Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2011

01.12.2011

Cyclooxygenases and lipoxygenases in cancer

verfasst von: Claus Schneider, Ambra Pozzi

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2011

Einloggen, um Zugang zu erhalten

Abstract

Cancer initiation and progression are multistep events that require cell proliferation, migration, extravasation to the blood or lymphatic vessels, arrest to the metastatic site, and ultimately secondary growth. Tumor cell functions at both primary or secondary sites are controlled by many different factors, including growth factors and their receptors, chemokines, nuclear receptors, cell–cell interactions, cell–matrix interactions, as well as oxygenated metabolites of arachidonic acid. The observation that cyclooxygenases and lipoxygenases and their arachidonic acid-derived eicosanoid products (prostanoids and HETEs) are expressed and produced by tumor cells, together with the finding that these enzymes can regulate cell growth, survival, migration, and invasion, has prompted investigators to analyze the roles of these enzymes in cancer progression. In this review, we focus on the contribution of cyclooxygenase- and lipoxygenase-derived eicosanoids to tumor cell function in vitro and in vivo and discuss hope and tribulations of targeting these enzymes for cancer prevention and treatment.
Literatur
1.
Zurück zum Zitat Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews Cancer, 10, 181–193.PubMed Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews Cancer, 10, 181–193.PubMed
2.
Zurück zum Zitat Williams, C. S., Luongo, C., Radhika, A., Zhang, T., Lamps, L. W., Nanney, L. B., et al. (1996). Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology, 111, 1134–1140.PubMed Williams, C. S., Luongo, C., Radhika, A., Zhang, T., Lamps, L. W., Nanney, L. B., et al. (1996). Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology, 111, 1134–1140.PubMed
3.
Zurück zum Zitat Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107, 1183–1188.PubMed Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107, 1183–1188.PubMed
4.
Zurück zum Zitat Chen, W. S., Wei, S. J., Liu, J. M., Hsiao, M., Kou-Lin, J., & Yang, W. K. (2001). Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac. International Journal of Cancer, 91, 894–899. Chen, W. S., Wei, S. J., Liu, J. M., Hsiao, M., Kou-Lin, J., & Yang, W. K. (2001). Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac. International Journal of Cancer, 91, 894–899.
5.
Zurück zum Zitat Gately, S. (2000). The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Reviews, 19, 19–27.PubMed Gately, S. (2000). The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Reviews, 19, 19–27.PubMed
6.
Zurück zum Zitat Gately, S., & Li, W. W. (2004). Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Seminars in Oncology, 31, 2–11.PubMed Gately, S., & Li, W. W. (2004). Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Seminars in Oncology, 31, 2–11.PubMed
7.
Zurück zum Zitat Rizzo, M. T. (2011). Cyclooxygenase-2 in oncogenesis. Clinica Chimica Acta, 412, 671–687. Rizzo, M. T. (2011). Cyclooxygenase-2 in oncogenesis. Clinica Chimica Acta, 412, 671–687.
8.
Zurück zum Zitat Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., et al. (1996). Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87, 803–809.PubMed Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., et al. (1996). Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87, 803–809.PubMed
9.
Zurück zum Zitat Oshima, M., Murai, N., Kargman, S., Arguello, M., Luk, P., Kwong, E., et al. (2001). Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Research, 61, 1733–1740.PubMed Oshima, M., Murai, N., Kargman, S., Arguello, M., Luk, P., Kwong, E., et al. (2001). Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Research, 61, 1733–1740.PubMed
10.
Zurück zum Zitat Rundhaug, J. E., & Fischer, S. M. (2008). Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochemistry and Photobiology, 84, 322–329.PubMed Rundhaug, J. E., & Fischer, S. M. (2008). Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochemistry and Photobiology, 84, 322–329.PubMed
11.
Zurück zum Zitat Stasinopoulos, I., O'Brien, D. R., Wildes, F., Glunde, K., & Bhujwalla, Z. M. (2007). Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Molecular Cancer Research, 5, 435–442.PubMed Stasinopoulos, I., O'Brien, D. R., Wildes, F., Glunde, K., & Bhujwalla, Z. M. (2007). Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Molecular Cancer Research, 5, 435–442.PubMed
12.
Zurück zum Zitat Ghosh, N., Chaki, R., Mandal, V., & Mandal, S. C. (2010). COX-2 as a target for cancer chemotherapy. Pharmacological Reports, 62, 233–244.PubMed Ghosh, N., Chaki, R., Mandal, V., & Mandal, S. C. (2010). COX-2 as a target for cancer chemotherapy. Pharmacological Reports, 62, 233–244.PubMed
13.
Zurück zum Zitat Diczfalusy, U., Falardeau, P., & Hammarstrom, S. (1977). Conversion of prostaglandin endoperoxides to C17-hydroxy acids catalyzed by human platelet thromboxane synthase. FEBS Letters, 84, 271–274.PubMed Diczfalusy, U., Falardeau, P., & Hammarstrom, S. (1977). Conversion of prostaglandin endoperoxides to C17-hydroxy acids catalyzed by human platelet thromboxane synthase. FEBS Letters, 84, 271–274.PubMed
14.
Zurück zum Zitat Nakahata, N. (2008). Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacology and Therapeutics, 118, 18–35.PubMed Nakahata, N. (2008). Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacology and Therapeutics, 118, 18–35.PubMed
15.
Zurück zum Zitat Cathcart, M. C., Gately, K., Cummins, R., Kay, E., O'Byrne, K. J., & Pidgeon, G. P. (2011). Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Molecular Cancer, 10, 25.PubMed Cathcart, M. C., Gately, K., Cummins, R., Kay, E., O'Byrne, K. J., & Pidgeon, G. P. (2011). Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Molecular Cancer, 10, 25.PubMed
16.
Zurück zum Zitat Huang, R. Y., & Chen, G. G. (2011). Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochimica et Biophysica Acta, 1815, 158–169.PubMed Huang, R. Y., & Chen, G. G. (2011). Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochimica et Biophysica Acta, 1815, 158–169.PubMed
17.
Zurück zum Zitat Huang, R. Y., Li, M. Y., Hsin, M. K., Underwood, M. J., Ma, L. T., Mok, T. S., et al. (2011). 4-Methylnitrosamino-1-3-pyridyl-1-butanone (NNK) promotes lung cancer cell survival by stimulating thromboxane A2 and its receptor. Oncogene, 30, 106–116.PubMed Huang, R. Y., Li, M. Y., Hsin, M. K., Underwood, M. J., Ma, L. T., Mok, T. S., et al. (2011). 4-Methylnitrosamino-1-3-pyridyl-1-butanone (NNK) promotes lung cancer cell survival by stimulating thromboxane A2 and its receptor. Oncogene, 30, 106–116.PubMed
18.
Zurück zum Zitat Leung, K. C., Li, M. Y., Leung, B. C., Hsin, M. K., Mok, T. S., Underwood, M. J., et al. (2010). Thromboxane synthase suppression induces lung cancer cell apoptosis via inhibiting NF-kappaB. Experimental Cell Research, 316, 3468–3477.PubMed Leung, K. C., Li, M. Y., Leung, B. C., Hsin, M. K., Mok, T. S., Underwood, M. J., et al. (2010). Thromboxane synthase suppression induces lung cancer cell apoptosis via inhibiting NF-kappaB. Experimental Cell Research, 316, 3468–3477.PubMed
19.
Zurück zum Zitat Wei, J., Yan, W., Li, X., Ding, Y., & Tai, H. H. (2010). Thromboxane receptor alpha mediates tumor growth and angiogenesis via induction of vascular endothelial growth factor expression in human lung cancer cells. Lung Cancer, 69, 26–32.PubMed Wei, J., Yan, W., Li, X., Ding, Y., & Tai, H. H. (2010). Thromboxane receptor alpha mediates tumor growth and angiogenesis via induction of vascular endothelial growth factor expression in human lung cancer cells. Lung Cancer, 69, 26–32.PubMed
20.
Zurück zum Zitat Wei, J., Yan, W., Li, X., Chang, W. C., & Tai, H. H. (2007). Activation of thromboxane receptor alpha induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochemical Pharmacology, 74, 787–800.PubMed Wei, J., Yan, W., Li, X., Chang, W. C., & Tai, H. H. (2007). Activation of thromboxane receptor alpha induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochemical Pharmacology, 74, 787–800.PubMed
21.
Zurück zum Zitat Li, X., & Tai, H. H. (2009). Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis, 30, 1606–1613.PubMed Li, X., & Tai, H. H. (2009). Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis, 30, 1606–1613.PubMed
22.
Zurück zum Zitat Schmidt, N. O., Ziu, M., Cargioli, T., Westphal, M., Giese, A., Black, P. M., et al. (2010). Inhibition of thromboxane synthase activity improves glioblastoma response to alkylation chemotherapy. Transl Oncol, 3, 43–49.PubMed Schmidt, N. O., Ziu, M., Cargioli, T., Westphal, M., Giese, A., Black, P. M., et al. (2010). Inhibition of thromboxane synthase activity improves glioblastoma response to alkylation chemotherapy. Transl Oncol, 3, 43–49.PubMed
23.
Zurück zum Zitat Schauff, A. K., Kim, E. L., Leppert, J., Nadrowitz, R., Wuestenberg, R., Brockmann, M. A., et al. (2009). Inhibition of invasion-associated thromboxane synthase sensitizes experimental gliomas to gamma-radiation. Journal of Neuro-Oncology, 91, 241–249.PubMed Schauff, A. K., Kim, E. L., Leppert, J., Nadrowitz, R., Wuestenberg, R., Brockmann, M. A., et al. (2009). Inhibition of invasion-associated thromboxane synthase sensitizes experimental gliomas to gamma-radiation. Journal of Neuro-Oncology, 91, 241–249.PubMed
24.
Zurück zum Zitat Cathcart, M. C., Reynolds, J. V., O'Byrne, K. J., & Pidgeon, G. P. (2010). The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer. Biochimica et Biophysica Acta, 1805, 153–166.PubMed Cathcart, M. C., Reynolds, J. V., O'Byrne, K. J., & Pidgeon, G. P. (2010). The role of prostacyclin synthase and thromboxane synthase signaling in the development and progression of cancer. Biochimica et Biophysica Acta, 1805, 153–166.PubMed
25.
Zurück zum Zitat Tennis, M. A., Vanscoyk, M., Keith, R. L., & Winn, R. A. (2010). The role of prostacyclin in lung cancer. Translational Research, 155, 57–61.PubMed Tennis, M. A., Vanscoyk, M., Keith, R. L., & Winn, R. A. (2010). The role of prostacyclin in lung cancer. Translational Research, 155, 57–61.PubMed
26.
Zurück zum Zitat Keith, R. L., Miller, Y. E., Hudish, T. M., Girod, C. E., Sotto-Santiago, S., Franklin, W. A., et al. (2004). Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Research, 64, 5897–5904.PubMed Keith, R. L., Miller, Y. E., Hudish, T. M., Girod, C. E., Sotto-Santiago, S., Franklin, W. A., et al. (2004). Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice. Cancer Research, 64, 5897–5904.PubMed
27.
