Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2015

01.03.2015

Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches

verfasst von: Hyun-Jin Choi, Guillermo N. Armaiz Pena, Sunila Pradeep, Min Soon Cho, Robert L. Coleman, Anil K. Sood

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Literatur
1.
Zurück zum Zitat Agarwal, R., & Kaye, S. B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer, 3, 502–516.PubMedCrossRef Agarwal, R., & Kaye, S. B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer, 3, 502–516.PubMedCrossRef
2.
Zurück zum Zitat Balvert-Locht, H. R., Coebergh, J. W., Hop, W. C., et al. (1991). Improved prognosis of ovarian cancer in The Netherlands during the period 1975–1985: a registry-based study. Gynecologic Oncology, 42, 3–8.PubMedCrossRef Balvert-Locht, H. R., Coebergh, J. W., Hop, W. C., et al. (1991). Improved prognosis of ovarian cancer in The Netherlands during the period 1975–1985: a registry-based study. Gynecologic Oncology, 42, 3–8.PubMedCrossRef
3.
Zurück zum Zitat Ozols, R. F., Bundy, B. N., Greer, B. E., et al. (2003). Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. Journal of Clinical Oncology, 21, 3194–3200.PubMedCrossRef Ozols, R. F., Bundy, B. N., Greer, B. E., et al. (2003). Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. Journal of Clinical Oncology, 21, 3194–3200.PubMedCrossRef
4.
Zurück zum Zitat du Bois, A., Neijt, J. P., & Thigpen, J. T. (1999). First line chemotherapy with carboplatin plus paclitaxel in advanced ovarian cancer—a new standard of care? Annals of Oncology, 10(Suppl 1), 35–41.PubMedCrossRef du Bois, A., Neijt, J. P., & Thigpen, J. T. (1999). First line chemotherapy with carboplatin plus paclitaxel in advanced ovarian cancer—a new standard of care? Annals of Oncology, 10(Suppl 1), 35–41.PubMedCrossRef
5.
Zurück zum Zitat Biagi, J. J., & Eisenhauer, E. A. (2003). Systemic treatment policies in ovarian cancer: the next 10 years. International Journal of Gynecological Cancer, 13(Suppl 2), 231–240.PubMedCrossRef Biagi, J. J., & Eisenhauer, E. A. (2003). Systemic treatment policies in ovarian cancer: the next 10 years. International Journal of Gynecological Cancer, 13(Suppl 2), 231–240.PubMedCrossRef
6.
Zurück zum Zitat Neijt, J. P., Engelholm, S. A., Tuxen, M. K., et al. (2000). Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. Journal of Clinical Oncology, 18, 3084–3092.PubMed Neijt, J. P., Engelholm, S. A., Tuxen, M. K., et al. (2000). Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. Journal of Clinical Oncology, 18, 3084–3092.PubMed
7.
Zurück zum Zitat Greenlee, R. T., Hill-Harmon, M. B., Murray, T., & Thun, M. (2001). Cancer statistics, 2001. CA: A Cancer Journal for Clinicians, 51, 15–36. Greenlee, R. T., Hill-Harmon, M. B., Murray, T., & Thun, M. (2001). Cancer statistics, 2001. CA: A Cancer Journal for Clinicians, 51, 15–36.
8.
Zurück zum Zitat Gore, M. E., Fryatt, I., Wiltshaw, E., & Dawson, T. (1990). Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecologic Oncology, 36, 207–211.PubMedCrossRef Gore, M. E., Fryatt, I., Wiltshaw, E., & Dawson, T. (1990). Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecologic Oncology, 36, 207–211.PubMedCrossRef
9.
Zurück zum Zitat Wernert, N., Locherbach, C., Wellmann, A., Behrens, P., & Hugel, A. (2001). Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Research, 21, 2259–2264.PubMed Wernert, N., Locherbach, C., Wellmann, A., Behrens, P., & Hugel, A. (2001). Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Research, 21, 2259–2264.PubMed
10.
Zurück zum Zitat Allinen, M., Beroukhim, R., Cai, L., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–32.PubMedCrossRef Allinen, M., Beroukhim, R., Cai, L., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–32.PubMedCrossRef
11.
