Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2011

01.12.2011

Prostaglandin catabolic enzymes as tumor suppressors

verfasst von: Hsin-Hsiung Tai

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2011

Einloggen, um Zugang zu erhalten

Abstract

15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is a key prostaglandin catabolic enzyme catalyzing the oxidation and inactivation of prostaglandin E2 (PGE2) synthesized from the cyclooxygenase (COX) pathway. Accumulating evidence indicates that 15-PGDH may function as a tumor suppressor antagonizing the action of COX-2 oncogene. 15-PGDH has been found to be down-regulated contributing to elevated levels of PGE2 in most tumors. The expression of 15-PGDH and COX-2 appears to be regulated reciprocally in cancer cells. Down-regulation of 15-PGDH in tumors is due, in part, to transcriptional repression and epigenetic silencing. Numerous agents have been found to up-regulate 15-PGDH by down-regulation of transcriptional repressors and by attenuation of the turnover of the enzyme. Up-regulation of 15-PGDH may provide a viable approach to cancer chemoprevention. Further catabolism of 15-keto-prostaglandin E2 is catalyzed by 15-keto-prostaglandin-∆13-reductase (13-PGR), which also exhibits LTB4-12-hydroxydehydrogenase (LTB4-12-DH) activity. 13-PGR/LTB4-12-DH behaves as a tumor suppressor as well. This review summarizes current knowledge of the expression and function of 15-PGDH and 13-PGR/LTB4-12-DH in lung and other tissues during tumor progression. Future directions of research on these prostaglandin catabolic enzymes as tumor suppressors are also discussed.
Literatur
1.
Zurück zum Zitat Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: Structural, cellular and molecular biology. Annual Review of Biochemistry, 69, 145–182.PubMedCrossRef Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: Structural, cellular and molecular biology. Annual Review of Biochemistry, 69, 145–182.PubMedCrossRef
2.
Zurück zum Zitat Tai, H. H., Cho, H., Tong, M., & Ding, Y. F. (2006). 15-Hydroxyprostaglandin dehydrogenase: Structure and biological functions. Current Pharmaceutical Design, 12, 955–962.PubMedCrossRef Tai, H. H., Cho, H., Tong, M., & Ding, Y. F. (2006). 15-Hydroxyprostaglandin dehydrogenase: Structure and biological functions. Current Pharmaceutical Design, 12, 955–962.PubMedCrossRef
4.
Zurück zum Zitat Muller-Deeker, K., & Furstenberger, G. (2007). The cyclooxygenase-2-mediated prostaglandin signaling is casually related to epithelial carcinogenesis. Molecular Carcinogenesis, 46, 705–710.CrossRef Muller-Deeker, K., & Furstenberger, G. (2007). The cyclooxygenase-2-mediated prostaglandin signaling is casually related to epithelial carcinogenesis. Molecular Carcinogenesis, 46, 705–710.CrossRef
5.
Zurück zum Zitat Celis, J. E., Ostergaard, M., Basse, B., Celis, A., Lauridsen, J. B., Ratz, G. P., et al. (1996). Loss of adipocyte-type fatty acid binding protein and other protein biomarkers is associated with progress of human bladder transitional carcinoma. Cancer Research, 56, 4782–4790.PubMed Celis, J. E., Ostergaard, M., Basse, B., Celis, A., Lauridsen, J. B., Ratz, G. P., et al. (1996). Loss of adipocyte-type fatty acid binding protein and other protein biomarkers is associated with progress of human bladder transitional carcinoma. Cancer Research, 56, 4782–4790.PubMed
6.
Zurück zum Zitat Gee, J. R., MOntaya, R. G., Khaled, H. M., Sabichi, A. L., & Grossman, H. B. (2003). Cytokeratin 20, AN43, PGDH and COX-2 expression in transitional and squamous cell carcinoma of the bladder. Urological Oncology, 21, 266–270. Gee, J. R., MOntaya, R. G., Khaled, H. M., Sabichi, A. L., & Grossman, H. B. (2003). Cytokeratin 20, AN43, PGDH and COX-2 expression in transitional and squamous cell carcinoma of the bladder. Urological Oncology, 21, 266–270.
7.
Zurück zum Zitat Tseng-Rogenski, S., Gee, J., Ignatoski, K. W., Kunju, L. P., Bucheit, A., Kinter, H. J., et al. (2010). Loss of 15-hydroxyprostaglandin dehydrogenase expression contributes to bladder cancer progression. American Journal of Pathology, 176, 1462–1468.PubMedCrossRef Tseng-Rogenski, S., Gee, J., Ignatoski, K. W., Kunju, L. P., Bucheit, A., Kinter, H. J., et al. (2010). Loss of 15-hydroxyprostaglandin dehydrogenase expression contributes to bladder cancer progression. American Journal of Pathology, 176, 1462–1468.PubMedCrossRef
8.