Zurück zum Zitat Keith, R. L., Karoor, V., Mozer, A. B., Hudish, T. M., Le, M., & Miller, Y. E. (2010). Chemoprevention of murine lung cancer by gefitinib in combination with prostacyclin synthase overexpression. Lung Cancer, 70, 37–42.PubMed Keith, R. L., Karoor, V., Mozer, A. B., Hudish, T. M., Le, M., & Miller, Y. E. (2010). Chemoprevention of murine lung cancer by gefitinib in combination with prostacyclin synthase overexpression. Lung Cancer, 70, 37–42.PubMed
28.
Zurück zum Zitat Frigola, J., Munoz, M., Clark, S. J., Moreno, V., Capella, G., & Peinado, M. A. (2005). Hypermethylation of the prostacyclin synthase (PTGIS) promoter is a frequent event in colorectal cancer and associated with aneuploidy. Oncogene, 24, 7320–7326.PubMed Frigola, J., Munoz, M., Clark, S. J., Moreno, V., Capella, G., & Peinado, M. A. (2005). Hypermethylation of the prostacyclin synthase (PTGIS) promoter is a frequent event in colorectal cancer and associated with aneuploidy. Oncogene, 24, 7320–7326.PubMed
29.
Zurück zum Zitat Pehlivan, Y., Turkbeyler, I.H., Balakan, O., Sevinc, A., Yilmaz, M., Bakir, K., and Onat, A.M. (2011). Possible anti-metastatic effect of Iloprost in a patient with systemic sclerosis with lung cancer: a case study. Rheumatol Int (in press). Pehlivan, Y., Turkbeyler, I.H., Balakan, O., Sevinc, A., Yilmaz, M., Bakir, K., and Onat, A.M. (2011). Possible anti-metastatic effect of Iloprost in a patient with systemic sclerosis with lung cancer: a case study. Rheumatol Int (in press).
30.
Zurück zum Zitat Laubli, H., & Borsig, L. (2010). Selectins as mediators of lung metastasis. Cancer Microenvironment, 3, 97–105.PubMed Laubli, H., & Borsig, L. (2010). Selectins as mediators of lung metastasis. Cancer Microenvironment, 3, 97–105.PubMed
31.
Zurück zum Zitat Mohle, R., Green, D., Moore, M. A., Nachman, R. L., & Rafii, S. (1997). Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences of the United States of America, 94, 663–668.PubMed Mohle, R., Green, D., Moore, M. A., Nachman, R. L., & Rafii, S. (1997). Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proceedings of the National Academy of Sciences of the United States of America, 94, 663–668.PubMed
32.
Zurück zum Zitat Tennis, M. A., Van Scoyk, M., Heasley, L. E., Vandervest, K., Weiser-Evans, M., Freeman, S., et al. (2010). Prostacyclin inhibits non-small cell lung cancer growth by a frizzled 9-dependent pathway that is blocked by secreted frizzled-related protein 1. Neoplasia, 12, 244–253.PubMed Tennis, M. A., Van Scoyk, M., Heasley, L. E., Vandervest, K., Weiser-Evans, M., Freeman, S., et al. (2010). Prostacyclin inhibits non-small cell lung cancer growth by a frizzled 9-dependent pathway that is blocked by secreted frizzled-related protein 1. Neoplasia, 12, 244–253.PubMed
33.
Zurück zum Zitat Nemenoff, R., Meyer, A. M., Hudish, T. M., Mozer, A. B., Snee, A., Narumiya, S., et al. (2008). Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator-activated receptor γ. Cancer Prevention Research (Philadelphia, Pa.), 1, 349–356. Nemenoff, R., Meyer, A. M., Hudish, T. M., Mozer, A. B., Snee, A., Narumiya, S., et al. (2008). Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator-activated receptor γ. Cancer Prevention Research (Philadelphia, Pa.), 1, 349–356.
34.
Zurück zum Zitat Hata, A. N., Lybrand, T. P., & Breyer, R. M. (2005). Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2. Journal of Biological Chemistry, 280, 32442–32451.PubMed Hata, A. N., Lybrand, T. P., & Breyer, R. M. (2005). Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2. Journal of Biological Chemistry, 280, 32442–32451.PubMed
35.
Zurück zum Zitat Hirai, H., Abe, H., Tanaka, K., Takatsu, K., Sugamura, K., Nakamura, M., et al. (2003). Gene structure and functional properties of mouse CRTH2, a prostaglandin D2 receptor. Biochemical and Biophysical Research Communications, 307, 797–802.PubMed Hirai, H., Abe, H., Tanaka, K., Takatsu, K., Sugamura, K., Nakamura, M., et al. (2003). Gene structure and functional properties of mouse CRTH2, a prostaglandin D2 receptor. Biochemical and Biophysical Research Communications, 307, 797–802.PubMed
36.
Zurück zum Zitat Wright, D. H., Nantel, F., Metters, K. M., & Ford-Hutchinson, A. W. (1999). A novel biological role for prostaglandin D2 is suggested by distribution studies of the rat DP prostanoid receptor. European Journal of Pharmacology, 377, 101–115.PubMed Wright, D. H., Nantel, F., Metters, K. M., & Ford-Hutchinson, A. W. (1999). A novel biological role for prostaglandin D2 is suggested by distribution studies of the rat DP prostanoid receptor. European Journal of Pharmacology, 377, 101–115.PubMed
37.
Zurück zum Zitat Ragolia, L., Palaia, T., Hall, C. E., Klein, J., & Buyuk, A. (2010). Diminished lipocalin-type prostaglandin D(2) synthase expression in human lung tumors. Lung Cancer, 70, 103–109.PubMed Ragolia, L., Palaia, T., Hall, C. E., Klein, J., & Buyuk, A. (2010). Diminished lipocalin-type prostaglandin D(2) synthase expression in human lung tumors. Lung Cancer, 70, 103–109.PubMed
38.
Zurück zum Zitat Takeda, K., Takahashi, N. H., Yoshizawa, M., & Shibahara, S. (2010). Lipocalin-type prostaglandin D synthase as a regulator of the retinoic acid signalling in melanocytes. Journal of Biochemistry, 148, 139–148.PubMed Takeda, K., Takahashi, N. H., Yoshizawa, M., & Shibahara, S. (2010). Lipocalin-type prostaglandin D synthase as a regulator of the retinoic acid signalling in melanocytes. Journal of Biochemistry, 148, 139–148.PubMed
39.
Zurück zum Zitat Dionne, S., Levy, E., Levesque, D., & Seidman, E. G. (2010). PPARgamma ligand 15-deoxy-delta 12,14-prostaglandin J2 sensitizes human colon carcinoma cells to TWEAK-induced apoptosis. Anticancer Research, 30, 157–166.PubMed Dionne, S., Levy, E., Levesque, D., & Seidman, E. G. (2010). PPARgamma ligand 15-deoxy-delta 12,14-prostaglandin J2 sensitizes human colon carcinoma cells to TWEAK-induced apoptosis. Anticancer Research, 30, 157–166.PubMed
40.
Zurück zum Zitat Wang, J. J., & Mak, O. T. (2011). Induction of apoptosis by 15d-PGJ2 via ROS formation: an alternative pathway without PPARgamma activation in non-small cell lung carcinoma A549 cells. Prostaglandins & Other Lipid Mediators, 94, 104–111. Wang, J. J., & Mak, O. T. (2011). Induction of apoptosis by 15d-PGJ2 via ROS formation: an alternative pathway without PPARgamma activation in non-small cell lung carcinoma A549 cells. Prostaglandins & Other Lipid Mediators, 94, 104–111.
41.
Zurück zum Zitat Passeron, T., Valencia, J. C., Namiki, T., Vieira, W. D., Passeron, H., Miyamura, Y., et al. (2009). Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. The Journal of Clinical Investigation, 119, 954–963.PubMed Passeron, T., Valencia, J. C., Namiki, T., Vieira, W. D., Passeron, H., Miyamura, Y., et al. (2009). Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. The Journal of Clinical Investigation, 119, 954–963.PubMed
42.
Zurück zum Zitat Murata, T., Lin, M. I., Aritake, K., Matsumoto, S., Narumiya, S., Ozaki, H., et al. (2008). Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105, 20009–20014.PubMed Murata, T., Lin, M. I., Aritake, K., Matsumoto, S., Narumiya, S., Ozaki, H., et al. (2008). Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105, 20009–20014.PubMed
43.
Zurück zum Zitat Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C., & Lehmann, J. M. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell, 83, 813–819.PubMed Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C., & Lehmann, J. M. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell, 83, 813–819.PubMed
44.
Zurück zum Zitat Pozzi, A., and Capdevila, J.H. (2008). PPARα ligands as antitumorigenic and antiangiogenic agents. PPAR Res 2008, Article ID 906542. Pozzi, A., and Capdevila, J.H. (2008). PPARα ligands as antitumorigenic and antiangiogenic agents. PPAR Res 2008, Article ID 906542.
45.
Zurück zum Zitat Diers, A. R., Dranka, B. P., Ricart, K. C., Oh, J. Y., Johnson, M. S., Zhou, F., et al. (2010). Modulation of mammary cancer cell migration by 15-deoxy-delta(12,14)-prostaglandin J(2): implications for anti-metastatic therapy. Biochemical Journal, 430, 69–78.PubMed Diers, A. R., Dranka, B. P., Ricart, K. C., Oh, J. Y., Johnson, M. S., Zhou, F., et al. (2010). Modulation of mammary cancer cell migration by 15-deoxy-delta(12,14)-prostaglandin J(2): implications for anti-metastatic therapy. Biochemical Journal, 430, 69–78.PubMed
46.
Zurück zum Zitat Koyama, M., Izutani, Y., Goda, A. E., Matsui, T. A., Horinaka, M., Tomosugi, M., et al. (2010). Histone deacetylase inhibitors and 15-deoxy-Delta12,14-prostaglandin J2 synergistically induce apoptosis. Clinical Cancer Research, 16, 2320–2332.PubMed Koyama, M., Izutani, Y., Goda, A. E., Matsui, T. A., Horinaka, M., Tomosugi, M., et al. (2010). Histone deacetylase inhibitors and 15-deoxy-Delta12,14-prostaglandin J2 synergistically induce apoptosis. Clinical Cancer Research, 16, 2320–2332.PubMed
47.
Zurück zum Zitat Shim, J., Kim, B. H., Kim, Y. I., Kim, K. Y., Hwangbo, Y., Jang, J. Y., et al. (2010). The peroxisome proliferator-activated receptor gamma ligands, pioglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2), have antineoplastic effects against hepatitis B virus-associated hepatocellular carcinoma cells. International Journal of Oncology, 36, 223–231.PubMed Shim, J., Kim, B. H., Kim, Y. I., Kim, K. Y., Hwangbo, Y., Jang, J. Y., et al. (2010). The peroxisome proliferator-activated receptor gamma ligands, pioglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2), have antineoplastic effects against hepatitis B virus-associated hepatocellular carcinoma cells. International Journal of Oncology, 36, 223–231.PubMed
48.
