor sulfaphenazole. Clinical Science (London, England), 105, 513–518.
33.
Zurück zum Zitat Passauer, J., Pistrosch, F., Lässig, G., Herbrig, K., Büssemaker, E., Gross, P., et al. (2005). Nitric oxide- and EDHF-mediated arteriolar tone in uremia is unaffected by selective inhibition of vascular cytochrome P450 2C9. Kidney International, 67, 1907–1912.PubMed Passauer, J., Pistrosch, F., Lässig, G., Herbrig, K., Büssemaker, E., Gross, P., et al. (2005). Nitric oxide- and EDHF-mediated arteriolar tone in uremia is unaffected by selective inhibition of vascular cytochrome P450 2C9. Kidney International, 67, 1907–1912.PubMed
34.
Zurück zum Zitat Fichtlscherer, S., Dimmeler, S., Breuer, S., Busse, R., Zeiher, A. M., & Fleming, I. (2004). Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation, 109, 178–183.PubMed Fichtlscherer, S., Dimmeler, S., Breuer, S., Busse, R., Zeiher, A. M., & Fleming, I. (2004). Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation, 109, 178–183.PubMed
35.
Zurück zum Zitat Hillig, T., Krustrup, P., Fleming, I., Osada, T., Saltin, B., & Hellsten, Y. (2003). Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans. Journal of Physiology (London), 546, 307–314. Hillig, T., Krustrup, P., Fleming, I., Osada, T., Saltin, B., & Hellsten, Y. (2003). Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans. Journal of Physiology (London), 546, 307–314.
36.
Zurück zum Zitat Bellien, J., Iacob, M., Gutierrez, L., Isabelle, M., Lahary, A., Thuillez, C., et al. (2006). Crucial role of NO and endothelium-derived hyperpolarizing factor in human sustained conduit artery flow-mediated dilatation. Hypertension, 48, 1088–1094.PubMed Bellien, J., Iacob, M., Gutierrez, L., Isabelle, M., Lahary, A., Thuillez, C., et al. (2006). Crucial role of NO and endothelium-derived hyperpolarizing factor in human sustained conduit artery flow-mediated dilatation. Hypertension, 48, 1088–1094.PubMed
37.
Zurück zum Zitat Bellien, J., Joannides, R., Iacob, M., Arnaud, P., & Thuillez, C. (2006). Evidence for a basal release of a cytochrome-related endothelium-derived hyperpolarizing factor in the radial artery in humans. American Journal of Physiology—Heart and Circulatory Physiology, 290, H1347–H1352.PubMed Bellien, J., Joannides, R., Iacob, M., Arnaud, P., & Thuillez, C. (2006). Evidence for a basal release of a cytochrome-related endothelium-derived hyperpolarizing factor in the radial artery in humans. American Journal of Physiology—Heart and Circulatory Physiology, 290, H1347–H1352.PubMed
38.
Zurück zum Zitat Fischer, D., Landmesser, U., Spiekermann, S., Hilfiker-Kleiner, D., Hospely, M., Muller, M., et al. (2007). Cytochrome P450 2C9 is involved in flow-dependent vasodilation of peripheral conduit arteries in healthy subjects and in patients with chronic heart failure. European Journal of Heart Failure, 9, 770–775.PubMed Fischer, D., Landmesser, U., Spiekermann, S., Hilfiker-Kleiner, D., Hospely, M., Muller, M., et al. (2007). Cytochrome P450 2C9 is involved in flow-dependent vasodilation of peripheral conduit arteries in healthy subjects and in patients with chronic heart failure. European Journal of Heart Failure, 9, 770–775.PubMed
39.
Zurück zum Zitat Ozkor, M. A., Murrow, J. R., Rahman, A. M., Kavtaradze, N., Lin, J., Manatunga, A., et al. (2011). Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation, 123, 2244–2253.PubMed Ozkor, M. A., Murrow, J. R., Rahman, A. M., Kavtaradze, N., Lin, J., Manatunga, A., et al. (2011). Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation, 123, 2244–2253.PubMed
40.
Zurück zum Zitat Snyder, G. D., Krishna, U. M., Falck, J. R., & Spector, A. A. (2002). Evidence for a membrane site of action for 14,15-EET on expression of aromatase in vascular smooth muscle. American Journal of Physiology—Heart and Circulatory Physiology, 283, H1936–H1942.PubMed Snyder, G. D., Krishna, U. M., Falck, J. R., & Spector, A. A. (2002). Evidence for a membrane site of action for 14,15-EET on expression of aromatase in vascular smooth muscle. American Journal of Physiology—Heart and Circulatory Physiology, 283, H1936–H1942.PubMed
41.
Zurück zum Zitat Wong, P. Y., Lin, K. T., Yan, Y. T., Ahern, D., Iles, J., Shen, S. Y., et al. (1993). 14(R),15(S)-epoxyeicosatrienoic acid (14(R),15(S)-EET) receptor in guinea pig mononuclear cell membranes. Journal of Lipid Mediators, 6, 199–208.PubMed Wong, P. Y., Lin, K. T., Yan, Y. T., Ahern, D., Iles, J., Shen, S. Y., et al. (1993). 14(R),15(S)-epoxyeicosatrienoic acid (14(R),15(S)-EET) receptor in guinea pig mononuclear cell membranes. Journal of Lipid Mediators, 6, 199–208.PubMed
42.
Zurück zum Zitat Wong, P. Y., Lai, P. S., & Falck, J. R. (2000). Mechanism and signal transduction of 14(R),15(S)-epoxyeicosatrienoic acid (14,15-EET) binding in guinea pig monocytes. Prostaglandins & Other Lipid Mediators, 62, 321–333. Wong, P. Y., Lai, P. S., & Falck, J. R. (2000). Mechanism and signal transduction of 14(R),15(S)-epoxyeicosatrienoic acid (14,15-EET) binding in guinea pig monocytes. Prostaglandins & Other Lipid Mediators, 62, 321–333.
43.
Zurück zum Zitat Wong, P. Y., Lai, P. S., Shen, S. Y., Belosludtsev, Y. Y., & Falck, J. R. (1997). Post-receptor signal transduction and regulation of 14(R),15(S)-epoxyeicosatrienoic acid (14,15-EET) binding in U-937 cells. Journal of Lipid Mediators and Cell Signalling, 16, 155–169.PubMed Wong, P. Y., Lai, P. S., Shen, S. Y., Belosludtsev, Y. Y., & Falck, J. R. (1997). Post-receptor signal transduction and regulation of 14(R),15(S)-epoxyeicosatrienoic acid (14,15-EET) binding in U-937 cells. Journal of Lipid Mediators and Cell Signalling, 16, 155–169.PubMed
44.
Zurück zum Zitat Yang, W., Tuniki, V. R., Anjaiah, S., Falck, J. R., Hillard, C. J., & Campbell, W. B. (2008). Characterization of epoxyeicosatrienoic acid binding site in U937 membranes using a novel radiolabeled agonist, 20-125I-14,15-epoxyeicosa-8(Z)-enoic acid. Journal of Pharmacology and Experimental Therapeutics, 324, 1019–1027.PubMed Yang, W., Tuniki, V. R., Anjaiah, S., Falck, J. R., Hillard, C. J., & Campbell, W. B. (2008). Characterization of epoxyeicosatrienoic acid binding site in U937 membranes using a novel radiolabeled agonist, 20-125I-14,15-epoxyeicosa-8(Z)-enoic acid. Journal of Pharmacology and Experimental Therapeutics, 324, 1019–1027.PubMed
45.