Zurück zum Zitat Ding, Y., Tong, M., Liu, S., Moskow, J. A., & Tai, H. H. (2005). NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis, 26, 65–72.PubMedCrossRef Ding, Y., Tong, M., Liu, S., Moskow, J. A., & Tai, H. H. (2005). NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis, 26, 65–72.PubMedCrossRef
9.
Zurück zum Zitat Yang, L., Amann, J. M., Kikuchi, T., Porta, R., Guix, M., Gonzalez, A., et al. (2007). Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Research, 67, 5587–5593.PubMedCrossRef Yang, L., Amann, J. M., Kikuchi, T., Porta, R., Guix, M., Gonzalez, A., et al. (2007). Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Research, 67, 5587–5593.PubMedCrossRef
10.
Zurück zum Zitat Hughes, D., Otani, Y., Yang, P., Newman, R. A., Yantiss, R. K., Altarki, N. K., et al. (2008). NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small-cell lung cancer. Cancer Prevention Research, 1, 241–249.PubMedCrossRef Hughes, D., Otani, Y., Yang, P., Newman, R. A., Yantiss, R. K., Altarki, N. K., et al. (2008). NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small-cell lung cancer. Cancer Prevention Research, 1, 241–249.PubMedCrossRef
11.
Zurück zum Zitat Yan, M., Rerko, R. M., Platzer, P., Dawson, D., Willis, J., Tong, M., et al. (2004). 15-Hydroxyprostaglandin dehydrogenase, a COX-2 antagonist, is a TGF-β-induced suppressor of human gastrointestinal cancers. Proceedings of the National Academy of Sciences of the United States of America, 10, 17468–17473.CrossRef Yan, M., Rerko, R. M., Platzer, P., Dawson, D., Willis, J., Tong, M., et al. (2004). 15-Hydroxyprostaglandin dehydrogenase, a COX-2 antagonist, is a TGF-β-induced suppressor of human gastrointestinal cancers. Proceedings of the National Academy of Sciences of the United States of America, 10, 17468–17473.CrossRef
12.
Zurück zum Zitat Backlund, M. G., Mann, J. R., Holla, V. R., Buchanan, F. G., Tai, H. H., Musiek, E. S., et al. (2005). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. Journal of Biological Chemistry, 280, 3217–3223.PubMedCrossRef Backlund, M. G., Mann, J. R., Holla, V. R., Buchanan, F. G., Tai, H. H., Musiek, E. S., et al. (2005). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. Journal of Biological Chemistry, 280, 3217–3223.PubMedCrossRef
13.
Zurück zum Zitat Wolf, I., Okelly, J., Rubinek, T., Tong, M., Nguyen, A., Lin, B. T., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Research, 66, 7818–7823.PubMedCrossRef Wolf, I., Okelly, J., Rubinek, T., Tong, M., Nguyen, A., Lin, B. T., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Research, 66, 7818–7823.PubMedCrossRef
14.
Zurück zum Zitat Thill, M., Fischer, D., Hollen, F., Kelling, K., Dittmer, C., Landt, S., et al. (2010). Prostaglandin metabolizing enzymes and PGE2 are inversely correlated with vitamin D receptor and 25(OH)2D3 in breast cancer. Anticancer Research, 30, 1673–1679.PubMed Thill, M., Fischer, D., Hollen, F., Kelling, K., Dittmer, C., Landt, S., et al. (2010). Prostaglandin metabolizing enzymes and PGE2 are inversely correlated with vitamin D receptor and 25(OH)2D3 in breast cancer. Anticancer Research, 30, 1673–1679.PubMed
15.
Zurück zum Zitat Celis, J. E., Gromov, P., Cabezon, T., Moreia, J. M. A., Friis, E., Jirstrom, K., et al. (2008). 15-Hydroxyprostaglandin dehydrogenase alone or in combination with ACSM1 defines a subgroup of the apocrine molecular subtype of breast carcinoma. Molecular & Cellular Proteomics, 7, 1795–1809.CrossRef Celis, J. E., Gromov, P., Cabezon, T., Moreia, J. M. A., Friis, E., Jirstrom, K., et al. (2008). 15-Hydroxyprostaglandin dehydrogenase alone or in combination with ACSM1 defines a subgroup of the apocrine molecular subtype of breast carcinoma. Molecular & Cellular Proteomics, 7, 1795–1809.CrossRef
16.