Zurück zum Zitat Cocca, C., Dorado, J., Calvo, E., Lopez, J. A., Santos, A., & Perez-Castillo, A. (2009). 15-Deoxi-Delta(12,14)-prostaglandin J2 is a tubulin-binding agent that destabilizes microtubules and induces mitotic arrest. Biochemical Pharmacology, 78, 1330–1339.PubMed Cocca, C., Dorado, J., Calvo, E., Lopez, J. A., Santos, A., & Perez-Castillo, A. (2009). 15-Deoxi-Delta(12,14)-prostaglandin J2 is a tubulin-binding agent that destabilizes microtubules and induces mitotic arrest. Biochemical Pharmacology, 78, 1330–1339.PubMed
49.
Zurück zum Zitat Coyle, A. T., O'Keeffe, M. B., & Kinsella, B. T. (2005). 15-deoxy Delta12,14-prostaglandin J2 suppresses transcription by promoter 3 of the human thromboxane A2 receptor gene through peroxisome proliferator-activated receptor gamma in human erythroleukemia cells. FEBS Journal, 272, 4754–4773.PubMed Coyle, A. T., O'Keeffe, M. B., & Kinsella, B. T. (2005). 15-deoxy Delta12,14-prostaglandin J2 suppresses transcription by promoter 3 of the human thromboxane A2 receptor gene through peroxisome proliferator-activated receptor gamma in human erythroleukemia cells. FEBS Journal, 272, 4754–4773.PubMed
50.
Zurück zum Zitat Rossi, A., Kapahi, P., Natoli, G., Takahashi, T., Chen, Y., Karin, M., et al. (2000). Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature, 403, 103–108.PubMed Rossi, A., Kapahi, P., Natoli, G., Takahashi, T., Chen, Y., Karin, M., et al. (2000). Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature, 403, 103–108.PubMed
51.
Zurück zum Zitat Dutta, J., Fan, Y., Gupta, N., Fan, G., & Gelinas, C. (2006). Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene, 25, 6800–6816.PubMed Dutta, J., Fan, Y., Gupta, N., Fan, G., & Gelinas, C. (2006). Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene, 25, 6800–6816.PubMed
52.
Zurück zum Zitat Keightley, M. C., Sales, K. J., & Jabbour, H. N. (2010). PGF2alpha-F-prostanoid receptor signalling via ADAMTS1 modulates epithelial cell invasion and endothelial cell function in endometrial cancer. BMC Cancer, 10, 488.PubMed Keightley, M. C., Sales, K. J., & Jabbour, H. N. (2010). PGF2alpha-F-prostanoid receptor signalling via ADAMTS1 modulates epithelial cell invasion and endothelial cell function in endometrial cancer. BMC Cancer, 10, 488.PubMed
53.
Zurück zum Zitat Sales, K. J., List, T., Boddy, S. C., Williams, A. R., Anderson, R. A., Naor, Z., et al. (2005). A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Research, 65, 7707–7716.PubMed Sales, K. J., List, T., Boddy, S. C., Williams, A. R., Anderson, R. A., Naor, Z., et al. (2005). A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Research, 65, 7707–7716.PubMed
54.
Zurück zum Zitat Sales, K. J., Boddy, S. C., Williams, A. R., Anderson, R. A., & Jabbour, H. N. (2007). F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells. Endocrinology, 148, 3635–3644.PubMed Sales, K. J., Boddy, S. C., Williams, A. R., Anderson, R. A., & Jabbour, H. N. (2007). F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells. Endocrinology, 148, 3635–3644.PubMed
55.
Zurück zum Zitat Jabbour, H. N., Sales, K. J., Boddy, S. C., Anderson, R. A., & Williams, A. R. (2005). A positive feedback loop that regulates cyclooxygenase-2 expression and prostaglandin F2alpha synthesis via the F-series-prostanoid receptor and extracellular signal-regulated kinase 1/2 signaling pathway. Endocrinology, 146, 4657–4664.PubMed Jabbour, H. N., Sales, K. J., Boddy, S. C., Anderson, R. A., & Williams, A. R. (2005). A positive feedback loop that regulates cyclooxygenase-2 expression and prostaglandin F2alpha synthesis via the F-series-prostanoid receptor and extracellular signal-regulated kinase 1/2 signaling pathway. Endocrinology, 146, 4657–4664.PubMed
56.
Zurück zum Zitat Sales, K. J., Boddy, S. C., & Jabbour, H. N. (2008). F-prostanoid receptor alters adhesion, morphology and migration of endometrial adenocarcinoma cells. Oncogene, 27, 2466–2477.PubMed Sales, K. J., Boddy, S. C., & Jabbour, H. N. (2008). F-prostanoid receptor alters adhesion, morphology and migration of endometrial adenocarcinoma cells. Oncogene, 27, 2466–2477.PubMed
57.
Zurück zum Zitat Wallace, A. E., Catalano, R. D., Anderson, R. A., & Jabbour, H. N. (2011). Chemokine (C-C) motif ligand 20 is regulated by PGF(2alpha)-F-prostanoid receptor signalling in endometrial adenocarcinoma and promotes cell proliferation. Molecular and Cellular Endocrinology, 331, 129–135.PubMed Wallace, A. E., Catalano, R. D., Anderson, R. A., & Jabbour, H. N. (2011). Chemokine (C-C) motif ligand 20 is regulated by PGF(2alpha)-F-prostanoid receptor signalling in endometrial adenocarcinoma and promotes cell proliferation. Molecular and Cellular Endocrinology, 331, 129–135.PubMed
58.
Zurück zum Zitat Sales, K. J., Maldonado-Perez, D., Grant, V., Catalano, R. D., Wilson, M. R., Brown, P., et al. (2009). Prostaglandin F(2alpha)-F-prostanoid receptor regulates CXCL8 expression in endometrial adenocarcinoma cells via the calcium-calcineurin-NFAT pathway. Biochimica et Biophysica Acta, 1793, 1917–1928.PubMed Sales, K. J., Maldonado-Perez, D., Grant, V., Catalano, R. D., Wilson, M. R., Brown, P., et al. (2009). Prostaglandin F(2alpha)-F-prostanoid receptor regulates CXCL8 expression in endometrial adenocarcinoma cells via the calcium-calcineurin-NFAT pathway. Biochimica et Biophysica Acta, 1793, 1917–1928.PubMed
59.
Zurück zum Zitat Wallace, A. E., Sales, K. J., Catalano, R. D., Anderson, R. A., Williams, A. R., Wilson, M. R., et al. (2009). Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma. Cancer Research, 69, 5726–5733.PubMed Wallace, A. E., Sales, K. J., Catalano, R. D., Anderson, R. A., Williams, A. R., Wilson, M. R., et al. (2009). Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma. Cancer Research, 69, 5726–5733.PubMed
60.
Zurück zum Zitat Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. Journal of Biological Chemistry, 282, 11613–11617.PubMed Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. Journal of Biological Chemistry, 282, 11613–11617.PubMed
61.
Zurück zum Zitat Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: subtypes and signaling. Annual Review of Pharmacology and Toxicology, 41, 661–690.PubMed Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: subtypes and signaling. Annual Review of Pharmacology and Toxicology, 41, 661–690.PubMed
62.
Zurück zum Zitat Nakanishi, M., Menoret, A., Tanaka, T., Miyamoto, S., Montrose, D.C., Vella, A., and Rosenberg, D.W. (2011). Selective PGE2 suppression impairs colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res (Phila), 4(8), 1198–1208. Nakanishi, M., Menoret, A., Tanaka, T., Miyamoto, S., Montrose, D.C., Vella, A., and Rosenberg, D.W. (2011). Selective PGE2 suppression impairs colon carcinogenesis and modifies local mucosal immunity. Cancer Prev Res (Phila), 4(8), 1198–1208.
63.
Zurück zum Zitat Hanaka, H., Pawelzik, S. C., Johnsen, J. I., Rakonjac, M., Terawaki, K., Rasmuson, A., et al. (2009). Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 18757–18762.PubMed Hanaka, H., Pawelzik, S. C., Johnsen, J. I., Rakonjac, M., Terawaki, K., Rasmuson, A., et al. (2009). Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 18757–18762.PubMed
64.
Zurück zum Zitat Regan, J. W. (2003). EP2 and EP4 prostanoid receptor signaling. Life Sciences, 74, 143–153.PubMed Regan, J. W. (2003). EP2 and EP4 prostanoid receptor signaling. Life Sciences, 74, 143–153.PubMed
65.
Zurück zum Zitat Fujino, H., Xu, W., & Regan, J. W. (2003). Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. Journal of Biological Chemistry, 278, 12151–12156.PubMed Fujino, H., Xu, W., & Regan, J. W. (2003). Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. Journal of Biological Chemistry, 278, 12151–12156.PubMed
66.
Zurück zum Zitat Pozzi, A., Yan, X., Macias-Perez, I., Wei, S., Hata, A. N., Breyer, R. M., et al. (2004). Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. Journal of Biological Chemistry, 279, 29797–29804.PubMed Pozzi, A., Yan, X., Macias-Perez, I., Wei, S., Hata, A. N., Breyer, R. M., et al. (2004). Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. Journal of Biological Chemistry, 279, 29797–29804.PubMed
67.
Zurück zum Zitat Macias-Perez, I. M., Zent, R., Carmosino, M., Breyer, M. D., Breyer, R. M., & Pozzi, A. (2008). Mouse EP3 alpha, beta, and gamma receptor variants reduce tumor cell proliferation and tumorigenesis in vivo. Journal of Biological Chemistry, 283, 12538–12545.PubMed Macias-Perez, I. M., Zent, R., Carmosino, M., Breyer, M. D., Breyer, R. M., & Pozzi, A. (2008). Mouse EP3 alpha, beta, and gamma receptor variants reduce tumor cell proliferation and tumorigenesis in vivo. Journal of Biological Chemistry, 283, 12538–12545.PubMed
68.
Zurück zum Zitat Surh, I., Rundhaug, J., Pavone, A., Mikulec, C., Abel, E., & Fischer, S. M. (2011). Upregulation of the EP1 receptor for prostaglandin E(2) promotes skin tumor progression. Molecular Carcinogenesis, 50, 458–468.PubMed Surh, I., Rundhaug, J., Pavone, A., Mikulec, C., Abel, E., & Fischer, S. M. (2011). Upregulation of the EP1 receptor for prostaglandin E(2) promotes skin tumor progression. Molecular Carcinogenesis, 50, 458–468.PubMed
69.
Zurück zum Zitat Yang, S. F., Chen, M. K., Hsieh, Y. S., Chung, T. T., Hsieh, Y. H., Lin, C. W., et al. (2010). Prostaglandin E2/EP1 signaling pathway enhances intercellular adhesion molecule 1 (ICAM-1) expression and cell motility in oral cancer cells. Journal of Biological Chemistry, 285, 29808–29816.PubMed Yang, S. F., Chen, M. K., Hsieh, Y. S., Chung, T. T., Hsieh, Y. H., Lin, C. W., et al. (2010). Prostaglandin E2/EP1 signaling pathway enhances intercellular adhesion molecule 1 (ICAM-1) expression and cell motility in oral cancer cells. Journal of Biological Chemistry, 285, 29808–29816.PubMed
70.