Zurück zum Zitat Chen, Y., Falck, J. R., Tuniki, V. R., & Campbell, W. B. (2009). 20-125Iodo-14,15-epoxyeicosa-5Z-enoic acid: A high affinity radioligand used to characterize the epoxyeicosatrienoic acid antagonist binding site. Journal of Pharmacology and Experimental Therapeutics, 331, 1137–1145.PubMed Chen, Y., Falck, J. R., Tuniki, V. R., & Campbell, W. B. (2009). 20-125Iodo-14,15-epoxyeicosa-5Z-enoic acid: A high affinity radioligand used to characterize the epoxyeicosatrienoic acid antagonist binding site. Journal of Pharmacology and Experimental Therapeutics, 331, 1137–1145.PubMed
46.
Zurück zum Zitat Spector, A. A., & Norris, A. W. (2007). Action of epoxyeicosatrienoic acids on cellular function. American Journal of Physiology. Cell Physiology, 292, C996–C1012.PubMed Spector, A. A., & Norris, A. W. (2007). Action of epoxyeicosatrienoic acids on cellular function. American Journal of Physiology. Cell Physiology, 292, C996–C1012.PubMed
47.
Zurück zum Zitat Abukhashim, M., Wiebe, G., & Seubert, J. (2011). Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells. Cell Biology and Toxicology, 27, 321–332.PubMed Abukhashim, M., Wiebe, G., & Seubert, J. (2011). Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells. Cell Biology and Toxicology, 27, 321–332.PubMed
48.
Zurück zum Zitat Medhora, M., Daniels, J., Mundey, K., Fisslthaler, B., Busse, R., Jacobs, E. R., et al. (2003). Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. American Journal of Physiology—Heart and Circulatory Physiology, 284, H215–H224.PubMed Medhora, M., Daniels, J., Mundey, K., Fisslthaler, B., Busse, R., Jacobs, E. R., et al. (2003). Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. American Journal of Physiology—Heart and Circulatory Physiology, 284, H215–H224.PubMed
49.
Zurück zum Zitat Yang, C., Kwan, Y. W., Au, A. L.-S., Poon, C. C.-W., Zhang, Q., Chan, S. W., et al. (2010). 14,15-Epoxyeicosatrienoic acid induces vasorelaxation through the prostaglandin EP2 receptors in rat mesenteric artery. Prostaglandins & Other Lipid Mediators, 93, 44–51. Yang, C., Kwan, Y. W., Au, A. L.-S., Poon, C. C.-W., Zhang, Q., Chan, S. W., et al. (2010). 14,15-Epoxyeicosatrienoic acid induces vasorelaxation through the prostaglandin EP2 receptors in rat mesenteric artery. Prostaglandins & Other Lipid Mediators, 93, 44–51.
50.
Zurück zum Zitat Behm, D. J., Ogbonna, A., Wu, C., Burns-Kurtis, C. L., & Douglas, S. A. (2008). Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: Identification of a novel mechanism of vasodilation. Journal of Pharmacology and Experimental Therapeutics, 328, 231–239.PubMed Behm, D. J., Ogbonna, A., Wu, C., Burns-Kurtis, C. L., & Douglas, S. A. (2008). Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: Identification of a novel mechanism of vasodilation. Journal of Pharmacology and Experimental Therapeutics, 328, 231–239.PubMed
51.
Zurück zum Zitat Busse, R., Edwards, G., Feletou, M., Fleming, I., Vanhoutte, P. M., & Weston, A. H. (2002). EDHF: Bringing the concepts together. Trends in Pharmacological Sciences, 23, 374–380.PubMed Busse, R., Edwards, G., Feletou, M., Fleming, I., Vanhoutte, P. M., & Weston, A. H. (2002). EDHF: Bringing the concepts together. Trends in Pharmacological Sciences, 23, 374–380.PubMed
52.
Zurück zum Zitat Alonso, M. T., Alvarez, J., Montero, M., Sanchez, A., & Garcia-Sancho, J. (1991). Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores. Biochemistry Journal, 280, 783–789. Alonso, M. T., Alvarez, J., Montero, M., Sanchez, A., & Garcia-Sancho, J. (1991). Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores. Biochemistry Journal, 280, 783–789.
53.
Zurück zum Zitat Sargeant, P., Clarkson, W. D., Sage, S. O., & Heemskerk, J. W. M. (1992). Calcium influx evoked by Ca2+ store depletion in human platelets is more susceptible to cytochrome P-450 inhibitors than receptor-mediated calcium entry. Cell Calcium, 13, 553–564.PubMed Sargeant, P., Clarkson, W. D., Sage, S. O., & Heemskerk, J. W. M. (1992). Calcium influx evoked by Ca2+ store depletion in human platelets is more susceptible to cytochrome P-450 inhibitors than receptor-mediated calcium entry. Cell Calcium, 13, 553–564.PubMed
54.
Zurück zum Zitat Michaelis, U. R., & Fleming, I. (2006). From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacology and Therapeutics, 111, 584–595.PubMed Michaelis, U. R., & Fleming, I. (2006). From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacology and Therapeutics, 111, 584–595.PubMed
55.
Zurück zum Zitat Watanabe, H., Vriens, J., Prenen, J., Droogmans, G., Voets, T., & Nilius, B. (2003). Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature, 424, 434–438.PubMed Watanabe, H., Vriens, J., Prenen, J., Droogmans, G., Voets, T., & Nilius, B. (2003). Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature, 424, 434–438.PubMed
56.
Zurück zum Zitat Vriens, J., Owsianik, G., Fisslthaler, B., Suzuki, M., Janssens, A., Voets, T., et al. (2005). Modulation of the Ca2+ permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circulation Research, 97, 908–915.PubMed Vriens, J., Owsianik, G., Fisslthaler, B., Suzuki, M., Janssens, A., Voets, T., et al. (2005). Modulation of the Ca2+ permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circulation Research, 97, 908–915.PubMed
57.
Zurück zum Zitat Loot, A. E., Popp, R., Fisslthaler, B., Vriens, J., Nilius, B., & Fleming, I. (2008). Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovascular Research, 80, 445–452.PubMed Loot, A. E., Popp, R., Fisslthaler, B., Vriens, J., Nilius, B., & Fleming, I. (2008). Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovascular Research, 80, 445–452.PubMed
58.
Zurück zum Zitat Fleming, I., Rueben, A., Popp, R., Fisslthaler, B., Schrodt, S., Sander, A., et al. (2007). Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2612–2618.PubMed Fleming, I., Rueben, A., Popp, R., Fisslthaler, B., Schrodt, S., Sander, A., et al. (2007). Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2612–2618.PubMed
59.
Zurück zum Zitat Inoue, R., Jensen, L. J., Jian, Z., Shi, J., Hai, L., Lurie, A. I., et al. (2009). Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/w-hydroxylase/20-HETE pathways. Circulation Research, 104, 1399–1409.PubMed Inoue, R., Jensen, L. J., Jian, Z., Shi, J., Hai, L., Lurie, A. I., et al. (2009). Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/w-hydroxylase/20-HETE pathways. Circulation Research, 104, 1399–1409.PubMed
60.
Zurück zum Zitat Earley, S., Heppner, T. J., Nelson, M. T., & Brayden, J. E. (2005). TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circulation Research, 97, 1270–1279.PubMed Earley, S., Heppner, T. J., Nelson, M. T., & Brayden, J. E. (2005). TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circulation Research, 97, 1270–1279.PubMed
61.
Zurück zum Zitat Nilius, B., Vriens, J., Prenen, J., Droogmans, G., & Voets, T. (2004). TRPV4 calcium entry channel: A paradigm for gating diversity. American Journal of Physiology. Cell Physiology, 286, C195–C205.PubMed Nilius, B., Vriens, J., Prenen, J., Droogmans, G., & Voets, T. (2004). TRPV4 calcium entry channel: A paradigm for gating diversity. American Journal of Physiology. Cell Physiology, 286, C195–C205.PubMed
62.