Zurück zum Zitat Thill, M., Fischer, D., KElling, K., Hoellen, F., Dittmer, C., Hornemann, A., et al. (2010). Expression of vitamin D receptor (VDR), cylcooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in benign and malignant ovarian tissue and 25-hydroxycholecaliferol (25(OH)2D3) and prostaglandin E2 (PGE2) serum level in ovarian cancer patients. The Journal of Steroid Biochemistry and Molecular Biology, 121, 387–390.PubMedCrossRef Thill, M., Fischer, D., KElling, K., Hoellen, F., Dittmer, C., Hornemann, A., et al. (2010). Expression of vitamin D receptor (VDR), cylcooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in benign and malignant ovarian tissue and 25-hydroxycholecaliferol (25(OH)2D3) and prostaglandin E2 (PGE2) serum level in ovarian cancer patients. The Journal of Steroid Biochemistry and Molecular Biology, 121, 387–390.PubMedCrossRef
17.
Zurück zum Zitat Liu, Z., Wang, X., Lu, Y., Han, S., Zhang, F., Zhai, H., et al. (2008). Expression of 15-PGDH is down-regulated by COX-2 in gastric cancer. Carcinogenesis, 29, 1219–1227.PubMedCrossRef Liu, Z., Wang, X., Lu, Y., Han, S., Zhang, F., Zhai, H., et al. (2008). Expression of 15-PGDH is down-regulated by COX-2 in gastric cancer. Carcinogenesis, 29, 1219–1227.PubMedCrossRef
18.
Zurück zum Zitat Thiel, A., Ganesan, A., Mrena, J., Junnila, S., Nykanen, A., Hemmes, A., et al. (2009). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clinical Cancer Research, 15, 4572–4580.PubMedCrossRef Thiel, A., Ganesan, A., Mrena, J., Junnila, S., Nykanen, A., Hemmes, A., et al. (2009). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clinical Cancer Research, 15, 4572–4580.PubMedCrossRef
19.
Zurück zum Zitat Tatsuwaki, H., Tanigawa, T., Watanabe, T., Machida, H., Okazaki, H., Yamagami, H., et al. (2010). Reduction of 15-hydroxyprostaglandin dehydrogenase expression is an independent predictor of poor survival associated with enhanced cell proliferation in gastric adenocarcinoma. Cancer Science, 101, 550–558.PubMedCrossRef Tatsuwaki, H., Tanigawa, T., Watanabe, T., Machida, H., Okazaki, H., Yamagami, H., et al. (2010). Reduction of 15-hydroxyprostaglandin dehydrogenase expression is an independent predictor of poor survival associated with enhanced cell proliferation in gastric adenocarcinoma. Cancer Science, 101, 550–558.PubMedCrossRef
20.
Zurück zum Zitat Song, H. J., Myung, S. J., Kim, I. W., Jeong, J. Y., Park, Y. S., Lee, S. M., et al. (2011). 15-Hydroxyprostaglandin dehydrogenase is down-regulated and exhibits tumor suppressor activity in gastric cancer. Cancer Investigation, 29, 257–265.PubMedCrossRef Song, H. J., Myung, S. J., Kim, I. W., Jeong, J. Y., Park, Y. S., Lee, S. M., et al. (2011). 15-Hydroxyprostaglandin dehydrogenase is down-regulated and exhibits tumor suppressor activity in gastric cancer. Cancer Investigation, 29, 257–265.PubMedCrossRef
21.
Zurück zum Zitat Yoo, N. J., Jeong, E. G., & Lee, S. H. (2007). Expression of 15-hydroxyprostaglandin dehydrogenase, a COX-2 antagonist and tumor suppressor is not altered in gastric carcinomas. Pathology, 39, 174–175.PubMedCrossRef Yoo, N. J., Jeong, E. G., & Lee, S. H. (2007). Expression of 15-hydroxyprostaglandin dehydrogenase, a COX-2 antagonist and tumor suppressor is not altered in gastric carcinomas. Pathology, 39, 174–175.PubMedCrossRef
22.
Zurück zum Zitat Pham, H., Chen, M., Li, A., King, J., Angst, E., Dawson, D. W., et al. (2010). Loss of 15-hydroxyprostagalndin dehydrogenase increases prostaglandin E2 in pancreatic tumors. Pancreas, 39, 332–339.PubMedCrossRef Pham, H., Chen, M., Li, A., King, J., Angst, E., Dawson, D. W., et al. (2010). Loss of 15-hydroxyprostagalndin dehydrogenase increases prostaglandin E2 in pancreatic tumors. Pancreas, 39, 332–339.PubMedCrossRef
23.
Zurück zum Zitat Hoeft, B., Linseisen, J., Beckmann, L., Muller-Decker, K., Canzian, F., Husing, A., et al. (2010). Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk. Carcinogenesis, 31, 466–472.PubMedCrossRef Hoeft, B., Linseisen, J., Beckmann, L., Muller-Decker, K., Canzian, F., Husing, A., et al. (2010). Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk. Carcinogenesis, 31, 466–472.PubMedCrossRef
24.