Zurück zum Zitat Fukino, K., Shen, L., Patocs, A., Mutter, G. L., & Eng, C. (2007). Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA, 297, 2103–2111.PubMedCrossRef Fukino, K., Shen, L., Patocs, A., Mutter, G. L., & Eng, C. (2007). Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA, 297, 2103–2111.PubMedCrossRef
12.
Zurück zum Zitat Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute, 82, 4–6.PubMedCrossRef Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute, 82, 4–6.PubMedCrossRef
13.
14.
Zurück zum Zitat Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438, 967–974.PubMedCrossRef Ferrara, N., & Kerbel, R. S. (2005). Angiogenesis as a therapeutic target. Nature, 438, 967–974.PubMedCrossRef
15.
Zurück zum Zitat Konerding, M. A., Fait, E., & Gaumann, A. (2001). 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. British Journal of Cancer, 84, 1354–1362.PubMedPubMedCentralCrossRef Konerding, M. A., Fait, E., & Gaumann, A. (2001). 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. British Journal of Cancer, 84, 1354–1362.PubMedPubMedCentralCrossRef
16.
18.
Zurück zum Zitat Holwell, S. E., Cooper, P. A., Thompson, M. J., et al. (2002). Anti-tumor and anti-vascular effects of the novel tubulin-binding agent combretastatin A-1 phosphate. Anticancer Research, 22, 3933–3940.PubMed Holwell, S. E., Cooper, P. A., Thompson, M. J., et al. (2002). Anti-tumor and anti-vascular effects of the novel tubulin-binding agent combretastatin A-1 phosphate. Anticancer Research, 22, 3933–3940.PubMed
19.
Zurück zum Zitat Tozer, G. M., Prise, V. E., Wilson, J., et al. (1999). Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Research, 59, 1626–1634.PubMed Tozer, G. M., Prise, V. E., Wilson, J., et al. (1999). Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Research, 59, 1626–1634.PubMed
20.
Zurück zum Zitat Marysael, T., Ni, Y., Lerut, E., & de Witte, P. (2011). Influence of the vascular damaging agents DMXAA and ZD6126 on hypericin distribution and accumulation in RIF-1 tumors. Journal of Cancer Research and Clinical Oncology, 137, 1619–1627.PubMedCrossRef Marysael, T., Ni, Y., Lerut, E., & de Witte, P. (2011). Influence of the vascular damaging agents DMXAA and ZD6126 on hypericin distribution and accumulation in RIF-1 tumors. Journal of Cancer Research and Clinical Oncology, 137, 1619–1627.PubMedCrossRef
21.
Zurück zum Zitat Nathan, P., Zweifel, M., Padhani, A. R., et al. (2012). Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clinical Cancer Research, 18, 3428–3439.PubMedCrossRef Nathan, P., Zweifel, M., Padhani, A. R., et al. (2012). Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clinical Cancer Research, 18, 3428–3439.PubMedCrossRef
22.
Zurück zum Zitat Zweifel, M., Jayson, G. C., Reed, N. S., et al. (2011). Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Annals of Oncology, 22, 2036–2041.PubMedCrossRef Zweifel, M., Jayson, G. C., Reed, N. S., et al. (2011). Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Annals of Oncology, 22, 2036–2041.PubMedCrossRef
23.
Zurück zum Zitat Ching, L. M., Cao, Z., Kieda, C., Zwain, S., Jameson, M. B., & Baguley, B. C. (2002). Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid. British Journal of Cancer, 86, 1937–1942.PubMedPubMedCentralCrossRef Ching, L. M., Cao, Z., Kieda, C., Zwain, S., Jameson, M. B., & Baguley, B. C. (2002). Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid. British Journal of Cancer, 86, 1937–1942.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Fredriksson, L., Li, H., Fieber, C., Li, X., & Eriksson, U. (2004). Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO Journal, 23, 3793–3802.PubMedPubMedCentralCrossRef Fredriksson, L., Li, H., Fieber, C., Li, X., & Eriksson, U. (2004). Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO Journal, 23, 3793–3802.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Kazlauskas, A., & Cooper, J. A. (1989). Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell, 58, 1121–1133.PubMedCrossRef Kazlauskas, A., & Cooper, J. A. (1989). Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell, 58, 1121–1133.PubMedCrossRef
26.