Zurück zum Zitat Spector, A. A., Fang, X., Snyder, G. D., & Weintraub, N. L. (2004). Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. Progress in Lipid Research, 43, 55–90.PubMed Spector, A. A., Fang, X., Snyder, G. D., & Weintraub, N. L. (2004). Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. Progress in Lipid Research, 43, 55–90.PubMed
63.
Zurück zum Zitat Widstrom, R. L., Norris, A. W., Van Der Veer, J., & Spector, A. A. (2003). Fatty acid-binding proteins inhibit hydration of epoxyeicosatrienoic acids by soluble epoxide hydrolase. Biochemistry, 42, 11762–11767.PubMed Widstrom, R. L., Norris, A. W., Van Der Veer, J., & Spector, A. A. (2003). Fatty acid-binding proteins inhibit hydration of epoxyeicosatrienoic acids by soluble epoxide hydrolase. Biochemistry, 42, 11762–11767.PubMed
64.
Zurück zum Zitat Liu, Y., Zhang, Y., Schmelzer, K., Lee, T. S., Fang, X., Zhu, Y., et al. (2005). The antiinflammatory effect of laminar flow: The role of PPARg, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 102, 16747–16752.PubMed Liu, Y., Zhang, Y., Schmelzer, K., Lee, T. S., Fang, X., Zhu, Y., et al. (2005). The antiinflammatory effect of laminar flow: The role of PPARg, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 102, 16747–16752.PubMed
65.
Zurück zum Zitat Cowart, L. A., Wei, S., Hsu, M. H., Johnson, E. F., Krishna, M. U., Falck, J. R., et al. (2002). The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. Journal of Biological Chemistry, 277, 35105–35112.PubMed Cowart, L. A., Wei, S., Hsu, M. H., Johnson, E. F., Krishna, M. U., Falck, J. R., et al. (2002). The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. Journal of Biological Chemistry, 277, 35105–35112.PubMed
66.
Zurück zum Zitat Fang, X., Hu, S., Watanabe, T., Weintraub, N. L., Snyder, G. D., Yao, J., et al. (2005). Activation of peroxisome proliferator-activated receptor a by substituted urea-derived soluble epoxide hydrolase inhibitors. Journal of Pharmacology and Experimental Therapeutics, 314, 260–270.PubMed Fang, X., Hu, S., Watanabe, T., Weintraub, N. L., Snyder, G. D., Yao, J., et al. (2005). Activation of peroxisome proliferator-activated receptor a by substituted urea-derived soluble epoxide hydrolase inhibitors. Journal of Pharmacology and Experimental Therapeutics, 314, 260–270.PubMed
67.
Zurück zum Zitat Fang, X., Hu, S., Xu, B., Snyder, G., Harmon, S., Yao, J., et al. (2006). 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator activated receptor alpha. American Journal of Physiology—Heart and Circulatory Physiology, 290, 55–63. Fang, X., Hu, S., Xu, B., Snyder, G., Harmon, S., Yao, J., et al. (2006). 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator activated receptor alpha. American Journal of Physiology—Heart and Circulatory Physiology, 290, 55–63.
68.
Zurück zum Zitat Potente, M., Fisslthaler, B., Busse, R., & Fleming, I. (2003). 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. Journal of Biological Chemistry, 278, 29619–29625.PubMed Potente, M., Fisslthaler, B., Busse, R., & Fleming, I. (2003). 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. Journal of Biological Chemistry, 278, 29619–29625.PubMed
69.
Zurück zum Zitat Wang, D., Hirase, T., Nitto, T., Soma, M., & Node, K. (2009). Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor g in endothelial cells. Journal of Cardiology, 54, 368–374.PubMed Wang, D., Hirase, T., Nitto, T., Soma, M., & Node, K. (2009). Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor g in endothelial cells. Journal of Cardiology, 54, 368–374.PubMed
70.
Zurück zum Zitat Hoebel, B. G., & Graier, W. F. (1998). 11,12-Epoxyeicosatrienoic acid stimulates tyrosine kinase activity in porcine aortic endothelial cells. European Journal of Pharmacology, 346, 115–117.PubMed Hoebel, B. G., & Graier, W. F. (1998). 11,12-Epoxyeicosatrienoic acid stimulates tyrosine kinase activity in porcine aortic endothelial cells. European Journal of Pharmacology, 346, 115–117.PubMed
71.
Zurück zum Zitat Fleming, I., Fisslthaler, B., Michaelis, U. R., Kiss, L., Popp, R., & Busse, R. (2001). The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. Pflügers Archiv - European Journal of Physiology, 442, 511–518.PubMed Fleming, I., Fisslthaler, B., Michaelis, U. R., Kiss, L., Popp, R., & Busse, R. (2001). The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. Pflügers Archiv - European Journal of Physiology, 442, 511–518.PubMed
72.
Zurück zum Zitat Potente, M., Michaelis, U. R., Fisslthaler, B., Busse, R., & Fleming, I. (2002). Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. Journal of Biological Chemistry, 277, 15671–15676.PubMed Potente, M., Michaelis, U. R., Fisslthaler, B., Busse, R., & Fleming, I. (2002). Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. Journal of Biological Chemistry, 277, 15671–15676.PubMed
73.
Zurück zum Zitat Node, K., Huo, Y., Ruan, X., Yang, B., Spiecker, M., Ley, K., et al. (1999). Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science, 285, 1276–1279.PubMed Node, K., Huo, Y., Ruan, X., Yang, B., Spiecker, M., Ley, K., et al. (1999). Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science, 285, 1276–1279.PubMed
74.
Zurück zum Zitat Deng, Y., Edin, M. L., Theken, K. N., Schuck, R. N., Flake, G. P., Kannon, M. A., et al. (2011). Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice. The FASEB Journal, 25, 703–713.PubMed Deng, Y., Edin, M. L., Theken, K. N., Schuck, R. N., Flake, G. P., Kannon, M. A., et al. (2011). Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice. The FASEB Journal, 25, 703–713.PubMed
75.
Zurück zum Zitat Fleming, I., Michaelis, U. R., Bredenkötter, D., Fisslthaler, B., Dehghani, F., Brandes, R. P., et al. (2001). Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circulation Research, 88, 44–51.PubMed Fleming, I., Michaelis, U. R., Bredenkötter, D., Fisslthaler, B., Dehghani, F., Brandes, R. P., et al. (2001). Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circulation Research, 88, 44–51.PubMed
76.
Zurück zum Zitat Wu, S., Moomaw, C. R., Tomer, K. B., Falck, J. R., & Zeldin, D. C. (1996). Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. Journal of Biological Chemistry, 271, 3460–3468.PubMed Wu, S., Moomaw, C. R., Tomer, K. B., Falck, J. R., & Zeldin, D. C. (1996). Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. Journal of Biological Chemistry, 271, 3460–3468.PubMed
77.
Zurück zum Zitat Seubert, J., Yang, B., Bradbury, J. A., Graves, J., Degraff, L. M., Gabel, S., et al. (2004). Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circulation Research, 95, 506–514.PubMed Seubert, J., Yang, B., Bradbury, J. A., Graves, J., Degraff, L. M., Gabel, S., et al. (2004). Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circulation Research, 95, 506–514.PubMed
78.