Zurück zum Zitat Otani, T., Yamaguchi, K., Schere, E., Du, B., Tai, H. H., Greifer, M., et al. (2006). Levels of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase are reduced in inflammatory bowel disease: evidence for involvement of TNF-α. American Journal of Physiology, 290, G361–368.PubMed Otani, T., Yamaguchi, K., Schere, E., Du, B., Tai, H. H., Greifer, M., et al. (2006). Levels of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase are reduced in inflammatory bowel disease: evidence for involvement of TNF-α. American Journal of Physiology, 290, G361–368.PubMed
25.
Zurück zum Zitat Lousse, J. C., Defrere, S., Colette, S., Van Langendonckt, A., & Dormez, J. (2010). Expression of eicosanoid biosynthetic and catabolic enzymes in peritoneal endometriosis. Human Reproduction, 25, 734–741.PubMedCrossRef Lousse, J. C., Defrere, S., Colette, S., Van Langendonckt, A., & Dormez, J. (2010). Expression of eicosanoid biosynthetic and catabolic enzymes in peritoneal endometriosis. Human Reproduction, 25, 734–741.PubMedCrossRef
26.
Zurück zum Zitat Judson, B. L., Miyaki, A., Kekatpure, V. D., Du, B., Gilleaudeau, P., Sullivan-Whalen, M., et al. (2010). UV radiation inhibits 15-hydroxyprostaglandin dehydrogenase levels in human skin: evidence of transcriptional suppression. Cancer Prevention Research, 3, 1104–1111.PubMedCrossRef Judson, B. L., Miyaki, A., Kekatpure, V. D., Du, B., Gilleaudeau, P., Sullivan-Whalen, M., et al. (2010). UV radiation inhibits 15-hydroxyprostaglandin dehydrogenase levels in human skin: evidence of transcriptional suppression. Cancer Prevention Research, 3, 1104–1111.PubMedCrossRef
27.
Zurück zum Zitat Uppal, S., Diggle, C. P., Carr, I. M., Fishwick, C. W., Ahmed, M., Ibrahim, G. H., et al. (2008). Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nature Genetics, 40, 789–793.PubMedCrossRef Uppal, S., Diggle, C. P., Carr, I. M., Fishwick, C. W., Ahmed, M., Ibrahim, G. H., et al. (2008). Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nature Genetics, 40, 789–793.PubMedCrossRef
28.
Zurück zum Zitat Tong, M., Ding, Y., & Tai, H. H. (2007). Reciprocal regulation of cyclooxygenase-2 and 15-hydroxyprostaglandin dehydrogenase expression in A549 human lung adenocarcinoma cells. Carcinogenesis, 27, 2170–2179.CrossRef Tong, M., Ding, Y., & Tai, H. H. (2007). Reciprocal regulation of cyclooxygenase-2 and 15-hydroxyprostaglandin dehydrogenase expression in A549 human lung adenocarcinoma cells. Carcinogenesis, 27, 2170–2179.CrossRef
29.
Zurück zum Zitat Lennon, C., Carlson, M. G., Nelson, D. M., & Sadovsky, Y. (1999). In vitro modulation of the expression of 15-hydroxyprostaglandin dehydrogenase by trophoblast differentiation. American Journal of Obstetrics and Gynecology, 180, 690–695.PubMedCrossRef Lennon, C., Carlson, M. G., Nelson, D. M., & Sadovsky, Y. (1999). In vitro modulation of the expression of 15-hydroxyprostaglandin dehydrogenase by trophoblast differentiation. American Journal of Obstetrics and Gynecology, 180, 690–695.PubMedCrossRef
30.
Zurück zum Zitat Moreno, J., Krishnan, A. V., Swami, S., Nonn, I., Peehl, D. M., & Feldman, D. (2005). Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Research, 65, 7919–7925.CrossRef Moreno, J., Krishnan, A. V., Swami, S., Nonn, I., Peehl, D. M., & Feldman, D. (2005). Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Research, 65, 7919–7925.CrossRef
31.
Zurück zum Zitat Krishnan, A. V., Swami, S., & Feldman, D. (2010). Vitamin D and breast cancer: Inhibition of estrogen synthesis and signaling. The Journal of Steroid Biochemistry and Molecular Biology, 121, 343–348.PubMedCrossRef Krishnan, A. V., Swami, S., & Feldman, D. (2010). Vitamin D and breast cancer: Inhibition of estrogen synthesis and signaling. The Journal of Steroid Biochemistry and Molecular Biology, 121, 343–348.PubMedCrossRef
32.