Zurück zum Zitat Antoniades, H. N., & Hunkapiller, M. W. (1983). Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science, 220, 963–965.PubMedCrossRef Antoniades, H. N., & Hunkapiller, M. W. (1983). Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science, 220, 963–965.PubMedCrossRef
27.
Zurück zum Zitat Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes and Development, 22, 1276–1312.PubMedPubMedCentralCrossRef Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes and Development, 22, 1276–1312.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Jain, R. K. (2003). Molecular regulation of vessel maturation. Nature Medicine, 9, 685–693.PubMedCrossRef Jain, R. K. (2003). Molecular regulation of vessel maturation. Nature Medicine, 9, 685–693.PubMedCrossRef
29.
Zurück zum Zitat Abramsson, A., Kurup, S., Busse, M., et al. (2007). Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes and Development, 21, 316–331.PubMedPubMedCentralCrossRef Abramsson, A., Kurup, S., Busse, M., et al. (2007). Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes and Development, 21, 316–331.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Benjamin, L. E., Hemo, I., & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–1598.PubMed Benjamin, L. E., Hemo, I., & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–1598.PubMed
31.
Zurück zum Zitat Oikawa, T., Onozawa, C., Sakaguchi, M., Morita, I., & Murota, S. (1994). Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biological and Pharmaceutical Bulletin, 17, 1686–1688.PubMedCrossRef Oikawa, T., Onozawa, C., Sakaguchi, M., Morita, I., & Murota, S. (1994). Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biological and Pharmaceutical Bulletin, 17, 1686–1688.PubMedCrossRef
32.
Zurück zum Zitat Lu, C., Thaker, P. H., Lin, Y. G., et al. (2008). Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. American Journal of Obstetrics and Gynecology, 198(477), e471–e479. discussion 477 e479–410. Lu, C., Thaker, P. H., Lin, Y. G., et al. (2008). Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. American Journal of Obstetrics and Gynecology, 198(477), e471–e479. discussion 477 e479–410.
33.
Zurück zum Zitat Valius, M., & Kazlauskas, A. (1993). Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell, 73, 321–334.PubMedCrossRef Valius, M., & Kazlauskas, A. (1993). Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell, 73, 321–334.PubMedCrossRef
34.
Zurück zum Zitat Coughlin, S. R., Escobedo, J. A., & Williams, L. T. (1989). Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science, 243, 1191–1194.PubMedCrossRef Coughlin, S. R., Escobedo, J. A., & Williams, L. T. (1989). Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science, 243, 1191–1194.PubMedCrossRef
35.
Zurück zum Zitat Heldin, C. H., Ostman, A., & Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta, 1378, F79–F113.PubMed Heldin, C. H., Ostman, A., & Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta, 1378, F79–F113.PubMed
36.
Zurück zum Zitat Yao, R., & Cooper, G. M. (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 267, 2003–2006.PubMedCrossRef Yao, R., & Cooper, G. M. (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 267, 2003–2006.PubMedCrossRef
37.
Zurück zum Zitat Huang, J. S., Huang, S. S., & Deuel, T. F. (1984). Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell, 39, 79–87.PubMedCrossRef Huang, J. S., Huang, S. S., & Deuel, T. F. (1984). Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell, 39, 79–87.PubMedCrossRef
38.
Zurück zum Zitat Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., & Ross, R. (1990). PDGF and FGF stimulate wound healing in the genetically diabetic mouse. American Journal of Pathology, 136, 1235–1246.PubMedPubMedCentral Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., & Ross, R. (1990). PDGF and FGF stimulate wound healing in the genetically diabetic mouse. American Journal of Pathology, 136, 1235–1246.PubMedPubMedCentral
39.
Zurück zum Zitat Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.PubMedCrossRef Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.PubMedCrossRef
40.
Zurück zum Zitat Gaengel, K., Genove, G., Armulik, A., & Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 630–638.PubMedCrossRef Gaengel, K., Genove, G., Armulik, A., & Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 630–638.PubMedCrossRef
41.