Zurück zum Zitat Yang, B., Graham, L., Dikalov, S., Mason, R. P., Falck, J. R., Liao, J. K., et al. (2001). Overexpression of cytochrome P450 CYP2J2 protects against hypoxia–reoxygenation injury in cultured bovine aortic endothelial cells. Molecular Pharmacology, 60, 310–320.PubMed Yang, B., Graham, L., Dikalov, S., Mason, R. P., Falck, J. R., Liao, J. K., et al. (2001). Overexpression of cytochrome P450 CYP2J2 protects against hypoxia–reoxygenation injury in cultured bovine aortic endothelial cells. Molecular Pharmacology, 60, 310–320.PubMed
79.
Zurück zum Zitat Zeldin, D. C., Foley, J., Ma, J., Boyle, J. E., Pascual, J. M., Moomaw, C. R., et al. (1996). CYP2J subfamily P450s in the lung: Expression, localization, and potential functional significance. Molecular Pharmacology, 50, 1111–1117.PubMed Zeldin, D. C., Foley, J., Ma, J., Boyle, J. E., Pascual, J. M., Moomaw, C. R., et al. (1996). CYP2J subfamily P450s in the lung: Expression, localization, and potential functional significance. Molecular Pharmacology, 50, 1111–1117.PubMed
80.
Zurück zum Zitat Keserü, B., Barbosa-Sicard, E., Popp, R., Fisslthaler, B., Dietrich, A., Gudermann, T., et al. (2008). Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. The FASEB Journal, 22, 4306–4315.PubMed Keserü, B., Barbosa-Sicard, E., Popp, R., Fisslthaler, B., Dietrich, A., Gudermann, T., et al. (2008). Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. The FASEB Journal, 22, 4306–4315.PubMed
81.
Zurück zum Zitat Bonnet, S., & Archer, S. L. (2007). Potassium channel diversity in the pulmonary arteries and pulmonary veins: Implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Pharmacology and Therapeutics, 115, 56–69.PubMed Bonnet, S., & Archer, S. L. (2007). Potassium channel diversity in the pulmonary arteries and pulmonary veins: Implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Pharmacology and Therapeutics, 115, 56–69.PubMed
82.
Zurück zum Zitat Zhu, D., Zhang, C., Medhora, M., & Jacobs, E. R. (2002). CYP4A mRNA, protein, and product in rat lungs: Novel localization in vascular endothelium. Journal of Applied Physiology, 93, 330–337.PubMed Zhu, D., Zhang, C., Medhora, M., & Jacobs, E. R. (2002). CYP4A mRNA, protein, and product in rat lungs: Novel localization in vascular endothelium. Journal of Applied Physiology, 93, 330–337.PubMed
83.
Zurück zum Zitat Bodiga, S., Gruenloh, S. K., Gao, Y., Manthati, V. L., Dubasi, N., Falck, J. R., et al. (2010). 20-HETE-induced nitric oxide production in pulmonary artery endothelial cells is mediated by NADPH oxidase, H2O2, and PI3-kinase/Akt. American Journal of Physiology. Lung Cellular and Molecular Physiology, 298, L564–L574.PubMed Bodiga, S., Gruenloh, S. K., Gao, Y., Manthati, V. L., Dubasi, N., Falck, J. R., et al. (2010). 20-HETE-induced nitric oxide production in pulmonary artery endothelial cells is mediated by NADPH oxidase, H2O2, and PI3-kinase/Akt. American Journal of Physiology. Lung Cellular and Molecular Physiology, 298, L564–L574.PubMed
84.
Zurück zum Zitat Zhu, D., Birks, E. K., Dawson, C. A., Patel, M., Falck, J. R., Presberg, K., et al. (2000). Hypoxic pulmonary vasoconstriction is modified by P-450 metabolites. American Journal of Physiology—Heart and Circulatory Physiology, 279, H1526–H1533.PubMed Zhu, D., Birks, E. K., Dawson, C. A., Patel, M., Falck, J. R., Presberg, K., et al. (2000). Hypoxic pulmonary vasoconstriction is modified by P-450 metabolites. American Journal of Physiology—Heart and Circulatory Physiology, 279, H1526–H1533.PubMed
85.
Zurück zum Zitat Kiss, L., Roder, Y., Bier, J., Weissmann, N., Seeger, W., & Grimminger, F. (2008). Direct eicosanoid profiling of the hypoxic lung by comprehensive analysis via capillary liquid chromatography with dual online photodiode-array and tandem mass-spectrometric detection. Analytical and Bioanalytical Chemistry, 390, 697–714.PubMed Kiss, L., Roder, Y., Bier, J., Weissmann, N., Seeger, W., & Grimminger, F. (2008). Direct eicosanoid profiling of the hypoxic lung by comprehensive analysis via capillary liquid chromatography with dual online photodiode-array and tandem mass-spectrometric detection. Analytical and Bioanalytical Chemistry, 390, 697–714.PubMed
86.
Zurück zum Zitat Stephenson, A. H., Sprague, R. S., & Lonigro, A. J. (1998). 5,6-Epoxyeicosatrienoic acid reduces increases in pulmonary vascular resistance in the dog. American Journal of Physiology, 275, H100–H109.PubMed Stephenson, A. H., Sprague, R. S., & Lonigro, A. J. (1998). 5,6-Epoxyeicosatrienoic acid reduces increases in pulmonary vascular resistance in the dog. American Journal of Physiology, 275, H100–H109.PubMed
87.
Zurück zum Zitat Stephenson, A. H., Sprague, R. S., Losapio, J. L., & Lonigro, A. J. (2003). Differential effects of 5,6-EET on segmental pulmonary vasoactivity in the rabbit. American Journal of Physiology—Heart and Circulatory Physiology, 284, H2153–H2161.PubMed Stephenson, A. H., Sprague, R. S., Losapio, J. L., & Lonigro, A. J. (2003). Differential effects of 5,6-EET on segmental pulmonary vasoactivity in the rabbit. American Journal of Physiology—Heart and Circulatory Physiology, 284, H2153–H2161.PubMed
88.
Zurück zum Zitat Miller, M. A., & Hales, C. A. (1979). Role of cytochrome P-450 in alveolar hypoxic pulmonary vasoconstriction in dogs. The Journal of Clinical Investigation, 64, 666–673.PubMed Miller, M. A., & Hales, C. A. (1979). Role of cytochrome P-450 in alveolar hypoxic pulmonary vasoconstriction in dogs. The Journal of Clinical Investigation, 64, 666–673.PubMed
89.
Zurück zum Zitat Pokreisz, P., Fleming, I., Kiss, L., Barbosa-Sicard, E., Fisslthaler, B., Falck, J. R., et al. (2006). Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. Hypertension, 47, 762–770.PubMed Pokreisz, P., Fleming, I., Kiss, L., Barbosa-Sicard, E., Fisslthaler, B., Falck, J. R., et al. (2006). Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. Hypertension, 47, 762–770.PubMed
90.
Zurück zum Zitat Zhu, D., Bousamra, M., Zeldin, D. C., Falck, J. R., Townsley, M., Harder, D. R., et al. (2000). Epoxyeicosatrienoic acids constrict isolated pressurized rabbit pulmonary arteries. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L335–L343.PubMed Zhu, D., Bousamra, M., Zeldin, D. C., Falck, J. R., Townsley, M., Harder, D. R., et al. (2000). Epoxyeicosatrienoic acids constrict isolated pressurized rabbit pulmonary arteries. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L335–L343.PubMed
91.
Zurück zum Zitat Weissmann, N., Dietrich, A., Fuchs, B., Kalwa, H., Ay, M., Dumitrascu, R., et al. (2006). Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences of the United States of America, 103, 19093–19098.PubMed Weissmann, N., Dietrich, A., Fuchs, B., Kalwa, H., Ay, M., Dumitrascu, R., et al. (2006). Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences of the United States of America, 103, 19093–19098.PubMed
92.