Zurück zum Zitat Lim, K., Han, C., Xu, L., Isse, K., Demetris, A. J., & Wu, T. (2008). Cyclooxygenase-2-derived prostaglandin E2 activates β-catenin in human cholangiocarcinoma cells: Evidence for inhibition of these signaling pathways by ω3 polyunsaturated fatty acids. Cancer Research, 68, 553–560.PubMedCrossRef Lim, K., Han, C., Xu, L., Isse, K., Demetris, A. J., & Wu, T. (2008). Cyclooxygenase-2-derived prostaglandin E2 activates β-catenin in human cholangiocarcinoma cells: Evidence for inhibition of these signaling pathways by ω3 polyunsaturated fatty acids. Cancer Research, 68, 553–560.PubMedCrossRef
33.
Zurück zum Zitat Lim, K., Han, C., Dai, Y., Shen, M., & Wu, T. (2009). Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking β-catenin and cylcooxygenase-2. Molecular Cancer Therapeutics, 8, 3046–3055.PubMedCrossRef Lim, K., Han, C., Dai, Y., Shen, M., & Wu, T. (2009). Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking β-catenin and cylcooxygenase-2. Molecular Cancer Therapeutics, 8, 3046–3055.PubMedCrossRef
34.
Zurück zum Zitat Brecht, K., Weigert, A., Hu, J., Popp, R., Fisslthaler, B., Korff, T., et al. (2011). Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. The FASEB Journal, 25, 2408–2417.PubMedCrossRef Brecht, K., Weigert, A., Hu, J., Popp, R., Fisslthaler, B., Korff, T., et al. (2011). Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. The FASEB Journal, 25, 2408–2417.PubMedCrossRef
35.
Zurück zum Zitat Eruslanov, E., Daurkin, I., Ortiz, J., Vieweg, J., & Kusmartsev, S. (2010). Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. Journal of Leukocyte Biology, 88, 839–848.PubMedCrossRef Eruslanov, E., Daurkin, I., Ortiz, J., Vieweg, J., & Kusmartsev, S. (2010). Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. Journal of Leukocyte Biology, 88, 839–848.PubMedCrossRef
36.
Zurück zum Zitat Eruslanov, E., Kaliberov, S., Daurkin, I., Kaliberova, L., Buchabaam, D., Vieweg, J., et al. (2009). Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: A mechanism for immune evasion in cancer. Journal of Immunology, 182, 7548–7557.CrossRef Eruslanov, E., Kaliberov, S., Daurkin, I., Kaliberova, L., Buchabaam, D., Vieweg, J., et al. (2009). Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: A mechanism for immune evasion in cancer. Journal of Immunology, 182, 7548–7557.CrossRef
37.
Zurück zum Zitat Kaliberova, L. N., Kusmartsev, S. A., Kredelcht-Chikova, V., Stockard, C. R., Grizzle, W. E., Buchsbaum, D. J., et al. (2009). Experimental cancer therapy using restoration of NAD+-linked 15-hydroxyprostaglandin dehydrogenase expression. Molecular Cancer Therapeutics, 8, 3130–3139.PubMedCrossRef Kaliberova, L. N., Kusmartsev, S. A., Kredelcht-Chikova, V., Stockard, C. R., Grizzle, W. E., Buchsbaum, D. J., et al. (2009). Experimental cancer therapy using restoration of NAD+-linked 15-hydroxyprostaglandin dehydrogenase expression. Molecular Cancer Therapeutics, 8, 3130–3139.PubMedCrossRef
38.
Zurück zum Zitat Li, M., Xie, J., Cheng, L., Chang, B., Wang, Y., Lan, X., et al. (2008). Suppression of invasive properties of colorectal carcinoma SW480 cells by 15-hydroxyprostaglandin dehydrogenase gene. Cancer Investigation, 26, 905–912.PubMedCrossRef Li, M., Xie, J., Cheng, L., Chang, B., Wang, Y., Lan, X., et al. (2008). Suppression of invasive properties of colorectal carcinoma SW480 cells by 15-hydroxyprostaglandin dehydrogenase gene. Cancer Investigation, 26, 905–912.PubMedCrossRef
39.
Zurück zum Zitat Myung, S., Rerko, R. M., Yan, M., Platzer, P., Guda, K., Dotson, A., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12098–12102.PubMedCrossRef Myung, S., Rerko, R. M., Yan, M., Platzer, P., Guda, K., Dotson, A., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12098–12102.PubMedCrossRef
40.
Zurück zum Zitat Yan, M., Myung, S. J., Fink, S. P., Lawrence, E., Lutterbaugh, J., et al. (2009). 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proceedings of the National Academy of Sciences of the United States of America, 106, 9409–9413.PubMedCrossRef Yan, M., Myung, S. J., Fink, S. P., Lawrence, E., Lutterbaugh, J., et al. (2009). 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proceedings of the National Academy of Sciences of the United States of America, 106, 9409–9413.PubMedCrossRef
41.