Zurück zum Zitat Quaegebeur, A., Segura, I., & Carmeliet, P. (2010). Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron, 68, 321–323.PubMedCrossRef Quaegebeur, A., Segura, I., & Carmeliet, P. (2010). Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron, 68, 321–323.PubMedCrossRef
42.
Zurück zum Zitat Ribatti, D., Vacca, A., Roccaro, A. M., Crivellato, E., & Presta, M. (2003). Erythropoietin as an angiogenic factor. European Journal of Clinical Investigation, 33, 891–896.PubMedCrossRef Ribatti, D., Vacca, A., Roccaro, A. M., Crivellato, E., & Presta, M. (2003). Erythropoietin as an angiogenic factor. European Journal of Clinical Investigation, 33, 891–896.PubMedCrossRef
43.
Zurück zum Zitat Crawford, Y., Kasman, I., Yu, L., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15, 21–34.PubMedCrossRef Crawford, Y., Kasman, I., Yu, L., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15, 21–34.PubMedCrossRef
44.
Zurück zum Zitat Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., & Hanahan, D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation, 111, 1287–1295.PubMedPubMedCentralCrossRef Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., & Hanahan, D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation, 111, 1287–1295.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Erber, R., Thurnher, A., Katsen, A. D., et al. (2004). Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB Journal, 18, 338–340.PubMed Erber, R., Thurnher, A., Katsen, A. D., et al. (2004). Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB Journal, 18, 338–340.PubMed
46.
Zurück zum Zitat Jo, N., Mailhos, C., Ju, M., et al. (2006). Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. American Journal of Pathology, 168, 2036–2053.PubMedPubMedCentralCrossRef Jo, N., Mailhos, C., Ju, M., et al. (2006). Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. American Journal of Pathology, 168, 2036–2053.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Hasumi, Y., Klosowska-Wardega, A., Furuhashi, M., Ostman, A., Heldin, C. H., & Hellberg, C. (2007). Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. International Journal of Cancer, 121, 2606–2614.PubMedCrossRef Hasumi, Y., Klosowska-Wardega, A., Furuhashi, M., Ostman, A., Heldin, C. H., & Hellberg, C. (2007). Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. International Journal of Cancer, 121, 2606–2614.PubMedCrossRef
48.
Zurück zum Zitat Gerhardt, H., & Semb, H. (2008). Pericytes: gatekeepers in tumour cell metastasis? Journal of Molecular Medicine (Berl), 86, 135–144.CrossRef Gerhardt, H., & Semb, H. (2008). Pericytes: gatekeepers in tumour cell metastasis? Journal of Molecular Medicine (Berl), 86, 135–144.CrossRef
49.
Zurück zum Zitat Alberts, D. S., Liu, P. Y., Wilczynski, S. P., et al. (2007). Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). International Journal of Gynecological Cancer, 17, 784–788.PubMedCrossRef Alberts, D. S., Liu, P. Y., Wilczynski, S. P., et al. (2007). Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). International Journal of Gynecological Cancer, 17, 784–788.PubMedCrossRef
50.
Zurück zum Zitat Coleman, R. L., Broaddus, R. R., Bodurka, D. C., et al. (2006). Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecologic Oncology, 101, 126–131.PubMedCrossRef Coleman, R. L., Broaddus, R. R., Bodurka, D. C., et al. (2006). Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecologic Oncology, 101, 126–131.PubMedCrossRef
51.
Zurück zum Zitat Posadas, E. M., Kwitkowski, V., Kotz, H. L., et al. (2007). A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer, 110, 309–317.PubMedCrossRef Posadas, E. M., Kwitkowski, V., Kotz, H. L., et al. (2007). A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer, 110, 309–317.PubMedCrossRef
52.
Zurück zum Zitat Safra, T., Andreopoulou, E., Levinson, B., et al. (2010). Weekly paclitaxel with intermittent imatinib mesylate (Gleevec): tolerance and activity in recurrent epithelial ovarian cancer. Anticancer Research, 30, 3243–3247.PubMed Safra, T., Andreopoulou, E., Levinson, B., et al. (2010). Weekly paclitaxel with intermittent imatinib mesylate (Gleevec): tolerance and activity in recurrent epithelial ovarian cancer. Anticancer Research, 30, 3243–3247.PubMed
53.