Zurück zum Zitat Liu, J. F., Fong, Y. C., Chang, C. S., Huang, C. Y., Chen, H. T., Yang, W. H., et al. (2010). Cyclooxygenase-2 enhances alpha2beta1 integrin expression and cell migration via EP1 dependent signaling pathway in human chondrosarcoma cells. Molecular Cancer, 9, 43.PubMed Liu, J. F., Fong, Y. C., Chang, C. S., Huang, C. Y., Chen, H. T., Yang, W. H., et al. (2010). Cyclooxygenase-2 enhances alpha2beta1 integrin expression and cell migration via EP1 dependent signaling pathway in human chondrosarcoma cells. Molecular Cancer, 9, 43.PubMed
71.
Zurück zum Zitat Ma, X., Kundu, N., Ioffe, O. B., Goloubeva, O., Konger, R., Baquet, C., et al. (2010). Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Molecular Cancer Research, 8, 1310–1318.PubMed Ma, X., Kundu, N., Ioffe, O. B., Goloubeva, O., Konger, R., Baquet, C., et al. (2010). Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Molecular Cancer Research, 8, 1310–1318.PubMed
72.
Zurück zum Zitat Axelsson, H., Lonnroth, C., Wang, W., Svanberg, E., & Lundholm, K. (2005). Cyclooxygenase inhibition in early onset of tumor growth and related angiogenesis evaluated in EP1 and EP3 knockout tumor-bearing mice. Angiogenesis, 8, 339–348.PubMed Axelsson, H., Lonnroth, C., Wang, W., Svanberg, E., & Lundholm, K. (2005). Cyclooxygenase inhibition in early onset of tumor growth and related angiogenesis evaluated in EP1 and EP3 knockout tumor-bearing mice. Angiogenesis, 8, 339–348.PubMed
73.
Zurück zum Zitat Sung, Y. M., He, G., & Fischer, S. M. (2005). Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Research, 65, 9304–9311.PubMed Sung, Y. M., He, G., & Fischer, S. M. (2005). Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Research, 65, 9304–9311.PubMed
74.
Zurück zum Zitat Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. The FASEB Journal, 24, 1105–1116.PubMed Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. The FASEB Journal, 24, 1105–1116.PubMed
75.
Zurück zum Zitat Kuo, K. T., Wang, H. W., Chou, T. Y., Hsu, W. H., Hsu, H. S., Lin, C. H., et al. (2009). Prognostic role of PGE2 receptor EP2 in esophageal squamous cell carcinoma. Annals of Surgical Oncology, 16, 352–360.PubMed Kuo, K. T., Wang, H. W., Chou, T. Y., Hsu, W. H., Hsu, H. S., Lin, C. H., et al. (2009). Prognostic role of PGE2 receptor EP2 in esophageal squamous cell carcinoma. Annals of Surgical Oncology, 16, 352–360.PubMed
76.
Zurück zum Zitat Takahashi, T., Ogawa, H., Izumi, K., & Uehara, H. (2011). The soluble EP2 receptor FuEP2/Ex2 suppresses endometrial cancer cell growth in an orthotopic xenograft model in nude mice. Cancer Letters, 306, 67–75.PubMed Takahashi, T., Ogawa, H., Izumi, K., & Uehara, H. (2011). The soluble EP2 receptor FuEP2/Ex2 suppresses endometrial cancer cell growth in an orthotopic xenograft model in nude mice. Cancer Letters, 306, 67–75.PubMed
77.
Zurück zum Zitat Kubo, H., Hosono, K., Suzuki, T., Ogawa, Y., Kato, H., Kamata, H., et al. (2010). Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis. Biomedicine and Pharmacotherapy, 64, 101–106. Kubo, H., Hosono, K., Suzuki, T., Ogawa, Y., Kato, H., Kamata, H., et al. (2010). Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis. Biomedicine and Pharmacotherapy, 64, 101–106.
78.
Zurück zum Zitat Amano, H., Ito, Y., Suzuki, T., Kato, S., Matsui, Y., Ogawa, F., et al. (2009). Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase-9 and vascular endothelial growth factor during enhancement of tumor metastasis. Cancer Science, 100, 2318–2324.PubMed Amano, H., Ito, Y., Suzuki, T., Kato, S., Matsui, Y., Ogawa, F., et al. (2009). Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase-9 and vascular endothelial growth factor during enhancement of tumor metastasis. Cancer Science, 100, 2318–2324.PubMed
79.
Zurück zum Zitat Amano, H., Hayashi, I., Endo, H., Kitasato, H., Yamashina, S., Maruyama, T., et al. (2003). Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. The Journal of Experimental Medicine, 197, 221–232.PubMed Amano, H., Hayashi, I., Endo, H., Kitasato, H., Yamashina, S., Maruyama, T., et al. (2003). Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. The Journal of Experimental Medicine, 197, 221–232.PubMed
80.
Zurück zum Zitat Shoji, Y., Takahashi, M., Kitamura, T., Watanabe, K., Kawamori, T., Maruyama, T., et al. (2004). Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut, 53, 1151–1158.PubMed Shoji, Y., Takahashi, M., Kitamura, T., Watanabe, K., Kawamori, T., Maruyama, T., et al. (2004). Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut, 53, 1151–1158.PubMed
81.
Zurück zum Zitat Segi, E., Sugimoto, Y., Yamasaki, A., Aze, Y., Oida, H., Nishimura, T., et al. (1998). Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochemical and Biophysical Research Communications, 246, 7–12.PubMed Segi, E., Sugimoto, Y., Yamasaki, A., Aze, Y., Oida, H., Nishimura, T., et al. (1998). Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochemical and Biophysical Research Communications, 246, 7–12.PubMed
82.
Zurück zum Zitat Cherukuri, D. P., Chen, X. B., Goulet, A. C., Young, R. N., Han, Y., Heimark, R. L., et al. (2007). The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells. Experimental Cell Research, 313, 2969–2979.PubMed Cherukuri, D. P., Chen, X. B., Goulet, A. C., Young, R. N., Han, Y., Heimark, R. L., et al. (2007). The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells. Experimental Cell Research, 313, 2969–2979.PubMed
83.
Zurück zum Zitat Hawcroft, G., Ko, C. W., & Hull, M. A. (2007). Prostaglandin E2-EP4 receptor signalling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells. Oncogene, 26, 3006–3019.PubMed Hawcroft, G., Ko, C. W., & Hull, M. A. (2007). Prostaglandin E2-EP4 receptor signalling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells. Oncogene, 26, 3006–3019.PubMed
84.
Zurück zum Zitat Kim, J. I., Lakshmikanthan, V., Frilot, N., & Daaka, Y. (2010). Prostaglandin E2 promotes lung cancer cell migration via EP4-betaArrestin1-c-Src signalsome. Molecular Cancer Research, 8, 569–577.PubMed Kim, J. I., Lakshmikanthan, V., Frilot, N., & Daaka, Y. (2010). Prostaglandin E2 promotes lung cancer cell migration via EP4-betaArrestin1-c-Src signalsome. Molecular Cancer Research, 8, 569–577.PubMed
85.
Zurück zum Zitat Yang, L., Huang, Y., Porta, R., Yanagisawa, K., Gonzalez, A., Segi, E., et al. (2006). Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Research, 66, 9665–9672.PubMed Yang, L., Huang, Y., Porta, R., Yanagisawa, K., Gonzalez, A., Segi, E., et al. (2006). Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Research, 66, 9665–9672.PubMed
86.
Zurück zum Zitat Terada, N., Shimizu, Y., Kamba, T., Inoue, T., Maeno, A., Kobayashi, T., et al. (2010). Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Research, 70, 1606–1615.PubMed Terada, N., Shimizu, Y., Kamba, T., Inoue, T., Maeno, A., Kobayashi, T., et al. (2010). Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Research, 70, 1606–1615.PubMed
87.
Zurück zum Zitat Schneider, A., Guan, Y., Zhang, Y., Magnuson, M. A., Pettepher, C., Loftin, C. D., et al. (2004). Generation of a conditional allele of the mouse prostaglandin EP4 receptor. Genesis, 40, 7–14.PubMed Schneider, A., Guan, Y., Zhang, Y., Magnuson, M. A., Pettepher, C., Loftin, C. D., et al. (2004). Generation of a conditional allele of the mouse prostaglandin EP4 receptor. Genesis, 40, 7–14.PubMed
88.
Zurück zum Zitat Rao, R., Redha, R., Macias-Perez, I., Su, Y., Hao, C., Zent, R., et al. (2007). Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. Journal of Biological Chemistry, 282, 16959–16968.PubMed Rao, R., Redha, R., Macias-Perez, I., Su, Y., Hao, C., Zent, R., et al. (2007). Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. Journal of Biological Chemistry, 282, 16959–16968.PubMed
89.
Zurück zum Zitat Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O'Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26, 503–524.PubMed Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O'Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Reviews, 26, 503–524.PubMed
90.
Zurück zum Zitat Soberman, R. J., Harper, T. W., Betteridge, D., Lewis, R. A., & Austen, K. F. (1985). Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid omega-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes. Journal of Biological Chemistry, 260, 4508–4515.PubMed Soberman, R. J., Harper, T. W., Betteridge, D., Lewis, R. A., & Austen, K. F. (1985). Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid omega-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes. Journal of Biological Chemistry, 260, 4508–4515.PubMed
91.
Zurück zum Zitat Bannenberg, G., & Serhan, C. N. (2010). Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochimica et Biophysica Acta, 1801, 1260–1273.PubMed Bannenberg, G., & Serhan, C. N. (2010). Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochimica et Biophysica Acta, 1801, 1260–1273.PubMed
92.
Zurück zum Zitat Wasilewicz, M. P., Kolodziej, B., Bojulko, T., Kaczmarczyk, M., Sulzyc-Bielicka, V., Bielicki, D., et al. (2010). Overexpression of 5-lipoxygenase in sporadic colonic adenomas and a possible new aspect of colon carcinogenesis. International Journal of Colorectal Disease, 25, 1079–1085.PubMed Wasilewicz, M. P., Kolodziej, B., Bojulko, T., Kaczmarczyk, M., Sulzyc-Bielicka, V., Bielicki, D., et al. (2010). Overexpression of 5-lipoxygenase in sporadic colonic adenomas and a possible new aspect of colon carcinogenesis. International Journal of Colorectal Disease, 25, 1079–1085.PubMed
93.
Zurück zum Zitat Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., et al. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research, 14, 6525–6530.PubMed Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., et al. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research, 14, 6525–6530.PubMed
94.
Zurück zum Zitat Metzger, K., Angres, G., Maier, H., & Lehmann, W. D. (1995). Lipoxygenase products in human saliva: patients with oral cancer compared to controls. Free Radical Biology & Medicine, 18, 185–194. Metzger, K., Angres, G., Maier, H., & Lehmann, W. D. (1995). Lipoxygenase products in human saliva: patients with oral cancer compared to controls. Free Radical Biology & Medicine, 18, 185–194.
95.
Zurück zum Zitat Yang, P., Sun, Z., Chan, D., Cartwright, C. A., Vijjeswarapu, M., Ding, J., et al. (2008). Zyflamend reduces LTB4 formation and prevents oral carcinogenesis in a 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced hamster cheek pouch model. Carcinogenesis, 29, 2182–2189.PubMed Yang, P., Sun, Z., Chan, D., Cartwright, C. A., Vijjeswarapu, M., Ding, J., et al. (2008). Zyflamend reduces LTB4 formation and prevents oral carcinogenesis in a 7,12-dimethylbenz[alpha]anthracene (DMBA)-induced hamster cheek pouch model. Carcinogenesis, 29, 2182–2189.PubMed
96.