Zurück zum Zitat Fagan, K. A., Oka, M., Bauer, N. R., Gebb, S. A., Ivy, D. D., Morris, K. G., et al. (2004). Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, L656–L664.PubMed Fagan, K. A., Oka, M., Bauer, N. R., Gebb, S. A., Ivy, D. D., Morris, K. G., et al. (2004). Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, L656–L664.PubMed
93.
Zurück zum Zitat Singh, I., Knezevic, N., Ahmmed, G. U., Kini, V., Malik, A. B., & Mehta, D. (2007). Gaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. Journal of Biological Chemistry, 282, 7833–7843.PubMed Singh, I., Knezevic, N., Ahmmed, G. U., Kini, V., Malik, A. B., & Mehta, D. (2007). Gaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. Journal of Biological Chemistry, 282, 7833–7843.PubMed
94.
Zurück zum Zitat Chen, J. K., Falck, J. R., Reddy, K. M., Capdevila, J., & Harris, R. C. (1998). Epoxyeicosatrienoic acids and their sulfonimide derivatives stimulate tyrosine phosphorylation and induce mitogenesis in renal epithelial cells. Journal of Biological Chemistry, 273, 29254–29261.PubMed Chen, J. K., Falck, J. R., Reddy, K. M., Capdevila, J., & Harris, R. C. (1998). Epoxyeicosatrienoic acids and their sulfonimide derivatives stimulate tyrosine phosphorylation and induce mitogenesis in renal epithelial cells. Journal of Biological Chemistry, 273, 29254–29261.PubMed
95.
Zurück zum Zitat Chen, J. K., Wang, D.-W., Falck, J. R., Capdevila, J., & Harris, R. C. (1999). Transfection of an active cytochrome P450 arachidonic acid epoxygenase indicates that 14,15-epoxyeicosatrienoic acid functions as an intracellular messenger in response to epidermal growth factor. Journal of Biological Chemistry, 274, 4764–4769.PubMed Chen, J. K., Wang, D.-W., Falck, J. R., Capdevila, J., & Harris, R. C. (1999). Transfection of an active cytochrome P450 arachidonic acid epoxygenase indicates that 14,15-epoxyeicosatrienoic acid functions as an intracellular messenger in response to epidermal growth factor. Journal of Biological Chemistry, 274, 4764–4769.PubMed
96.
Zurück zum Zitat Munzenmaier, D. H., & Harder, D. R. (2000). Cerebral microvascular endothelial cell tube formation: Role of astrocytic epoxyeicosatrienoic acid release. American Journal of Physiology—Heart and Circulatory Physiology, 278, H1163–H1167.PubMed Munzenmaier, D. H., & Harder, D. R. (2000). Cerebral microvascular endothelial cell tube formation: Role of astrocytic epoxyeicosatrienoic acid release. American Journal of Physiology—Heart and Circulatory Physiology, 278, H1163–H1167.PubMed
97.
Zurück zum Zitat Wang, Y., Wei, X., Xiao, X., Hui, R., Card, J. W., Carey, M. A., et al. (2005). Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. Journal of Pharmacology and Experimental Therapeutics, 314, 522–532.PubMed Wang, Y., Wei, X., Xiao, X., Hui, R., Card, J. W., Carey, M. A., et al. (2005). Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. Journal of Pharmacology and Experimental Therapeutics, 314, 522–532.PubMed
98.
Zurück zum Zitat Chen, J.-K., Capdevila, J., & Harris, R. C. (2002). Heparin-binding EGF-like growth factor mediates the biological effects of P450 arachidonate epoxygenase metabolites in epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 6029–6034.PubMed Chen, J.-K., Capdevila, J., & Harris, R. C. (2002). Heparin-binding EGF-like growth factor mediates the biological effects of P450 arachidonate epoxygenase metabolites in epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 6029–6034.PubMed
99.
Zurück zum Zitat Michaelis, U. R., Fisslthaler, B., Medhora, M., Harder, D., Fleming, I., & Busse, R. (2003). Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). The FASEB Journal, 17, 770–772.PubMed Michaelis, U. R., Fisslthaler, B., Medhora, M., Harder, D., Fleming, I., & Busse, R. (2003). Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). The FASEB Journal, 17, 770–772.PubMed
100.
Zurück zum Zitat Pozzi, A., Macias-Perez, I., Abair, T., Wey, S., Su, Y., Zent, R., et al. (2005). Charaterization of 5,6-and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. Journal of Biological Chemistry, 280, 27138–27146.PubMed Pozzi, A., Macias-Perez, I., Abair, T., Wey, S., Su, Y., Zent, R., et al. (2005). Charaterization of 5,6-and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. Journal of Biological Chemistry, 280, 27138–27146.PubMed
101.
Zurück zum Zitat Park, H. S., Kim, M. S., Huh, S. H., Park, J., Chung, J., Kang, S. S., et al. (2002). Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. Journal of Biological Chemistry, 277, 2573–2578.PubMed Park, H. S., Kim, M. S., Huh, S. H., Park, J., Chung, J., Kang, S. S., et al. (2002). Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. Journal of Biological Chemistry, 277, 2573–2578.PubMed
102.
Zurück zum Zitat Levy, R. H. (1995). Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia, 36(Suppl 5), S8–S13.PubMed Levy, R. H. (1995). Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia, 36(Suppl 5), S8–S13.PubMed
103.
Zurück zum Zitat Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118, 5489–5498.PubMed Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118, 5489–5498.PubMed
104.
Zurück zum Zitat Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., et al. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American Journal of Physiology. Cell Physiology, 295, C1292–C1301.PubMed Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., et al. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American Journal of Physiology. Cell Physiology, 295, C1292–C1301.PubMed
105.
Zurück zum Zitat Yang, S., Wei, S., Pozzi, A., & Capdevila, J. H. (2009). The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Archives of Biochemistry and Biophysics, 489, 82–91.PubMed Yang, S., Wei, S., Pozzi, A., & Capdevila, J. H. (2009). The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Archives of Biochemistry and Biophysics, 489, 82–91.PubMed
106.
Zurück zum Zitat Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 111, 5581–5591.PubMed Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 111, 5581–5591.PubMed
107.
Zurück zum Zitat Oguro, A., Sakamoto, K., Suzuki, S., & Imaoka, S. (2009). Contribution of hydrolase and phosphatase domains in soluble epoxide hydrolase to vascular endothelial growth factor expression and cell growth. Biological and Pharmaceutical Bulletin, 32, 1962–1967.PubMed Oguro, A., Sakamoto, K., Suzuki, S., & Imaoka, S. (2009). Contribution of hydrolase and phosphatase domains in soluble epoxide hydrolase to vascular endothelial growth factor expression and cell growth. Biological and Pharmaceutical Bulletin, 32, 1962–1967.PubMed
108.
Zurück zum Zitat Gerety, S. S., Wang, H. U., Chen, Z. F., & Anderson, D. J. (1999). Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Molecular Cell, 4, 403–414.PubMed Gerety, S. S., Wang, H. U., Chen, Z. F., & Anderson, D. J. (1999). Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Molecular Cell, 4, 403–414.PubMed
109.
Zurück zum Zitat Shin, D., Garcia-Cardena, G., Hayashi, S., Gerety, S., Asahara, T., Stavrakis, G., et al. (2001). Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Developmental Biology, 230, 139–150.PubMed Shin, D., Garcia-Cardena, G., Hayashi, S., Gerety, S., Asahara, T., Stavrakis, G., et al. (2001). Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Developmental Biology, 230, 139–150.PubMed
110.