Zurück zum Zitat Matulonis, U. A., Berlin, S., Ivy, P., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27, 5601–5606.PubMedPubMedCentralCrossRef Matulonis, U. A., Berlin, S., Ivy, P., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27, 5601–5606.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Raja, F. A., Griffin, C. L., Qian, W., et al. (2011). Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer. British Journal of Cancer, 105, 884–889.PubMedPubMedCentralCrossRef Raja, F. A., Griffin, C. L., Qian, W., et al. (2011). Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer. British Journal of Cancer, 105, 884–889.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Wilhelm, S., Carter, C., Lynch, M., et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5, 835–844.PubMedCrossRef Wilhelm, S., Carter, C., Lynch, M., et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5, 835–844.PubMedCrossRef
56.
Zurück zum Zitat Kane, R. C., Farrell, A. T., Saber, H., et al. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical Cancer Research, 12, 7271–7278.PubMedCrossRef Kane, R. C., Farrell, A. T., Saber, H., et al. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical Cancer Research, 12, 7271–7278.PubMedCrossRef
57.
Zurück zum Zitat Kane, R. C., Farrell, A. T., Madabushi, R., et al. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 14, 95–100.PubMedCrossRef Kane, R. C., Farrell, A. T., Madabushi, R., et al. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 14, 95–100.PubMedCrossRef
58.
Zurück zum Zitat Matei, D., Sill, M. W., Lankes, H. A., et al. (2011). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29, 69–75.PubMedPubMedCentralCrossRef Matei, D., Sill, M. W., Lankes, H. A., et al. (2011). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29, 69–75.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Welch, S. A., Hirte, H. W., Elit, L., et al. (2010). Sorafenib in combination with gemcitabine in recurrent epithelial ovarian cancer: a study of the Princess Margaret Hospital Phase II Consortium. International Journal of Gynecological Cancer, 20, 787–793.PubMedCrossRef Welch, S. A., Hirte, H. W., Elit, L., et al. (2010). Sorafenib in combination with gemcitabine in recurrent epithelial ovarian cancer: a study of the Princess Margaret Hospital Phase II Consortium. International Journal of Gynecological Cancer, 20, 787–793.PubMedCrossRef
60.
Zurück zum Zitat Ramasubbaiah, R., Perkins, S. M., Schilder, J., et al. (2011). Sorafenib in combination with weekly topotecan in recurrent ovarian cancer, a phase I/II study of the Hoosier Oncology Group. Gynecologic Oncology, 123, 499–504.PubMedCrossRef Ramasubbaiah, R., Perkins, S. M., Schilder, J., et al. (2011). Sorafenib in combination with weekly topotecan in recurrent ovarian cancer, a phase I/II study of the Hoosier Oncology Group. Gynecologic Oncology, 123, 499–504.PubMedCrossRef
61.
Zurück zum Zitat Herzog, T. J., Scambia, G., Kim, B. G., et al. (2013). A randomized phase II trial of maintenance therapy with sorafenib in front-line ovarian carcinoma. Gynecologic Oncology, 130, 25–30.PubMedCrossRef Herzog, T. J., Scambia, G., Kim, B. G., et al. (2013). A randomized phase II trial of maintenance therapy with sorafenib in front-line ovarian carcinoma. Gynecologic Oncology, 130, 25–30.PubMedCrossRef
62.
Zurück zum Zitat Ledermann, J. A., Hackshaw, A., Kaye, S., et al. (2011). Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. Journal of Clinical Oncology, 29, 3798–3804.PubMedCrossRef Ledermann, J. A., Hackshaw, A., Kaye, S., et al. (2011). Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. Journal of Clinical Oncology, 29, 3798–3804.PubMedCrossRef
63.
Zurück zum Zitat Izzedine, H., Buhaescu, I., Rixe, O., & Deray, G. (2007). Sunitinib malate. Cancer Chemotheraphy and Pharmacology, 60, 357–364.CrossRef Izzedine, H., Buhaescu, I., Rixe, O., & Deray, G. (2007). Sunitinib malate. Cancer Chemotheraphy and Pharmacology, 60, 357–364.CrossRef
64.