Zurück zum Zitat Greenland, K. J., Jantke, I., Jenatschke, S., Bracken, K. E., Vinson, C., & Gellersen, B. (2000). The human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase gene promote is controlled by Ets and activating protein-1 transcriptional factors and progesterone. Endocrinology, 141, 581–597.PubMedCrossRef Greenland, K. J., Jantke, I., Jenatschke, S., Bracken, K. E., Vinson, C., & Gellersen, B. (2000). The human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase gene promote is controlled by Ets and activating protein-1 transcriptional factors and progesterone. Endocrinology, 141, 581–597.PubMedCrossRef
42.
Zurück zum Zitat Mann, J. R., Backlund, M. G., Buchanan, F. G., Daikoku, T., Holla, V. R., Rosen berg, D. W., et al. (2006). Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression. Cancer Research, 66, 6649–6656.PubMedCrossRef Mann, J. R., Backlund, M. G., Buchanan, F. G., Daikoku, T., Holla, V. R., Rosen berg, D. W., et al. (2006). Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression. Cancer Research, 66, 6649–6656.PubMedCrossRef
43.
Zurück zum Zitat Backlund, M. G., Mann, J. R., Holla, V. R., Shi, Q., Daikoku, T., Dey, S. K., et al. (2008). Repression of 15-hydroxyprostaglandin dehydrogenase involved histone deacetylase 2 and snail in colorectal cancer. Cancer Research, 68, 9331–9337.PubMedCrossRef Backlund, M. G., Mann, J. R., Holla, V. R., Shi, Q., Daikoku, T., Dey, S. K., et al. (2008). Repression of 15-hydroxyprostaglandin dehydrogenase involved histone deacetylase 2 and snail in colorectal cancer. Cancer Research, 68, 9331–9337.PubMedCrossRef
44.
Zurück zum Zitat Tong, M., Ding, Y., & Tai, H. H. (2006). Histone deacetylase inhibitors and transforming growth factor-β induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells. Biochemical Pharmacology, 72, 701–709.PubMedCrossRef Tong, M., Ding, Y., & Tai, H. H. (2006). Histone deacetylase inhibitors and transforming growth factor-β induce 15-hydroxyprostaglandin dehydrogenase expression in human lung adenocarcinoma cells. Biochemical Pharmacology, 72, 701–709.PubMedCrossRef
45.
Zurück zum Zitat Chi, X., Freeman, B. M., Tong, M., Zhao, Y., & Tai, H. H. (2009). 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is up-regulated by flurbiprofen and other non-steroidal anti-inflammatory drugs in human colon cancer H29 cells. Archives of Biochemistry and Biophysics, 487, 139–145.PubMedCrossRef Chi, X., Freeman, B. M., Tong, M., Zhao, Y., & Tai, H. H. (2009). 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is up-regulated by flurbiprofen and other non-steroidal anti-inflammatory drugs in human colon cancer H29 cells. Archives of Biochemistry and Biophysics, 487, 139–145.PubMedCrossRef
46.
Zurück zum Zitat Lodygin, D., Epanchintsev, A., Menssen, A., Diebold, J., & Hermeking, H. (2005). Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Research, 65, 4218–4227.PubMedCrossRef Lodygin, D., Epanchintsev, A., Menssen, A., Diebold, J., & Hermeking, H. (2005). Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Research, 65, 4218–4227.PubMedCrossRef
47.
Zurück zum Zitat Marnett, L. J. (2009). Mechanisms of cyclooxygenase-2 inhibition and cardiovascular side effects—The plot thickens. Cancer Prevention Research, 2, 288–290.PubMedCrossRef Marnett, L. J. (2009). Mechanisms of cyclooxygenase-2 inhibition and cardiovascular side effects—The plot thickens. Cancer Prevention Research, 2, 288–290.PubMedCrossRef
48.
Zurück zum Zitat Cha, Y., & DuBois, R. N. (2007). NSAIDs and cancer prevention: Targets downstream of COX-2. Annual Review of Medicine, 58, 239–252.PubMedCrossRef Cha, Y., & DuBois, R. N. (2007). NSAIDs and cancer prevention: Targets downstream of COX-2. Annual Review of Medicine, 58, 239–252.PubMedCrossRef
49.
Zurück zum Zitat Dubinett, S. M., Mao, J. T., & Hazra, S. (2008). Focusing downstream in lung cancer prevention: 15-Hydroxyprostaglandin dehydrogenase. Cancer Prevention Research, 1, 223–225.PubMedCrossRef Dubinett, S. M., Mao, J. T., & Hazra, S. (2008). Focusing downstream in lung cancer prevention: 15-Hydroxyprostaglandin dehydrogenase. Cancer Prevention Research, 1, 223–225.PubMedCrossRef
50.