Zurück zum Zitat Webler, A. C., Popp, R., Korff, T., Michaelis, U. R., Urbich, C., Busse, R., et al. (2008). Cytochrome P450 2C9-induced angiogenesis is dependent on EphB4. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1123–1129.PubMed Webler, A. C., Popp, R., Korff, T., Michaelis, U. R., Urbich, C., Busse, R., et al. (2008). Cytochrome P450 2C9-induced angiogenesis is dependent on EphB4. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1123–1129.PubMed
111.
Zurück zum Zitat Amaral, S. L., Maier, K. G., Schippers, D. N., Roman, R. J., & Greene, A. S. (2003). CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. American Journal of Physiology—Heart and Circulatory Physiology, 284, H1528–H1535.PubMed Amaral, S. L., Maier, K. G., Schippers, D. N., Roman, R. J., & Greene, A. S. (2003). CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. American Journal of Physiology—Heart and Circulatory Physiology, 284, H1528–H1535.PubMed
112.
Zurück zum Zitat Jiang, M., Mezentsev, A., Kemp, R., Byun, K., Falck, J. R., Miano, J. M., et al. (2004). Smooth muscle-specific expression of CYP4A1 induces endothelial sprouting in renal arterial microvessels. Circulation Research, 94, 167–174.PubMed Jiang, M., Mezentsev, A., Kemp, R., Byun, K., Falck, J. R., Miano, J. M., et al. (2004). Smooth muscle-specific expression of CYP4A1 induces endothelial sprouting in renal arterial microvessels. Circulation Research, 94, 167–174.PubMed
113.
Zurück zum Zitat Chen, P., Guo, M., Wygle, D., Edwards, P. A., Falck, J. R., Roman, R. J., et al. (2005). Inhibitors of cytochrome P450 4A suppress angiogenic responses. American Journal of Pathology, 166, 615–624.PubMed Chen, P., Guo, M., Wygle, D., Edwards, P. A., Falck, J. R., Roman, R. J., et al. (2005). Inhibitors of cytochrome P450 4A suppress angiogenic responses. American Journal of Pathology, 166, 615–624.PubMed
114.
Zurück zum Zitat Guo, A. M., Arbab, A. S., Falck, J. R., Chen, P., Edwards, P. A., Roman, R. J., et al. (2007). Activation of vascular endothelial growth factor through reactive oxygen species mediates 20-hydroxyeicosatetraenoic acid-induced endothelial cell proliferation. Journal of Pharmacology and Experimental Therapeutics, 321, 18–27.PubMed Guo, A. M., Arbab, A. S., Falck, J. R., Chen, P., Edwards, P. A., Roman, R. J., et al. (2007). Activation of vascular endothelial growth factor through reactive oxygen species mediates 20-hydroxyeicosatetraenoic acid-induced endothelial cell proliferation. Journal of Pharmacology and Experimental Therapeutics, 321, 18–27.PubMed
115.
Zurück zum Zitat Sun, J., Sui, X. X., Bradbury, A., Zeldin, D. C., Conte, M. S., & Liao, J. K. (2002). Inhibition of vascular smooth muscle cell migration by cytochrome P450 epoxygenase-derived eicosanoids. Circulation Research, 90, 1020–1027.PubMed Sun, J., Sui, X. X., Bradbury, A., Zeldin, D. C., Conte, M. S., & Liao, J. K. (2002). Inhibition of vascular smooth muscle cell migration by cytochrome P450 epoxygenase-derived eicosanoids. Circulation Research, 90, 1020–1027.PubMed
116.
Zurück zum Zitat Ng, V. Y., Huang, Y., Reddy, L. M., Falck, J. R., Lin, E. T., & Kroetz, D. L. (2007). Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor α. Drug Metabolism and Disposition, 35, 1126–1134.PubMed Ng, V. Y., Huang, Y., Reddy, L. M., Falck, J. R., Lin, E. T., & Kroetz, D. L. (2007). Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor α. Drug Metabolism and Disposition, 35, 1126–1134.PubMed
117.
Zurück zum Zitat Davis, B. B., Thompson, D. A., Howard, L. L., Morisseau, C., Hammock, B. D., & Weiss, R. H. (2002). Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 99, 2222–2227.PubMed Davis, B. B., Thompson, D. A., Howard, L. L., Morisseau, C., Hammock, B. D., & Weiss, R. H. (2002). Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 99, 2222–2227.PubMed
118.
Zurück zum Zitat Davis, B. B., Morisseau, C., Newman, J. W., Pedersen, T. L., Hammock, B. D., & Weiss, R. H. (2006). Attenuation of vascular smooth muscle cell proliferation by 1-cyclohexyl-3-dodecyl urea is independent of soluble epoxide hydrolase inhibition. Journal of Pharmacology and Experimental Therapeutics, 316, 815–821.PubMed Davis, B. B., Morisseau, C., Newman, J. W., Pedersen, T. L., Hammock, B. D., & Weiss, R. H. (2006). Attenuation of vascular smooth muscle cell proliferation by 1-cyclohexyl-3-dodecyl urea is independent of soluble epoxide hydrolase inhibition. Journal of Pharmacology and Experimental Therapeutics, 316, 815–821.PubMed
119.
Zurück zum Zitat Revermann, M., Schloss, M., Barbosa-Sicard, E., Mieth, A., Liebner, S., Morisseau, C., et al. (2010). Soluble epoxide hydrolase deficiency attenuates neointima formation in the femoral cuff model of hyperlipidemic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 909–914.PubMed Revermann, M., Schloss, M., Barbosa-Sicard, E., Mieth, A., Liebner, S., Morisseau, C., et al. (2010). Soluble epoxide hydrolase deficiency attenuates neointima formation in the femoral cuff model of hyperlipidemic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 909–914.PubMed
120.
Zurück zum Zitat Simpkins, A. N., Rudic, R. D., Roy, S., Tsai, H. J., Hammock, B. D., & Imig, J. D. (2009). Soluble epoxide hydrolase inhibition modulates vascular remodeling. American Journal of Physiology—Heart and Circulatory Physiology, 298, H795–H806.PubMed Simpkins, A. N., Rudic, R. D., Roy, S., Tsai, H. J., Hammock, B. D., & Imig, J. D. (2009). Soluble epoxide hydrolase inhibition modulates vascular remodeling. American Journal of Physiology—Heart and Circulatory Physiology, 298, H795–H806.PubMed
121.
Zurück zum Zitat Jung, O., Brandes, R. P., Kim, I. H., Schweda, F., Schmidt, R., Hammock, B. D., et al. (2005). Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension, 45, 759–765.PubMed Jung, O., Brandes, R. P., Kim, I. H., Schweda, F., Schmidt, R., Hammock, B. D., et al. (2005). Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension, 45, 759–765.PubMed
122.
Zurück zum Zitat Vafeas, C., Mieyal, P. A., Urbano, F., Falck, J. R., Chauhan, K., Berman, M., et al. (1998). Hypoxia stimulates the synthesis of cytochrome P450-derived inflammatory eicosanoids in rabbit corneal epithelium. Journal of Pharmacology and Experimental Therapeutics, 287, 903–910.PubMed Vafeas, C., Mieyal, P. A., Urbano, F., Falck, J. R., Chauhan, K., Berman, M., et al. (1998). Hypoxia stimulates the synthesis of cytochrome P450-derived inflammatory eicosanoids in rabbit corneal epithelium. Journal of Pharmacology and Experimental Therapeutics, 287, 903–910.PubMed
123.