Zurück zum Zitat Biagi, J. J., Oza, A. M., Chalchal, H. I., et al. (2011). A phase II study of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Annals of Oncology, 22, 335–340.PubMedCrossRef Biagi, J. J., Oza, A. M., Chalchal, H. I., et al. (2011). A phase II study of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Annals of Oncology, 22, 335–340.PubMedCrossRef
65.
Zurück zum Zitat Friedlander, M., Hancock, K. C., Rischin, D., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119, 32–37.PubMedCrossRef Friedlander, M., Hancock, K. C., Rischin, D., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119, 32–37.PubMedCrossRef
66.
Zurück zum Zitat Normanno, N., De Luca, A., Bianco, C., et al. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366, 2–16.PubMedCrossRef Normanno, N., De Luca, A., Bianco, C., et al. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366, 2–16.PubMedCrossRef
67.
Zurück zum Zitat Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2, 127–137.PubMedCrossRef Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2, 127–137.PubMedCrossRef
68.
Zurück zum Zitat Cascone, T., Herynk, M. H., Xu, L., et al. (2011). Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. Journal of Clinical Investigation, 121, 1313–1328.PubMedPubMedCentralCrossRef Cascone, T., Herynk, M. H., Xu, L., et al. (2011). Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. Journal of Clinical Investigation, 121, 1313–1328.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Viloria-Petit, A., Crombet, T., Jothy, S., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.PubMed Viloria-Petit, A., Crombet, T., Jothy, S., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.PubMed
70.
Zurück zum Zitat Vergote, I. B., Jimeno, A., Joly, F., et al. (2014). Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: a European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup Study. Journal of Clinical Oncology, 32, 320–326.PubMedCrossRef Vergote, I. B., Jimeno, A., Joly, F., et al. (2014). Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: a European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup Study. Journal of Clinical Oncology, 32, 320–326.PubMedCrossRef
71.
Zurück zum Zitat Pakkala, S., & Ramalingam, S. S. (2009). Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clinical Lung Cancer, 10(Suppl 1), S17–S23.PubMedCrossRef Pakkala, S., & Ramalingam, S. S. (2009). Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clinical Lung Cancer, 10(Suppl 1), S17–S23.PubMedCrossRef
72.
Zurück zum Zitat Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51, 869–877.PubMedCrossRef Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51, 869–877.PubMedCrossRef
73.
Zurück zum Zitat De Moerlooze, L., Spencer-Dene, B., Revest, J. M., Hajihosseini, M., Rosewell, I., & Dickson, C. (2000). An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development, 127, 483–492.PubMed De Moerlooze, L., Spencer-Dene, B., Revest, J. M., Hajihosseini, M., Rosewell, I., & Dickson, C. (2000). An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development, 127, 483–492.PubMed
74.
75.
Zurück zum Zitat Johnson, D. E., & Williams, L. T. (1993). Structural and functional diversity in the FGF receptor multigene family. Advances in Cancer Research, 60, 1–41.PubMedCrossRef Johnson, D. E., & Williams, L. T. (1993). Structural and functional diversity in the FGF receptor multigene family. Advances in Cancer Research, 60, 1–41.PubMedCrossRef
76.
Zurück zum Zitat Bae, J. H., & Schlessinger, J. (2010). Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Molecules and Cells, 29, 443–448.PubMedCrossRef Bae, J. H., & Schlessinger, J. (2010). Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Molecules and Cells, 29, 443–448.PubMedCrossRef
77.
Zurück zum Zitat Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine and Growth Factor Reviews, 16, 139–149.PubMedCrossRef Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine and Growth Factor Reviews, 16, 139–149.PubMedCrossRef
78.
Zurück zum Zitat Cunningham, D. L., Sweet, S. M., Cooper, H. J., & Heath, J. K. (2010). Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. Journal of Proteome Research, 9, 2317–2328.PubMedPubMedCentralCrossRef Cunningham, D. L., Sweet, S. M., Cooper, H. J., & Heath, J. K. (2010). Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. Journal of Proteome Research, 9, 2317–2328.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Klint, P., & Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Frontiers in Bioscience, 4, D165–D177.PubMedCrossRef Klint, P., & Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Frontiers in Bioscience, 4, D165–D177.PubMedCrossRef
80.