Zurück zum Zitat Markowitz, S. D. (2008). Colorectal neoplasia goes with the flow: Prostaglandin transport and termination. Cancer Prevention Research, 1, 77–79.PubMedCrossRef Markowitz, S. D. (2008). Colorectal neoplasia goes with the flow: Prostaglandin transport and termination. Cancer Prevention Research, 1, 77–79.PubMedCrossRef
51.
Zurück zum Zitat Tong, M., & Tai, H. H. (2005). 15-Hydroxyprostaglandin dehydrogenase can be induced by dexamethasone and other glucocorticoids at the therapeutic level in A549 human lung adenocarcinoma cells. Archives of Biochemistry and Biophysics, 435, 50–55.PubMedCrossRef Tong, M., & Tai, H. H. (2005). 15-Hydroxyprostaglandin dehydrogenase can be induced by dexamethasone and other glucocorticoids at the therapeutic level in A549 human lung adenocarcinoma cells. Archives of Biochemistry and Biophysics, 435, 50–55.PubMedCrossRef
52.
Zurück zum Zitat Frenkian, M., Pidoux, E., Baudoin, C., Segond, N., & Jullienne, A. (2001). Indomethacin increases 15-PGDH expression in HL60 cells differentiated by PMA. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 64, 87–93.PubMedCrossRef Frenkian, M., Pidoux, E., Baudoin, C., Segond, N., & Jullienne, A. (2001). Indomethacin increases 15-PGDH expression in HL60 cells differentiated by PMA. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 64, 87–93.PubMedCrossRef
53.
Zurück zum Zitat Frenkian, M., Segond, N., Pidoux, E., Cohen, R., & Jullienne, A. (2001). Indomethacin, a COX inhibitor, enhances 15-PGDH and decreases human tumerol C cells proliferation. Prostaglandins & Other Lipid Mediators, 65, 11–20.CrossRef Frenkian, M., Segond, N., Pidoux, E., Cohen, R., & Jullienne, A. (2001). Indomethacin, a COX inhibitor, enhances 15-PGDH and decreases human tumerol C cells proliferation. Prostaglandins & Other Lipid Mediators, 65, 11–20.CrossRef
54.
Zurück zum Zitat Wakimoto, N., Wolf, I., Yin, D., O’Kelly, J., Akagi, T., Abramovitz, L., et al. (2008). Nonsteroidal anti-inflammatory drugs suppress glioma via 15-hydroxyprostaglandin dehydrogenase. Cancer Research, 68, 6978–6986.PubMedCrossRef Wakimoto, N., Wolf, I., Yin, D., O’Kelly, J., Akagi, T., Abramovitz, L., et al. (2008). Nonsteroidal anti-inflammatory drugs suppress glioma via 15-hydroxyprostaglandin dehydrogenase. Cancer Research, 68, 6978–6986.PubMedCrossRef
55.
Zurück zum Zitat Tai, H. H., Chi, X. & Tong, M. (2011) Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs). Prostaglandins and Other Lipid Mediators (in press). Tai, H. H., Chi, X. & Tong, M. (2011) Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs). Prostaglandins and Other Lipid Mediators (in press).
56.
Zurück zum Zitat Hazra, S., Batra, R. K., Tai, H. H., Sharma, S., Cui, X., & Dubinett, S. M. (2007). Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase. Molecular Pharmacology, 71, 1715–1720.PubMedCrossRef Hazra, S., Batra, R. K., Tai, H. H., Sharma, S., Cui, X., & Dubinett, S. M. (2007). Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase. Molecular Pharmacology, 71, 1715–1720.PubMedCrossRef
57.
Zurück zum Zitat Krishnan, A. V., Srinivas, S., & Feldman, D. (2009). Inhibition of prostaglandin synthesis and actions contributes to the beneficial effects of calcitriol in prostate cancer. Dermato-Endocrinology, 1, 7–11.PubMedCrossRef Krishnan, A. V., Srinivas, S., & Feldman, D. (2009). Inhibition of prostaglandin synthesis and actions contributes to the beneficial effects of calcitriol in prostate cancer. Dermato-Endocrinology, 1, 7–11.PubMedCrossRef
58.
Zurück zum Zitat Singh, R. P., Gu, M., & Agarwal, R. (2008). Silibilin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Research, 68, 2043–2050.PubMedCrossRef Singh, R. P., Gu, M., & Agarwal, R. (2008). Silibilin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Research, 68, 2043–2050.PubMedCrossRef
59.