Zurück zum Zitat Yamaura, K., Gebremedhin, D., Zhang, C., Narayanan, J., Hoefert, K., Jacobs, E. R., et al. (2006). Contribution of epoxyeicosatrienoic acids to the hypoxia-induced activation of Ca2+-activated K+ channel current in cultured rat hippocampal astrocytes. Neuroscience, 143, 703–716.PubMed Yamaura, K., Gebremedhin, D., Zhang, C., Narayanan, J., Hoefert, K., Jacobs, E. R., et al. (2006). Contribution of epoxyeicosatrienoic acids to the hypoxia-induced activation of Ca2+-activated K+ channel current in cultured rat hippocampal astrocytes. Neuroscience, 143, 703–716.PubMed
124.
Zurück zum Zitat Suzuki, H., Kimura, K., Shirai, H., Eguchi, K., Higuchi, S., Hinoki, A., et al. (2009). Endothelial nitric oxide synthase inhibits G12/13 and Rho-kinase activated by the angiotensin II type-1 receptor: Implication in vascular migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 217–224.PubMed Suzuki, H., Kimura, K., Shirai, H., Eguchi, K., Higuchi, S., Hinoki, A., et al. (2009). Endothelial nitric oxide synthase inhibits G12/13 and Rho-kinase activated by the angiotensin II type-1 receptor: Implication in vascular migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 217–224.PubMed
125.
Zurück zum Zitat Schultze, A. E., & Roth, R. A. (1998). Chronic pulmonary hypertension—The monocrotaline model and involvement of the hemostatic system. Journal of Toxicology and Environmental Health B, 1, 271–346. Schultze, A. E., & Roth, R. A. (1998). Chronic pulmonary hypertension—The monocrotaline model and involvement of the hemostatic system. Journal of Toxicology and Environmental Health B, 1, 271–346.
126.
Zurück zum Zitat Revermann, M., Barbosa-Sicard, E., Dony, E., Schermuly, R. T., Morisseau, C., Geisslinger, G., et al. (2009). Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. Journal of Hypertension, 27, 322–331.PubMed Revermann, M., Barbosa-Sicard, E., Dony, E., Schermuly, R. T., Morisseau, C., Geisslinger, G., et al. (2009). Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. Journal of Hypertension, 27, 322–331.PubMed
127.
Zurück zum Zitat Zheng, C., Wang, L., Li, R., Ma, B., Tu, L., Xu, X., et al. (2010). Gene delivery of cytochrome P450 epoxygenase ameliorates monocrotaline-induced pulmonary artery hypertension in rats. American Journal of Respiratory Cell and Molecular Biology, 43, 740–749.PubMed Zheng, C., Wang, L., Li, R., Ma, B., Tu, L., Xu, X., et al. (2010). Gene delivery of cytochrome P450 epoxygenase ameliorates monocrotaline-induced pulmonary artery hypertension in rats. American Journal of Respiratory Cell and Molecular Biology, 43, 740–749.PubMed
128.
Zurück zum Zitat Yokose, T., Doy, M., Taniguchi, Y., Shimada, T., Kakiki, M., Horie, T., et al. (1999). Immunohistochemical study of cytochrome P450 2C and 3A in human non-neoplastic and neoplastic tissues. Virchows Archiv, 434, 401–411.PubMed Yokose, T., Doy, M., Taniguchi, Y., Shimada, T., Kakiki, M., Horie, T., et al. (1999). Immunohistochemical study of cytochrome P450 2C and 3A in human non-neoplastic and neoplastic tissues. Virchows Archiv, 434, 401–411.PubMed
129.
Zurück zum Zitat Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Research, 65, 4707–4715.PubMed Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Research, 65, 4707–4715.PubMed
130.
Zurück zum Zitat Xu, X., Zhang, X. A., & Wang, D. W. (2011). The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Advanced Drug Delivery Reviews, 63, 597–609.PubMed Xu, X., Zhang, X. A., & Wang, D. W. (2011). The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Advanced Drug Delivery Reviews, 63, 597–609.PubMed
131.
Zurück zum Zitat Chen, C., Li, G., Liao, W., Wu, J., Liu, L., Ma, D., et al. (2009). Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. Journal of Pharmacology and Experimental Therapeutics, 329, 908–918.PubMed Chen, C., Li, G., Liao, W., Wu, J., Liu, L., Ma, D., et al. (2009). Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. Journal of Pharmacology and Experimental Therapeutics, 329, 908–918.PubMed
132.
Zurück zum Zitat Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology, 37, 133–141.PubMed Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology, 37, 133–141.PubMed
133.
Zurück zum Zitat Schmelzle, M., Dizdar, L., Matthaei, H., Baldus, S. E., Wolters, J., Lindenlauf, N., et al. (2011). Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins & Other Lipid Mediators, 94, 25–33. Schmelzle, M., Dizdar, L., Matthaei, H., Baldus, S. E., Wolters, J., Lindenlauf, N., et al. (2011). Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins & Other Lipid Mediators, 94, 25–33.
134.
Zurück zum Zitat Jiang, J. G., Ning, Y. G., Chen, C., Ma, D., Liu, Z. J., Yang, S., et al. (2007). Cytochrome P450 epoxygenase promotes human cancer metastasis. Cancer Research, 67, 6665–6674.PubMed Jiang, J. G., Ning, Y. G., Chen, C., Ma, D., Liu, Z. J., Yang, S., et al. (2007). Cytochrome P450 epoxygenase promotes human cancer metastasis. Cancer Research, 67, 6665–6674.PubMed
135.
Zurück zum Zitat Chen, C., Wei, X., Rao, X., Wu, J., Yang, S., Chen, F., et al. (2011). Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. Journal of Pharmacology and Experimental Therapeutics, 336, 344–355.PubMed Chen, C., Wei, X., Rao, X., Wu, J., Yang, S., Chen, F., et al. (2011). Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. Journal of Pharmacology and Experimental Therapeutics, 336, 344–355.PubMed
136.
Zurück zum Zitat Mitra, R., Guo, Z., Milani, M., Mesaros, C., Rodriguez, M., Nguyen, J., et al. (2011). CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). Journal of Biological Chemistry, 286, 17543–17559.PubMed Mitra, R., Guo, Z., Milani, M., Mesaros, C., Rodriguez, M., Nguyen, J., et al. (2011). CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). Journal of Biological Chemistry, 286, 17543–17559.PubMed
137.
Zurück zum Zitat Jung, O., Jansen, F., Mieth, A., Barbosa-Sicard, E., Pliquett, R. U., Babelova, A., et al. (2010). Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease. PLoS One, 5, e11979.PubMed Jung, O., Jansen, F., Mieth, A., Barbosa-Sicard, E., Pliquett, R. U., Babelova, A., et al. (2010). Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease. PLoS One, 5, e11979.PubMed
138.
Zurück zum Zitat Liu, J. Y., Yang, J., Inceoglu, B., Qiu, H., Ulu, A., Hwang, S. H., et al. (2010). Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model. Biochemical Pharmacology, 79, 880–887.PubMed Liu, J. Y., Yang, J., Inceoglu, B., Qiu, H., Ulu, A., Hwang, S. H., et al. (2010). Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model. Biochemical Pharmacology, 79, 880–887.PubMed
139.
Zurück zum Zitat Certikova Chabova, V., Walkowska, A., Kompanowska-Jezierska, E., Sadowski, J., Kujal, P., Vernerova, Z., et al. (2010). Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertensioninduced end-organ damage in Ren-2 transgenic rats. Clinical Science, 118, 617–632.PubMed Certikova Chabova, V., Walkowska, A., Kompanowska-Jezierska, E., Sadowski, J., Kujal, P., Vernerova, Z., et al. (2010). Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertensioninduced end-organ damage in Ren-2 transgenic rats. Clinical Science, 118, 617–632.PubMed
140.