Zurück zum Zitat Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., & Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews, 16, 159–178.PubMedCrossRef Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., & Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews, 16, 159–178.PubMedCrossRef
81.
Zurück zum Zitat Cross, M. J., & Claesson-Welsh, L. (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences, 22, 201–207.PubMedCrossRef Cross, M. J., & Claesson-Welsh, L. (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences, 22, 201–207.PubMedCrossRef
82.
Zurück zum Zitat Presta, M., Tiberio, L., Rusnati, M., Dell’Era, P., & Ragnotti, G. (1991). Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regulation, 2, 719–726.PubMedPubMedCentral Presta, M., Tiberio, L., Rusnati, M., Dell’Era, P., & Ragnotti, G. (1991). Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regulation, 2, 719–726.PubMedPubMedCentral
83.
Zurück zum Zitat Shono, T., Kanetake, H., & Kanda, S. (2001). The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research, 264, 275–283.PubMedCrossRef Shono, T., Kanetake, H., & Kanda, S. (2001). The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research, 264, 275–283.PubMedCrossRef
84.
Zurück zum Zitat Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.PubMedCrossRef Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.PubMedCrossRef
85.
Zurück zum Zitat Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M., & Christofori, G. (2000). Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Research, 60, 7163–7169.PubMed Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M., & Christofori, G. (2000). Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Research, 60, 7163–7169.PubMed
86.
Zurück zum Zitat Giavazzi, R., Sennino, B., Coltrini, D., et al. (2003). Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. American Journal of Pathology, 162, 1913–1926.PubMedPubMedCentralCrossRef Giavazzi, R., Sennino, B., Coltrini, D., et al. (2003). Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. American Journal of Pathology, 162, 1913–1926.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Nissen, L. J., Cao, R., Hedlund, E. M., et al. (2007). Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. Journal of Clinical Investigation, 117, 2766–2777.PubMedPubMedCentralCrossRef Nissen, L. J., Cao, R., Hedlund, E. M., et al. (2007). Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. Journal of Clinical Investigation, 117, 2766–2777.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Lieu, C., Heymach, J., Overman, M., Tran, H., & Kopetz, S. (2011). Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clinical Cancer Research, 17, 6130–6139.PubMedCrossRef Lieu, C., Heymach, J., Overman, M., Tran, H., & Kopetz, S. (2011). Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clinical Cancer Research, 17, 6130–6139.PubMedCrossRef
89.
Zurück zum Zitat Fujii, T., & Kuwano, H. (2010). Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cellular and Developmental Biology - Animal, 46, 487–491.PubMedCrossRef Fujii, T., & Kuwano, H. (2010). Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cellular and Developmental Biology - Animal, 46, 487–491.PubMedCrossRef
90.
Zurück zum Zitat Pepper, M. S., Ferrara, N., Orci, L., & Montesano, R. (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical and Biophysical Research Communications, 189, 824–831.PubMedCrossRef Pepper, M. S., Ferrara, N., Orci, L., & Montesano, R. (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical and Biophysical Research Communications, 189, 824–831.PubMedCrossRef
91.
Zurück zum Zitat Kopetz, S., Hoff, P. M., Morris, J. S., et al. (2010). Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. Journal of Clinical Oncology, 28, 453–459.PubMedPubMedCentralCrossRef Kopetz, S., Hoff, P. M., Morris, J. S., et al. (2010). Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. Journal of Clinical Oncology, 28, 453–459.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Batchelor, T. T., Sorensen, A. G., di Tomaso, E., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11, 83–95.PubMedPubMedCentralCrossRef Batchelor, T. T., Sorensen, A. G., di Tomaso, E., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11, 83–95.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Augustin, H. G., Koh, G. Y., Thurston, G., & Alitalo, K. (2009). Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology, 10, 165–177.PubMedCrossRef Augustin, H. G., Koh, G. Y., Thurston, G., & Alitalo, K. (2009). Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology, 10, 165–177.PubMedCrossRef
95.
Zurück zum Zitat Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M., & Dvorak, H. F. (2002). Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Laboratory Investigation, 82, 387–401.PubMedCrossRef Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M., & Dvorak, H. F. (2002). Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Laboratory Investigation, 82, 387–401.PubMedCrossRef
96.