Zurück zum Zitat Chen, Y., Hu, Y., Zhang, H., Peng, C., & Li, S. (2009). Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nature Genetics, 41, 783–792.PubMed Chen, Y., Hu, Y., Zhang, H., Peng, C., & Li, S. (2009). Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nature Genetics, 41, 783–792.PubMed
97.
Zurück zum Zitat Shin, V. Y., Jin, H. C., Ng, E. K., Sung, J. J., Chu, K. M., & Cho, C. H. (2010). Activation of 5-lipoxygenase is required for nicotine mediated epithelial-mesenchymal transition and tumor cell growth. Cancer Letters, 292, 237–245.PubMed Shin, V. Y., Jin, H. C., Ng, E. K., Sung, J. J., Chu, K. M., & Cho, C. H. (2010). Activation of 5-lipoxygenase is required for nicotine mediated epithelial-mesenchymal transition and tumor cell growth. Cancer Letters, 292, 237–245.PubMed
98.
Zurück zum Zitat Schroeder, C. P., Yang, P., Newman, R. A., & Lotan, R. (2007). Simultaneous inhibition of COX-2 and 5-LOX activities augments growth arrest and death of premalignant and malignant human lung cell lines. Journal of Experimental Therapeutics and Oncology, 6, 183–192.PubMed Schroeder, C. P., Yang, P., Newman, R. A., & Lotan, R. (2007). Simultaneous inhibition of COX-2 and 5-LOX activities augments growth arrest and death of premalignant and malignant human lung cell lines. Journal of Experimental Therapeutics and Oncology, 6, 183–192.PubMed
99.
Zurück zum Zitat Hayashi, T., Nishiyama, K., & Shirahama, T. (2006). Inhibition of 5-lipoxygenase pathway suppresses the growth of bladder cancer cells. International Journal of Urology, 13, 1086–1091.PubMed Hayashi, T., Nishiyama, K., & Shirahama, T. (2006). Inhibition of 5-lipoxygenase pathway suppresses the growth of bladder cancer cells. International Journal of Urology, 13, 1086–1091.PubMed
100.
Zurück zum Zitat Chen, X., Wang, S., Wu, N., & Yang, C. S. (2004). Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Current Cancer Drug Targets, 4, 267–283.PubMed Chen, X., Wang, S., Wu, N., & Yang, C. S. (2004). Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Current Cancer Drug Targets, 4, 267–283.PubMed
101.
Zurück zum Zitat Peters-Golden, M., & Brock, T. G. (2003). 5-Lipoxygenase and FLAP. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 69, 99–109.PubMed Peters-Golden, M., & Brock, T. G. (2003). 5-Lipoxygenase and FLAP. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 69, 99–109.PubMed
102.
Zurück zum Zitat Schweiger, D., Furstenberger, G., & Krieg, P. (2007). Inducible expression of 15-lipoxygenase-2 and 8-lipoxygenase inhibits cell growth via common signaling pathways. Journal of Lipid Research, 48, 553–564.PubMed Schweiger, D., Furstenberger, G., & Krieg, P. (2007). Inducible expression of 15-lipoxygenase-2 and 8-lipoxygenase inhibits cell growth via common signaling pathways. Journal of Lipid Research, 48, 553–564.PubMed
103.
Zurück zum Zitat Muga, S. J., Thuillier, P., Pavone, A., Rundhaug, J. E., Boeglin, W. E., Jisaka, M., et al. (2000). 8S-Lipoxygenase products activate peroxisome proliferator-activated receptor alpha and induce differentiation in murine keratinocytes. Cell Growth & Differentiation, 11, 447–454. Muga, S. J., Thuillier, P., Pavone, A., Rundhaug, J. E., Boeglin, W. E., Jisaka, M., et al. (2000). 8S-Lipoxygenase products activate peroxisome proliferator-activated receptor alpha and induce differentiation in murine keratinocytes. Cell Growth & Differentiation, 11, 447–454.
104.
Zurück zum Zitat Burger, F., Krieg, P., Kinzig, A., Schurich, B., Marks, F., & Furstenberger, G. (1999). Constitutive expression of 8-lipoxygenase in papillomas and clastogenic effects of lipoxygenase-derived arachidonic acid metabolites in keratinocytes. Molecular Carcinogenesis, 24, 108–117.PubMed Burger, F., Krieg, P., Kinzig, A., Schurich, B., Marks, F., & Furstenberger, G. (1999). Constitutive expression of 8-lipoxygenase in papillomas and clastogenic effects of lipoxygenase-derived arachidonic acid metabolites in keratinocytes. Molecular Carcinogenesis, 24, 108–117.PubMed
105.
Zurück zum Zitat Hagmann, W., Gao, X., Zacharek, A., Wojciechowski, L. A., & Honn, K. V. (1995). 12-Lipoxygenase in Lewis lung carcinoma cells: molecular identity, intracellular distribution of activity and protein, and Ca(2+)-dependent translocation from cytosol to membranes. Prostaglandins, 49, 49–62.PubMed Hagmann, W., Gao, X., Zacharek, A., Wojciechowski, L. A., & Honn, K. V. (1995). 12-Lipoxygenase in Lewis lung carcinoma cells: molecular identity, intracellular distribution of activity and protein, and Ca(2+)-dependent translocation from cytosol to membranes. Prostaglandins, 49, 49–62.PubMed
106.
Zurück zum Zitat Gao, X., Grignon, D. J., Chbihi, T., Zacharek, A., Chen, Y. Q., Sakr, W., et al. (1995). Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology, 46, 227–237.PubMed Gao, X., Grignon, D. J., Chbihi, T., Zacharek, A., Chen, Y. Q., Sakr, W., et al. (1995). Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology, 46, 227–237.PubMed
107.
Zurück zum Zitat Nithipatikom, K., Isbell, M. A., See, W. A., & Campbell, W. B. (2006). Elevated 12- and 20-hydroxyeicosatetraenoic acid in urine of patients with prostatic diseases. Cancer Letters, 233, 219–225.PubMed Nithipatikom, K., Isbell, M. A., See, W. A., & Campbell, W. B. (2006). Elevated 12- and 20-hydroxyeicosatetraenoic acid in urine of patients with prostatic diseases. Cancer Letters, 233, 219–225.PubMed
108.
Zurück zum Zitat Tang, D. G., Chen, Y. Q., & Honn, K. V. (1996). Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93, 5241–5246.PubMed Tang, D. G., Chen, Y. Q., & Honn, K. V. (1996). Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93, 5241–5246.PubMed
109.
Zurück zum Zitat Wong, B. C., Wang, W. P., Cho, C. H., Fan, X. M., Lin, M. C., Kung, H. F., et al. (2001). 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. Carcinogenesis, 22, 1349–1354.PubMed Wong, B. C., Wang, W. P., Cho, C. H., Fan, X. M., Lin, M. C., Kung, H. F., et al. (2001). 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. Carcinogenesis, 22, 1349–1354.PubMed
110.
Zurück zum Zitat Pidgeon, G. P., Kandouz, M., Meram, A., & Honn, K. V. (2002). Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Research, 62, 2721–2727.PubMed Pidgeon, G. P., Kandouz, M., Meram, A., & Honn, K. V. (2002). Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Research, 62, 2721–2727.PubMed
111.
Zurück zum Zitat Nie, D., Hillman, G. G., Geddes, T., Tang, K., Pierson, C., Grignon, D. J., et al. (1998). Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Research, 58, 4047–4051.PubMed Nie, D., Hillman, G. G., Geddes, T., Tang, K., Pierson, C., Grignon, D. J., et al. (1998). Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Research, 58, 4047–4051.PubMed
112.
Zurück zum Zitat Tang, D. G., Renaud, C., Stojakovic, S., Diglio, C. A., Porter, A., & Honn, K. V. (1995). 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: its potential role in angiogenesis. Biochemical and Biophysical Research Communications, 211, 462–468.PubMed Tang, D. G., Renaud, C., Stojakovic, S., Diglio, C. A., Porter, A., & Honn, K. V. (1995). 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: its potential role in angiogenesis. Biochemical and Biophysical Research Communications, 211, 462–468.PubMed
113.
Zurück zum Zitat Nie, D., Tang, K., Diglio, C., & Honn, K. V. (2000). Eicosanoid regulation of angiogenesis: role of endothelial arachidonate 12-lipoxygenase. Blood, 95, 2304–2311.PubMed Nie, D., Tang, K., Diglio, C., & Honn, K. V. (2000). Eicosanoid regulation of angiogenesis: role of endothelial arachidonate 12-lipoxygenase. Blood, 95, 2304–2311.PubMed
114.
Zurück zum Zitat Nie, D., Krishnamoorthy, S., Jin, R., Tang, K., Chen, Y., Qiao, Y., et al. (2006). Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. Journal of Biological Chemistry, 281, 18601–18609.PubMed Nie, D., Krishnamoorthy, S., Jin, R., Tang, K., Chen, Y., Qiao, Y., et al. (2006). Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. Journal of Biological Chemistry, 281, 18601–18609.PubMed
115.
Zurück zum Zitat Tang, D. G., Timar, J., Grossi, I. M., Renaud, C., Kimler, V. A., Diglio, C. A., et al. (1993). The lipoxygenase metabolite, 12(S)-HETE, induces a protein kinase C-dependent cytoskeletal rearrangement and retraction of microvascular endothelial cells. Experimental Cell Research, 207, 361–375.PubMed Tang, D. G., Timar, J., Grossi, I. M., Renaud, C., Kimler, V. A., Diglio, C. A., et al. (1993). The lipoxygenase metabolite, 12(S)-HETE, induces a protein kinase C-dependent cytoskeletal rearrangement and retraction of microvascular endothelial cells. Experimental Cell Research, 207, 361–375.PubMed
116.
Zurück zum Zitat Tang, D. G., Chen, Y. Q., Diglio, C. A., & Honn, K. V. (1993). Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor. The Journal of Cell Biology, 121, 689–704.PubMed Tang, D. G., Chen, Y. Q., Diglio, C. A., & Honn, K. V. (1993). Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor. The Journal of Cell Biology, 121, 689–704.PubMed
117.
Zurück zum Zitat Brooks, P. C., Clark, R. A., & Cheresh, D. A. (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 264, 569–571.PubMed Brooks, P. C., Clark, R. A., & Cheresh, D. A. (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 264, 569–571.PubMed
118.
Zurück zum Zitat Kurahashi, Y., Herbertsson, H., Soderstrom, M., Rosenfeld, M. G., & Hammarstrom, S. (2000). A 12(S)-hydroxyeicosatetraenoic acid receptor interacts with steroid receptor coactivator-1. Proceedings of the National Academy of Sciences of the United States of America, 97, 5779–5783.PubMed Kurahashi, Y., Herbertsson, H., Soderstrom, M., Rosenfeld, M. G., & Hammarstrom, S. (2000). A 12(S)-hydroxyeicosatetraenoic acid receptor interacts with steroid receptor coactivator-1. Proceedings of the National Academy of Sciences of the United States of America, 97, 5779–5783.PubMed
119.