Zurück zum Zitat Chun, Y. J., & Kim, S. (2003). Discovery of cytochrome P450 1B1 inhibitors as new promising anti-cancer agents. Medicinal Research Reviews, 23, 657–668.PubMed Chun, Y. J., & Kim, S. (2003). Discovery of cytochrome P450 1B1 inhibitors as new promising anti-cancer agents. Medicinal Research Reviews, 23, 657–668.PubMed
141.
Zurück zum Zitat Stearns, V., Johnson, M. D., Rae, J. M., Morocho, A., Novielli, A., Bhargava, P., et al. (2003). Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. Journal of the National Cancer Institute, 95, 1758–1764.PubMed Stearns, V., Johnson, M. D., Rae, J. M., Morocho, A., Novielli, A., Bhargava, P., et al. (2003). Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. Journal of the National Cancer Institute, 95, 1758–1764.PubMed
142.
Zurück zum Zitat Coller, J. K. (2003). Oxidative metabolism of tamoxifen to Z-4-hydroxy-tamoxifen by cytochrome P450 isoforms: An appraisal of in vitro studies. Clinical and Experimental Pharmacology and Physiology, 30, 845–848.PubMed Coller, J. K. (2003). Oxidative metabolism of tamoxifen to Z-4-hydroxy-tamoxifen by cytochrome P450 isoforms: An appraisal of in vitro studies. Clinical and Experimental Pharmacology and Physiology, 30, 845–848.PubMed
143.
Zurück zum Zitat Panigrahy, D., Kaipainen, A., Greene, E., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: The neglected pathway in cancer. Cancer and Metastasis Reviews, 29, 723–735.PubMed Panigrahy, D., Kaipainen, A., Greene, E., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: The neglected pathway in cancer. Cancer and Metastasis Reviews, 29, 723–735.PubMed
144.
Zurück zum Zitat Park, S. W., Heo, D. S. & Sung, M. W. (2011). The shunting of arachidonic acid metabolism to 5-lipoxygenase and cytochrome p450 epoxygenase antagonizes the anti-cancer effect of cyclooxygenase-2 inhibition in head and neck cancer cells. Cellular Oncology 1–8. doi:10.1007/s13402-011-0051-7. Park, S. W., Heo, D. S. & Sung, M. W. (2011). The shunting of arachidonic acid metabolism to 5-lipoxygenase and cytochrome p450 epoxygenase antagonizes the anti-cancer effect of cyclooxygenase-2 inhibition in head and neck cancer cells. Cellular Oncology 1–8. doi:10.​1007/​s13402-011-0051-7.
145.
Zurück zum Zitat Serhan, C. N. (2011). The resolution of inflammation: The devil in the flask and in the details. The FASEB Journal, 25, 1441–1448.PubMed Serhan, C. N. (2011). The resolution of inflammation: The devil in the flask and in the details. The FASEB Journal, 25, 1441–1448.PubMed
146.
Zurück zum Zitat Diaz Encarnacion, M. M., Warner, G. M., Cheng, J., Gray, C. E., Nath, K. A., & Grande, J. P. (2011). n-3 Fatty acids block TNF-a-stimulated MCP-1 expression in rat mesangial cells. American Journal of Physiology. Renal Physiology, 300, F1142–F1151.PubMed Diaz Encarnacion, M. M., Warner, G. M., Cheng, J., Gray, C. E., Nath, K. A., & Grande, J. P. (2011). n-3 Fatty acids block TNF-a-stimulated MCP-1 expression in rat mesangial cells. American Journal of Physiology. Renal Physiology, 300, F1142–F1151.PubMed
147.
Zurück zum Zitat Kitamura, K., Shibata, R., Tsuji, Y., Shimano, M., Inden, Y., & Murohara, T. (2011). Eicosapentaenoic acid prevents atrial fibrillation associated with heart failure in a rabbit model. American Journal of Physiology—Heart and Circulatory Physiology, 300, H1814–H1821.PubMed Kitamura, K., Shibata, R., Tsuji, Y., Shimano, M., Inden, Y., & Murohara, T. (2011). Eicosapentaenoic acid prevents atrial fibrillation associated with heart failure in a rabbit model. American Journal of Physiology—Heart and Circulatory Physiology, 300, H1814–H1821.PubMed
148.
Zurück zum Zitat Finzi, A. A., Latini, R., Barlera, S., Rossi, M. G., Ruggeri, A., Mezzani, A., et al. (2011). Effects of n-3 polyunsaturated fatty acids on malignant ventricular arrhythmias in patients with chronic heart failure and implantable cardioverter-defibrillators: A substudy of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca (GISSI-HF) trial. American Heart Journal, 161, 338–343.PubMed Finzi, A. A., Latini, R., Barlera, S., Rossi, M. G., Ruggeri, A., Mezzani, A., et al. (2011). Effects of n-3 polyunsaturated fatty acids on malignant ventricular arrhythmias in patients with chronic heart failure and implantable cardioverter-defibrillators: A substudy of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca (GISSI-HF) trial. American Heart Journal, 161, 338–343.PubMed
149.
Zurück zum Zitat Arnold, C., Markovic, M., Blossey, K., Wallukat, G., Fischer, R., Dechend, R., et al. (2010). Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of w-3 fatty acids. Journal of Biological Chemistry, 285, 32723–32733. Arnold, C., Markovic, M., Blossey, K., Wallukat, G., Fischer, R., Dechend, R., et al. (2010). Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of w-3 fatty acids. Journal of Biological Chemistry, 285, 32723–32733.
150.
Zurück zum Zitat Egert, S., & Stehle, P. (2011). Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Current Opinion in Clinical Nutrition and Metabolic Care, 14, 121–131.PubMed Egert, S., & Stehle, P. (2011). Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Current Opinion in Clinical Nutrition and Metabolic Care, 14, 121–131.PubMed
151.
Zurück zum Zitat Madden, J., Williams, C. M., Calder, P. C., Lietz, G., Miles, E. A., Cordell, H., et al. (2011). The impact of common gene variants on the response of biomarkers of cardiovascular disease (CVD) risk to increased fish oil fatty acids intakes. Annual Review of Nutrition, 31, 203–234.PubMed Madden, J., Williams, C. M., Calder, P. C., Lietz, G., Miles, E. A., Cordell, H., et al. (2011). The impact of common gene variants on the response of biomarkers of cardiovascular disease (CVD) risk to increased fish oil fatty acids intakes. Annual Review of Nutrition, 31, 203–234.PubMed
152.
Zurück zum Zitat Bazan, H. A., Lu, Y., Thoppil, D., Fitzgerald, T. N., Hong, S., & Dardik, A. (2009). Diminished omega-3 fatty acids are associated with carotid plaques from neurologically symptomatic patients: Implications for carotid interventions. Vascular Pharmacology, 51, 331–336.PubMed Bazan, H. A., Lu, Y., Thoppil, D., Fitzgerald, T. N., Hong, S., & Dardik, A. (2009). Diminished omega-3 fatty acids are associated with carotid plaques from neurologically symptomatic patients: Implications for carotid interventions. Vascular Pharmacology, 51, 331–336.PubMed
153.
Zurück zum Zitat Heinze, V. M., & Actis, A. B. (2011). Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: A review. International Journal of Food Sciences and Nutrition. doi:10.3109/09637486.2011.598849. Heinze, V. M., & Actis, A. B. (2011). Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: A review. International Journal of Food Sciences and Nutrition. doi:10.​3109/​09637486.​2011.​598849.
Metadaten
Titel
The cytochrome P450 pathway in angiogenesis and endothelial cell biology
verfasst von
Ingrid Fleming
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2011
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9302-3

Weitere Artikel der Ausgabe 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.