Zurück zum Zitat Spinola, M., Colombo, F., Falvella, S., & Dragani, T. A. (2007). N6-Isopentenyladenosine: A potential therapeutic agent for a variety of epithelial cancers. International Journal of Cancer, 120, 2744–2748.CrossRef Spinola, M., Colombo, F., Falvella, S., & Dragani, T. A. (2007). N6-Isopentenyladenosine: A potential therapeutic agent for a variety of epithelial cancers. International Journal of Cancer, 120, 2744–2748.CrossRef
60.
Zurück zum Zitat Chi, X., & Tai, H. H. (2010). Interleukin-4 up-regulates 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in human lung cancer cells. Experimental Cell Research, 316, 2251–2259.PubMedCrossRef Chi, X., & Tai, H. H. (2010). Interleukin-4 up-regulates 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in human lung cancer cells. Experimental Cell Research, 316, 2251–2259.PubMedCrossRef
61.
Zurück zum Zitat Harding, L., Wang, Z., & Tai, H. H. (1996). Stimulation of prostaglandin E2 synthesis by interleukin-1β is amplified by interferons but inhibited by interleukin-4 in human amnion-derived WISH cells. Biochimica et Biophysica Acta, 1310, 48–52.PubMedCrossRef Harding, L., Wang, Z., & Tai, H. H. (1996). Stimulation of prostaglandin E2 synthesis by interleukin-1β is amplified by interferons but inhibited by interleukin-4 in human amnion-derived WISH cells. Biochimica et Biophysica Acta, 1310, 48–52.PubMedCrossRef
62.
Zurück zum Zitat Cui, X., Yang, S. C., Sharma, S., Heuze-vourch, N., & Dubinett, S. M. (2006). IL-4 regulates COX-2 and PGE2 production in human non-small-cell lung cancer. Biochemical and Biophysical Research Communications, 343, 995–1001.PubMedCrossRef Cui, X., Yang, S. C., Sharma, S., Heuze-vourch, N., & Dubinett, S. M. (2006). IL-4 regulates COX-2 and PGE2 production in human non-small-cell lung cancer. Biochemical and Biophysical Research Communications, 343, 995–1001.PubMedCrossRef
63.
Zurück zum Zitat Huang, G., Eisenberg, R., Yan, M., Monti, S., Lawrence, E., Fu, P., et al. (2008). 15-Hydroxyprostaglandin dehydrogenase is a target of heptocyte nuclear factor 3β and a tumor suppressor in lung cancer. Cancer Research, 68, 5040–5048.PubMedCrossRef Huang, G., Eisenberg, R., Yan, M., Monti, S., Lawrence, E., Fu, P., et al. (2008). 15-Hydroxyprostaglandin dehydrogenase is a target of heptocyte nuclear factor 3β and a tumor suppressor in lung cancer. Cancer Research, 68, 5040–5048.PubMedCrossRef
64.
Zurück zum Zitat Nomura, T., Lu, R., Satriano, J. A., et al. (2004). The two-step model of prostaglandin signal termination: In vitro reconstitution with the prostaglandin transporter and prostaglandin 15-dehydrogenase. Molecular Pharmacology, 65, 973–978.PubMedCrossRef Nomura, T., Lu, R., Satriano, J. A., et al. (2004). The two-step model of prostaglandin signal termination: In vitro reconstitution with the prostaglandin transporter and prostaglandin 15-dehydrogenase. Molecular Pharmacology, 65, 973–978.PubMedCrossRef
65.
Zurück zum Zitat Holla, V. R., Backlund, M. G., Yang, P., Newman, R. A., & DuBois, R. N. (2008). Regulation of prostaglandin transporters in colorectal neoplasia. Cancer Prevention Research, 1, 93–99.PubMedCrossRef Holla, V. R., Backlund, M. G., Yang, P., Newman, R. A., & DuBois, R. N. (2008). Regulation of prostaglandin transporters in colorectal neoplasia. Cancer Prevention Research, 1, 93–99.PubMedCrossRef
66.
Zurück zum Zitat Zhao, Y., Weng, C. C., Tong, M., Wei, J., & Tai, H. H. (2010). Restoration of leukotriene B4-12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase expression inhibits lung cancer growth in vitro and in vivo. Lung Cancer, 68, 161–169.PubMedCrossRef Zhao, Y., Weng, C. C., Tong, M., Wei, J., & Tai, H. H. (2010). Restoration of leukotriene B4-12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase expression inhibits lung cancer growth in vitro and in vivo. Lung Cancer, 68, 161–169.PubMedCrossRef
Metadaten
Titel
Prostaglandin catabolic enzymes as tumor suppressors
verfasst von
Hsin-Hsiung Tai
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2011
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9314-z

Weitere Artikel der Ausgabe 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.