Zurück zum Zitat Herbertsson, H., & Hammarstrom, S. (1997). Cytosolic 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid binding sites in carcinoma cells. Advances in Experimental Medicine and Biology, 400A, 287–293.PubMed Herbertsson, H., & Hammarstrom, S. (1997). Cytosolic 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid binding sites in carcinoma cells. Advances in Experimental Medicine and Biology, 400A, 287–293.PubMed
120.
Zurück zum Zitat Herbertsson, H., Kuhme, T., Evertsson, U., Wigren, J., & Hammarstrom, S. (1998). Identification of subunits of the 650 kDa 12(S)-HETE binding complex in carcinoma cells. Journal of Lipid Research, 39, 237–244.PubMed Herbertsson, H., Kuhme, T., Evertsson, U., Wigren, J., & Hammarstrom, S. (1998). Identification of subunits of the 650 kDa 12(S)-HETE binding complex in carcinoma cells. Journal of Lipid Research, 39, 237–244.PubMed
121.
Zurück zum Zitat Herbertsson, H., Kuhme, T., & Hammarstrom, S. (1999). Subunits and cellular occurrence of the 12(S)-HETE binding complex. Advances in Experimental Medicine and Biology, 469, 253–258.PubMed Herbertsson, H., Kuhme, T., & Hammarstrom, S. (1999). Subunits and cellular occurrence of the 12(S)-HETE binding complex. Advances in Experimental Medicine and Biology, 469, 253–258.PubMed
122.
Zurück zum Zitat Herbertsson, H., Kuhme, T., & Hammarstrom, S. (1999). The 650-kDa 12(S)-hydroxyeicosatetraenoic acid binding complex: occurrence in human platelets, identification of hsp90 as a constituent, and binding properties of its 50-kDa subunit. Archives of Biochemistry and Biophysics, 367, 33–38.PubMed Herbertsson, H., Kuhme, T., & Hammarstrom, S. (1999). The 650-kDa 12(S)-hydroxyeicosatetraenoic acid binding complex: occurrence in human platelets, identification of hsp90 as a constituent, and binding properties of its 50-kDa subunit. Archives of Biochemistry and Biophysics, 367, 33–38.PubMed
123.
Zurück zum Zitat Moreno, J. J. (2009). New aspects of the role of hydroxyeicosatetraenoic acids in cell growth and cancer development. Biochemical Pharmacology, 77, 1–10.PubMed Moreno, J. J. (2009). New aspects of the role of hydroxyeicosatetraenoic acids in cell growth and cancer development. Biochemical Pharmacology, 77, 1–10.PubMed
124.
Zurück zum Zitat Jiang, W. G., Watkins, G., Douglas-Jones, A., & Mansel, R. E. (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 235–245.PubMed Jiang, W. G., Watkins, G., Douglas-Jones, A., & Mansel, R. E. (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 235–245.PubMed
125.
Zurück zum Zitat Shureiqi, I., Wu, Y., Chen, D., Yang, X. L., Guan, B., Morris, J. S., et al. (2005). The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Research, 65, 11486–11492.PubMed Shureiqi, I., Wu, Y., Chen, D., Yang, X. L., Guan, B., Morris, J. S., et al. (2005). The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Research, 65, 11486–11492.PubMed
126.
Zurück zum Zitat Freedman, R. S., Wang, E., Voiculescu, S., Patenia, R., Bassett, R. L., Jr., Deavers, M., et al. (2007). Comparative analysis of peritoneum and tumor eicosanoids and pathways in advanced ovarian cancer. Clinical Cancer Research, 13, 5736–5744.PubMed Freedman, R. S., Wang, E., Voiculescu, S., Patenia, R., Bassett, R. L., Jr., Deavers, M., et al. (2007). Comparative analysis of peritoneum and tumor eicosanoids and pathways in advanced ovarian cancer. Clinical Cancer Research, 13, 5736–5744.PubMed
127.
Zurück zum Zitat Tang, D. G., Bhatia, B., Tang, S., & Schneider-Broussard, R. (2007). 15-Lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins & Other Lipid Mediators, 82, 135–146. Tang, D. G., Bhatia, B., Tang, S., & Schneider-Broussard, R. (2007). 15-Lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins & Other Lipid Mediators, 82, 135–146.
128.
Zurück zum Zitat Tang, S., Bhatia, B., Maldonado, C. J., Yang, P., Newman, R. A., Liu, J., et al. (2002). Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. Journal of Biological Chemistry, 277, 16189–16201.PubMed Tang, S., Bhatia, B., Maldonado, C. J., Yang, P., Newman, R. A., Liu, J., et al. (2002). Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. Journal of Biological Chemistry, 277, 16189–16201.PubMed
129.
Zurück zum Zitat Bhatia, B., Tang, S., Yang, P., Doll, A., Aumueller, G., Newman, R. A., et al. (2005). Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene, 24, 3583–3595.PubMed Bhatia, B., Tang, S., Yang, P., Doll, A., Aumueller, G., Newman, R. A., et al. (2005). Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene, 24, 3583–3595.PubMed
130.
Zurück zum Zitat Shappell, S. B., Boeglin, W. E., Olson, S. J., Kasper, S., & Brash, A. R. (1999). 15-Lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. American Journal of Pathology, 155, 235–245.PubMed Shappell, S. B., Boeglin, W. E., Olson, S. J., Kasper, S., & Brash, A. R. (1999). 15-Lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. American Journal of Pathology, 155, 235–245.PubMed
131.
Zurück zum Zitat Suraneni, M. V., Schneider-Broussard, R., Moore, J. R., Davis, T. C., Maldonado, C. J., Li, H., et al. (2010). Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence. Oncogene, 29, 4261–4275.PubMed Suraneni, M. V., Schneider-Broussard, R., Moore, J. R., Davis, T. C., Maldonado, C. J., Li, H., et al. (2010). Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence. Oncogene, 29, 4261–4275.PubMed
132.
Zurück zum Zitat Zuo, X., Wu, Y., Morris, J. S., Stimmel, J. B., Leesnitzer, L. M., Fischer, S. M., et al. (2006). Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 25, 1225–1241.PubMed Zuo, X., Wu, Y., Morris, J. S., Stimmel, J. B., Leesnitzer, L. M., Fischer, S. M., et al. (2006). Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 25, 1225–1241.PubMed
133.
Zurück zum Zitat Shureiqi, I., Jiang, W., Zuo, X., Wu, Y., Stimmel, J. B., Leesnitzer, L. M., et al. (2003). The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9968–9973.PubMed Shureiqi, I., Jiang, W., Zuo, X., Wu, Y., Stimmel, J. B., Leesnitzer, L. M., et al. (2003). The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9968–9973.PubMed
134.
Zurück zum Zitat Keshamouni, V. G., Reddy, R. C., Arenberg, D. A., Joel, B., Thannickal, V. J., Kalemkerian, G. P., et al. (2004). Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene, 23, 100–108.PubMed Keshamouni, V. G., Reddy, R. C., Arenberg, D. A., Joel, B., Thannickal, V. J., Kalemkerian, G. P., et al. (2004). Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression in non-small-cell lung cancer. Oncogene, 23, 100–108.PubMed
135.
Zurück zum Zitat Yuan, H., Li, M. Y., Ma, L. T., Hsin, M. K., Mok, T. S., Underwood, M. J., et al. (2010). 15-Lipoxygenases and its metabolites 15(S)-HETE and 13(S)-HODE in the development of non-small cell lung cancer. Thorax, 65, 321–326.PubMed Yuan, H., Li, M. Y., Ma, L. T., Hsin, M. K., Mok, T. S., Underwood, M. J., et al. (2010). 15-Lipoxygenases and its metabolites 15(S)-HETE and 13(S)-HODE in the development of non-small cell lung cancer. Thorax, 65, 321–326.PubMed
136.
Zurück zum Zitat Nixon, J. B., Kim, K. S., Lamb, P. W., Bottone, F. G., & Eling, T. E. (2004). 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 7–15.PubMed Nixon, J. B., Kim, K. S., Lamb, P. W., Bottone, F. G., & Eling, T. E. (2004). 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 7–15.PubMed
137.
Zurück zum Zitat Mao, J. T., Nie, W. X., Tsu, I. H., Jin, Y. S., Rao, J. Y., Lu, Q. Y., et al. (2010). White tea extract induces apoptosis in non-small cell lung cancer cells: the role of peroxisome proliferator-activated receptor-γ and 15-lipoxygenases. Cancer Prevention Research (Philadelphia, Pa.), 3, 1132–1140. Mao, J. T., Nie, W. X., Tsu, I. H., Jin, Y. S., Rao, J. Y., Lu, Q. Y., et al. (2010). White tea extract induces apoptosis in non-small cell lung cancer cells: the role of peroxisome proliferator-activated receptor-γ and 15-lipoxygenases. Cancer Prevention Research (Philadelphia, Pa.), 3, 1132–1140.
138.
Zurück zum Zitat Harats, D., Ben-Shushan, D., Cohen, H., Gonen, A., Barshack, I., Goldberg, I., et al. (2005). Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Letters, 229, 127–134.PubMed Harats, D., Ben-Shushan, D., Cohen, H., Gonen, A., Barshack, I., Goldberg, I., et al. (2005). Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Letters, 229, 127–134.PubMed
139.
Zurück zum Zitat Viita, H., Markkanen, J., Eriksson, E., Nurminen, M., Kinnunen, K., Babu, M., et al. (2008). 15-Lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circulation Research, 102, 177–184.PubMed Viita, H., Markkanen, J., Eriksson, E., Nurminen, M., Kinnunen, K., Babu, M., et al. (2008). 15-Lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circulation Research, 102, 177–184.PubMed
140.
Zurück zum Zitat Sauer, L. A., Dauchy, R. T., Blask, D. E., Armstrong, B. J., & Scalici, S. (1999). 13-Hydroxyoctadecadienoic acid is the mitogenic signal for linoleic acid-dependent growth in rat hepatoma 7288CTC in vivo. Cancer Research, 59, 4688–4692.PubMed Sauer, L. A., Dauchy, R. T., Blask, D. E., Armstrong, B. J., & Scalici, S. (1999). 13-Hydroxyoctadecadienoic acid is the mitogenic signal for linoleic acid-dependent growth in rat hepatoma 7288CTC in vivo. Cancer Research, 59, 4688–4692.PubMed
141.
Zurück zum Zitat Kelavkar, U. P., Cohen, C., Kamitani, H., Eling, T. E., & Badr, K. F. (2000). Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis, 21, 1777–1787.PubMed Kelavkar, U. P., Cohen, C., Kamitani, H., Eling, T. E., & Badr, K. F. (2000). Concordant induction of 15-lipoxygenase-1 and mutant p53 expression in human prostate adenocarcinoma: correlation with Gleason staging. Carcinogenesis, 21, 1777–1787.PubMed
142.
Zurück zum Zitat Kelavkar, U. P., Glasgow, W., Olson, S. J., Foster, B. A., & Shappell, S. B. (2004). Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia, 6, 821–830.PubMed Kelavkar, U. P., Glasgow, W., Olson, S. J., Foster, B. A., & Shappell, S. B. (2004). Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia, 6, 821–830.PubMed
143.
Zurück zum Zitat Planaguma, A., Kazani, S., Marigowda, G., Haworth, O., Mariani, T. J., Israel, E., et al. (2008). Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. American Journal of Respiratory and Critical Care Medicine, 178, 574–582.PubMed Planaguma, A., Kazani, S., Marigowda, G., Haworth, O., Mariani, T. J., Israel, E., et al. (2008). Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. American Journal of Respiratory and Critical Care Medicine, 178, 574–582.PubMed
144.
Zurück zum Zitat Kieran, N. E., Maderna, P., & Godson, C. (2004). Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney International, 65, 1145–1154.PubMed Kieran, N. E., Maderna, P., & Godson, C. (2004). Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney International, 65, 1145–1154.PubMed
145.
Zurück zum Zitat Chen, Y., Hao, H., He, S., Cai, L., Li, Y., Hu, S., et al. (2010). Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Molecular Cancer Therapeutics, 9, 2164–2174.PubMed Chen, Y., Hao, H., He, S., Cai, L., Li, Y., Hu, S., et al. (2010). Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Molecular Cancer Therapeutics, 9, 2164–2174.PubMed
146.
Zurück zum Zitat Liu, S., Wu, P., Ye, D., Huang, Y., Zhou, X., Li, Y., et al. (2009). Effects of lipoxin A(4) on CoCl(2)-induced angiogenesis and its possible mechanisms in human umbilical vein endothelial cells. Pharmacology, 84, 17–23.PubMed Liu, S., Wu, P., Ye, D., Huang, Y., Zhou, X., Li, Y., et al. (2009). Effects of lipoxin A(4) on CoCl(2)-induced angiogenesis and its possible mechanisms in human umbilical vein endothelial cells. Pharmacology, 84, 17–23.PubMed
147.
Zurück zum Zitat Cezar-de-Mello, P. F., Nascimento-Silva, V., Villela, C. G., & Fierro, I. M. (2006). Aspirin-triggered Lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene, 25, 122–129.PubMed Cezar-de-Mello, P. F., Nascimento-Silva, V., Villela, C. G., & Fierro, I. M. (2006). Aspirin-triggered Lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene, 25, 122–129.PubMed
148.
Zurück zum Zitat Cezar-de-Mello, P. F., Vieira, A. M., Nascimento-Silva, V., Villela, C. G., Barja-Fidalgo, C., & Fierro, I. M. (2008). ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. British Journal of Pharmacology, 153, 956–965.PubMed Cezar-de-Mello, P. F., Vieira, A. M., Nascimento-Silva, V., Villela, C. G., Barja-Fidalgo, C., & Fierro, I. M. (2008). ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. British Journal of Pharmacology, 153, 956–965.PubMed
149.
Zurück zum Zitat Schneider, C., Boeglin, W. E., Yin, H., Stec, D. F., & Voehler, M. (2006). Convergent oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2. Journal of the American Chemical Society, 128, 720–721.PubMed Schneider, C., Boeglin, W. E., Yin, H., Stec, D. F., & Voehler, M. (2006). Convergent oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2. Journal of the American Chemical Society, 128, 720–721.PubMed
150.
Zurück zum Zitat Griesser, M., Suzuki, T., Tejera, N., Mont, S., Boeglin, W. E., Pozzi, A., et al. (2011). Biosynthesis of hemiketal eicosanoids by cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways. Proceedings of the National Academy of Sciences of the United States of America, 108, 6945–6950.PubMed Griesser, M., Suzuki, T., Tejera, N., Mont, S., Boeglin, W. E., Pozzi, A., et al. (2011). Biosynthesis of hemiketal eicosanoids by cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways. Proceedings of the National Academy of Sciences of the United States of America, 108, 6945–6950.PubMed
151.
Zurück zum Zitat Nie, D., & Honn, K. V. (2002). Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular and Molecular Life Sciences, 59, 799–807.PubMed Nie, D., & Honn, K. V. (2002). Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular and Molecular Life Sciences, 59, 799–807.PubMed
152.
Zurück zum Zitat Tong, W. G., Ding, X. Z., Witt, R. C., & Adrian, T. E. (2002). Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Molecular Cancer Therapeutics, 1, 929–935.PubMed Tong, W. G., Ding, X. Z., Witt, R. C., & Adrian, T. E. (2002). Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Molecular Cancer Therapeutics, 1, 929–935.PubMed
153.
Zurück zum Zitat Agarwal, S., Achari, C., Praveen, D., Roy, K. R., Reddy, G. V., & Reddanna, P. (2009). Inhibition of 12-LOX and COX-2 reduces the proliferation of human epidermoid carcinoma cells (A431) by modulating the ERK and PI3K-Akt signalling pathways. Experimental Dermatology, 18, 939–946.PubMed Agarwal, S., Achari, C., Praveen, D., Roy, K. R., Reddy, G. V., & Reddanna, P. (2009). Inhibition of 12-LOX and COX-2 reduces the proliferation of human epidermoid carcinoma cells (A431) by modulating the ERK and PI3K-Akt signalling pathways. Experimental Dermatology, 18, 939–946.PubMed
154.
Zurück zum Zitat Pergola, C., & Werz, O. (2010). 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opinion on Therapeutic Patents, 20, 355–375.PubMed Pergola, C., & Werz, O. (2010). 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opinion on Therapeutic Patents, 20, 355–375.PubMed
155.
Zurück zum Zitat Bolger, J. K., Tian, W., Wolter, W. R., Cho, W., Suckow, M. A., & Miller, M. J. (2011). Synthesis and evaluation of 5-lipoxygenase translocation inhibitors from acylnitroso hetero-Diels-Alder cycloadducts. Organic and Biomolecular Chemistry, 9, 2999–3010.PubMed Bolger, J. K., Tian, W., Wolter, W. R., Cho, W., Suckow, M. A., & Miller, M. J. (2011). Synthesis and evaluation of 5-lipoxygenase translocation inhibitors from acylnitroso hetero-Diels-Alder cycloadducts. Organic and Biomolecular Chemistry, 9, 2999–3010.PubMed
156.
Zurück zum Zitat Reddy, N. P., Aparoy, P., Reddy, T. C., Achari, C., Sridhar, P. R., & Reddanna, P. (2010). Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors. Bioorganic & Medicinal Chemistry, 18, 5807–5815. Reddy, N. P., Aparoy, P., Reddy, T. C., Achari, C., Sridhar, P. R., & Reddanna, P. (2010). Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors. Bioorganic & Medicinal Chemistry, 18, 5807–5815.
157.
Zurück zum Zitat Sarveswaran, S., Myers, C. E., & Ghosh, J. (2010). MK591, a leukotriene biosynthesis inhibitor, induces apoptosis in prostate cancer cells: synergistic action with LY294002, an inhibitor of phosphatidylinositol 3'-kinase. Cancer Letters, 291, 167–176.PubMed Sarveswaran, S., Myers, C. E., & Ghosh, J. (2010). MK591, a leukotriene biosynthesis inhibitor, induces apoptosis in prostate cancer cells: synergistic action with LY294002, an inhibitor of phosphatidylinositol 3'-kinase. Cancer Letters, 291, 167–176.PubMed
158.
Zurück zum Zitat Fischer, A. S., Metzner, J., Steinbrink, S. D., Ulrich, S., Angioni, C., Geisslinger, G., et al. (2010). 5-Lipoxygenase inhibitors induce potent anti-proliferative and cytotoxic effects in human tumour cells independently of suppression of 5-lipoxygenase activity. British Journal of Pharmacology, 161, 936–949.PubMed Fischer, A. S., Metzner, J., Steinbrink, S. D., Ulrich, S., Angioni, C., Geisslinger, G., et al. (2010). 5-Lipoxygenase inhibitors induce potent anti-proliferative and cytotoxic effects in human tumour cells independently of suppression of 5-lipoxygenase activity. British Journal of Pharmacology, 161, 936–949.PubMed
159.
Zurück zum Zitat Thun, M. J., Namboodiri, M. M., & Heath, C. W., Jr. (1991). Aspirin use and reduced risk of fatal colon cancer. The New England Journal of Medicine, 325, 1593–1596.PubMed Thun, M. J., Namboodiri, M. M., & Heath, C. W., Jr. (1991). Aspirin use and reduced risk of fatal colon cancer. The New England Journal of Medicine, 325, 1593–1596.PubMed
160.
Zurück zum Zitat Gupta, R. A., & Dubois, R. N. (2001). Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Reviews. Cancer, 1, 11–21.PubMed Gupta, R. A., & Dubois, R. N. (2001). Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Reviews. Cancer, 1, 11–21.PubMed
161.
Zurück zum Zitat Cha, Y. I., & DuBois, R. N. (2007). NSAIDs and cancer prevention: targets downstream of COX-2. Annual Review of Medicine, 58, 239–252.PubMed Cha, Y. I., & DuBois, R. N. (2007). NSAIDs and cancer prevention: targets downstream of COX-2. Annual Review of Medicine, 58, 239–252.PubMed
162.
Zurück zum Zitat Witton, C. J., Hawe, S. J., Cooke, T. G., & Bartlett, J. M. (2004). Cyclooxygenase 2 (COX2) expression is associated with poor outcome in ER-negative, but not ER-positive, breast cancer. Histopathology, 45, 47–54.PubMed Witton, C. J., Hawe, S. J., Cooke, T. G., & Bartlett, J. M. (2004). Cyclooxygenase 2 (COX2) expression is associated with poor outcome in ER-negative, but not ER-positive, breast cancer. Histopathology, 45, 47–54.PubMed
163.
Zurück zum Zitat (2005). FDA warning on NSAID use. FDA Consum 39:5. (2005). FDA warning on NSAID use. FDA Consum 39:5.
164.
Zurück zum Zitat Mukherjee, D. (2008). Nonsteroidal anti-inflammatory drugs and the heart: what is the danger? Congestive Heart Failure, 14, 75–82.PubMed Mukherjee, D. (2008). Nonsteroidal anti-inflammatory drugs and the heart: what is the danger? Congestive Heart Failure, 14, 75–82.PubMed
165.
Zurück zum Zitat Grosser, T., Fries, S., & FitzGerald, G. A. (2006). Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. The Journal of Clinical Investigation, 116, 4–15.PubMed Grosser, T., Fries, S., & FitzGerald, G. A. (2006). Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. The Journal of Clinical Investigation, 116, 4–15.PubMed
166.
Zurück zum Zitat Zhang, M. Z., Xu, J., Yao, B., Yin, H., Cai, Q., Shrubsole, M. J., et al. (2009). Inhibition of 11beta-hydroxysteroid dehydrogenase type II selectively blocks the tumor COX-2 pathway and suppresses colon carcinogenesis in mice and humans. The Journal of Clinical Investigation, 119, 876–885.PubMed Zhang, M. Z., Xu, J., Yao, B., Yin, H., Cai, Q., Shrubsole, M. J., et al. (2009). Inhibition of 11beta-hydroxysteroid dehydrogenase type II selectively blocks the tumor COX-2 pathway and suppresses colon carcinogenesis in mice and humans. The Journal of Clinical Investigation, 119, 876–885.PubMed
167.
Zurück zum Zitat Cerella, C., Sobolewski, C., Dicato, M., & Diederich, M. (2010). Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochemical Pharmacology, 80, 1801–1815.PubMed Cerella, C., Sobolewski, C., Dicato, M., & Diederich, M. (2010). Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochemical Pharmacology, 80, 1801–1815.PubMed
168.
Zurück zum Zitat Jang, M., & Pezzuto, J. M. (1999). Cancer chemopreventive activity of resveratrol. Drugs Under Experimental and Clinical Research, 25, 65–77.PubMed Jang, M., & Pezzuto, J. M. (1999). Cancer chemopreventive activity of resveratrol. Drugs Under Experimental and Clinical Research, 25, 65–77.PubMed
169.
Zurück zum Zitat Subbaramaiah, K., Chung, W. J., Michaluart, P., Telang, N., Tanabe, T., Inoue, H., et al. (1998). Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. Journal of Biological Chemistry, 273, 21875–21882.PubMed Subbaramaiah, K., Chung, W. J., Michaluart, P., Telang, N., Tanabe, T., Inoue, H., et al. (1998). Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. Journal of Biological Chemistry, 273, 21875–21882.PubMed
170.
Zurück zum Zitat Kundu, J. K., Na, H. K., Chun, K. S., Kim, Y. K., Lee, S. J., Lee, S. S., et al. (2003). Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. Journal of Nutrition, 133, 3805S–3810S.PubMed Kundu, J. K., Na, H. K., Chun, K. S., Kim, Y. K., Lee, S. J., Lee, S. S., et al. (2003). Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. Journal of Nutrition, 133, 3805S–3810S.PubMed
171.
Zurück zum Zitat Woo, E. R., Pokharel, Y. R., Yang, J. W., Lee, S. Y., & Kang, K. W. (2006). Inhibition of nuclear factor-kappaB activation by 2',8''-biapigenin. Biological and Pharmaceutical Bulletin, 29, 976–980.PubMed Woo, E. R., Pokharel, Y. R., Yang, J. W., Lee, S. Y., & Kang, K. W. (2006). Inhibition of nuclear factor-kappaB activation by 2',8''-biapigenin. Biological and Pharmaceutical Bulletin, 29, 976–980.PubMed
172.
Zurück zum Zitat Corona, G., Deiana, M., Incani, A., Vauzour, D., Dessi, M. A., & Spencer, J. P. (2007). Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochemical and Biophysical Research Communications, 362, 606–611.PubMed Corona, G., Deiana, M., Incani, A., Vauzour, D., Dessi, M. A., & Spencer, J. P. (2007). Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochemical and Biophysical Research Communications, 362, 606–611.PubMed
173.
Zurück zum Zitat Barry, M., Cahill, R. A., Roche-Nagle, G., Neilan, T. G., Treumann, A., Harmey, J. H., et al. (2009). Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer. Irish Journal of Medical Science, 178, 201–208.PubMed Barry, M., Cahill, R. A., Roche-Nagle, G., Neilan, T. G., Treumann, A., Harmey, J. H., et al. (2009). Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer. Irish Journal of Medical Science, 178, 201–208.PubMed
174.
Zurück zum Zitat Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26, 827–834.PubMed Ye, Y. N., Wu, W. K., Shin, V. Y., Bruce, I. C., Wong, B. C., & Cho, C. H. (2005). Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis, 26, 827–834.PubMed
175.
Zurück zum Zitat Laufer, S. A., Augustin, J., Dannhardt, G., & Kiefer, W. (1994). (6,7-Diaryldihydropyrrolizin-5-yl)acetic acids, a novel class of potent dual inhibitors of both cyclooxygenase and 5-lipoxygenase. Journal of Medicinal Chemistry, 37, 1894–1897.PubMed Laufer, S. A., Augustin, J., Dannhardt, G., & Kiefer, W. (1994). (6,7-Diaryldihydropyrrolizin-5-yl)acetic acids, a novel class of potent dual inhibitors of both cyclooxygenase and 5-lipoxygenase. Journal of Medicinal Chemistry, 37, 1894–1897.PubMed
176.
Zurück zum Zitat Fiorucci, S., Meli, R., Bucci, M., & Cirino, G. (2001). Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochemical Pharmacology, 62, 1433–1438.PubMed Fiorucci, S., Meli, R., Bucci, M., & Cirino, G. (2001). Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochemical Pharmacology, 62, 1433–1438.PubMed
177.
Zurück zum Zitat Rao, P. N., Chen, Q. H., & Knaus, E. E. (2006). Synthesis and structure-activity relationship studies of 1,3-diarylprop-2-yn-1-ones: dual inhibitors of cyclooxygenases and lipoxygenases. Journal of Medicinal Chemistry, 49, 1668–1683.PubMed Rao, P. N., Chen, Q. H., & Knaus, E. E. (2006). Synthesis and structure-activity relationship studies of 1,3-diarylprop-2-yn-1-ones: dual inhibitors of cyclooxygenases and lipoxygenases. Journal of Medicinal Chemistry, 49, 1668–1683.PubMed
178.
Zurück zum Zitat Rao, P., & Knaus, E. E. (2008). Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. Journal of Pharmacy and Pharmaceutical Sciences, 11, 81s–110s.PubMed Rao, P., & Knaus, E. E. (2008). Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. Journal of Pharmacy and Pharmaceutical Sciences, 11, 81s–110s.PubMed
179.
Zurück zum Zitat Rao, C. V. (2007). Regulation of COX and LOX by curcumin. Advances in Experimental Medicine and Biology, 595, 213–226.PubMed Rao, C. V. (2007). Regulation of COX and LOX by curcumin. Advances in Experimental Medicine and Biology, 595, 213–226.PubMed
180.
Zurück zum Zitat Zhang, F., Altorki, N. K., Mestre, J. R., Subbaramaiah, K., & Dannenberg, A. J. (1999). Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis, 20, 445–451.PubMed Zhang, F., Altorki, N. K., Mestre, J. R., Subbaramaiah, K., & Dannenberg, A. J. (1999). Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis, 20, 445–451.PubMed
181.
Zurück zum Zitat Huang, M. T., Lysz, T., Ferraro, T., Abidi, T. F., Laskin, J. D., & Conney, A. H. (1991). Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Research, 51, 813–819.PubMed Huang, M. T., Lysz, T., Ferraro, T., Abidi, T. F., Laskin, J. D., & Conney, A. H. (1991). Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Research, 51, 813–819.PubMed
182.
Zurück zum Zitat Griesser, M., Pistis, V., Suzuki, T., Tejera, N., Pratt, D. A., & Schneider, C. (2011). Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. Journal of Biological Chemistry, 286, 1114–1124.PubMed Griesser, M., Pistis, V., Suzuki, T., Tejera, N., Pratt, D. A., & Schneider, C. (2011). Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. Journal of Biological Chemistry, 286, 1114–1124.PubMed
183.
Zurück zum Zitat Ohashi, Y., Tsuchiya, Y., Koizumi, K., Sakurai, H., & Saiki, I. (2003). Prevention of intrahepatic metastasis by curcumin in an orthotopic implantation model. Oncology, 65, 250–258.PubMed Ohashi, Y., Tsuchiya, Y., Koizumi, K., Sakurai, H., & Saiki, I. (2003). Prevention of intrahepatic metastasis by curcumin in an orthotopic implantation model. Oncology, 65, 250–258.PubMed
184.
Zurück zum Zitat Bengmark, S., Mesa, M. D., & Gil, A. (2009). Plant-derived health: the effects of turmeric and curcuminoids. Nutrición Hospitalaria, 24, 273–281.PubMed Bengmark, S., Mesa, M. D., & Gil, A. (2009). Plant-derived health: the effects of turmeric and curcuminoids. Nutrición Hospitalaria, 24, 273–281.PubMed
185.
Zurück zum Zitat Zhang, B., Wang, C. L., Zhao, W. H., Lv, M., Wang, C. Y., Zhong, W. X., et al. (2008). Effect of 5-LOX/COX-2 common inhibitor DHDMBF30 on pancreatic cancer cell Capan2. World Journal of Gastroenterology, 14, 2494–2500.PubMed Zhang, B., Wang, C. L., Zhao, W. H., Lv, M., Wang, C. Y., Zhong, W. X., et al. (2008). Effect of 5-LOX/COX-2 common inhibitor DHDMBF30 on pancreatic cancer cell Capan2. World Journal of Gastroenterology, 14, 2494–2500.PubMed
186.
Zurück zum Zitat Bridoux, A., Millet, R., Pommery, J., Pommery, N., & Henichart, J. P. (2010). Synthesis and biological activity of N-aroyl-tetrahydro-gamma-carbolines. Bioorganic & Medicinal Chemistry, 18, 3910–3924. Bridoux, A., Millet, R., Pommery, J., Pommery, N., & Henichart, J. P. (2010). Synthesis and biological activity of N-aroyl-tetrahydro-gamma-carbolines. Bioorganic & Medicinal Chemistry, 18, 3910–3924.
187.
Zurück zum Zitat Pontiki, E., Hadjipavlou-Litina, D., Litinas, K., Nicolotti, O., & Carotti, A. (2011). Design, synthesis and pharmacobiological evaluation of novel acrylic acid derivatives acting as lipoxygenase and cyclooxygenase-1 inhibitors with antioxidant and anti-inflammatory activities. European Journal of Medicinal Chemistry, 46, 191–200.PubMed Pontiki, E., Hadjipavlou-Litina, D., Litinas, K., Nicolotti, O., & Carotti, A. (2011). Design, synthesis and pharmacobiological evaluation of novel acrylic acid derivatives acting as lipoxygenase and cyclooxygenase-1 inhibitors with antioxidant and anti-inflammatory activities. European Journal of Medicinal Chemistry, 46, 191–200.PubMed
188.
Zurück zum Zitat Tauler, J., & Mulshine, J. L. (2008). Combination therapy of PPARgamma ligands and inhibitors of arachidonic acid in lung cancer. PPAR Research, 2008, 750238.PubMed Tauler, J., & Mulshine, J. L. (2008). Combination therapy of PPARgamma ligands and inhibitors of arachidonic acid in lung cancer. PPAR Research, 2008, 750238.PubMed
189.
Zurück zum Zitat Hanif, R., Pittas, A., Feng, Y., Koutsos, M. I., Qiao, L., Staiano-Coico, L., et al. (1996). Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochemical Pharmacology, 52, 237–245.PubMed Hanif, R., Pittas, A., Feng, Y., Koutsos, M. I., Qiao, L., Staiano-Coico, L., et al. (1996). Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochemical Pharmacology, 52, 237–245.PubMed
190.
Zurück zum Zitat Piazza, G. A., Alberts, D. S., Hixson, L. J., Paranka, N. S., Li, H., Finn, T., et al. (1997). Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Research, 57, 2909–2915.PubMed Piazza, G. A., Alberts, D. S., Hixson, L. J., Paranka, N. S., Li, H., Finn, T., et al. (1997). Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Research, 57, 2909–2915.PubMed
Metadaten
Titel
Cyclooxygenases and lipoxygenases in cancer
verfasst von
Claus Schneider
Ambra Pozzi
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2011
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9310-3

Weitere Artikel der Ausgabe 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.