Zurück zum Zitat Winkler, F., Kozin, S. V., Tong, R. T., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6, 553–563.PubMed Winkler, F., Kozin, S. V., Tong, R. T., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6, 553–563.PubMed
97.
Zurück zum Zitat Maisonpierre, P. C., Suri, C., Jones, P. F., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55–60.PubMedCrossRef Maisonpierre, P. C., Suri, C., Jones, P. F., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55–60.PubMedCrossRef
98.
Zurück zum Zitat Scharpfenecker, M., Fiedler, U., Reiss, Y., & Augustin, H. G. (2005). The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. Journal of Cell Science, 118, 771–780.PubMedCrossRef Scharpfenecker, M., Fiedler, U., Reiss, Y., & Augustin, H. G. (2005). The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. Journal of Cell Science, 118, 771–780.PubMedCrossRef
99.
Zurück zum Zitat Bach, F., Uddin, F. J., & Burke, D. (2007). Angiopoietins in malignancy. European Journal of Surgical Oncology, 33, 7–15.PubMedCrossRef Bach, F., Uddin, F. J., & Burke, D. (2007). Angiopoietins in malignancy. European Journal of Surgical Oncology, 33, 7–15.PubMedCrossRef
100.
Zurück zum Zitat Carmeliet, P., & Jain, R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery, 10, 417–427.PubMedCrossRef Carmeliet, P., & Jain, R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery, 10, 417–427.PubMedCrossRef
101.
Zurück zum Zitat Falcon, B. L., Hashizume, H., Koumoutsakos, P., et al. (2009). Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. American Journal of Pathology, 175, 2159–2170.PubMedPubMedCentralCrossRef Falcon, B. L., Hashizume, H., Koumoutsakos, P., et al. (2009). Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. American Journal of Pathology, 175, 2159–2170.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Koh, Y. J., Kim, H. Z., Hwang, S. I., et al. (2010). Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell, 18, 171–184.PubMedCrossRef Koh, Y. J., Kim, H. Z., Hwang, S. I., et al. (2010). Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell, 18, 171–184.PubMedCrossRef
103.
Zurück zum Zitat Herbst, R. S., Hong, D., Chap, L., et al. (2009). Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. Journal of Clinical Oncology, 27, 3557–3565.PubMedCrossRef Herbst, R. S., Hong, D., Chap, L., et al. (2009). Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. Journal of Clinical Oncology, 27, 3557–3565.PubMedCrossRef
104.
Zurück zum Zitat Birchmeier, C., Birchmeier, W., Gherardi, E., & Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 4, 915–925.PubMedCrossRef Birchmeier, C., Birchmeier, W., Gherardi, E., & Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 4, 915–925.PubMedCrossRef
105.
Zurück zum Zitat Funakoshi, H., & Nakamura, T. (2003). Hepatocyte growth factor: from diagnosis to clinical applications. Clinica Chimica Acta, 327, 1–23.CrossRef Funakoshi, H., & Nakamura, T. (2003). Hepatocyte growth factor: from diagnosis to clinical applications. Clinica Chimica Acta, 327, 1–23.CrossRef
106.
Zurück zum Zitat Bottaro, D. P., Rubin, J. S., Faletto, D. L., et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 251, 802–804.PubMedCrossRef Bottaro, D. P., Rubin, J. S., Faletto, D. L., et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 251, 802–804.PubMedCrossRef
107.
Zurück zum Zitat Bolanos-Garcia, V. M. (2005). MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor. Molecular and Cellular Biochemistry, 276, 149–157.PubMedCrossRef Bolanos-Garcia, V. M. (2005). MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor. Molecular and Cellular Biochemistry, 276, 149–157.PubMedCrossRef
108.
Zurück zum Zitat Yu, J., Miehlke, S., Ebert, M. P., et al. (2000). Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer, 88, 1801–1806.PubMedCrossRef Yu, J., Miehlke, S., Ebert, M. P., et al. (2000). Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer, 88, 1801–1806.PubMedCrossRef
109.
Zurück zum Zitat Dharmawardana, P. G., Giubellino, A., & Bottaro, D. P. (2004). Hereditary papillary renal carcinoma type I. Current Molecular Medicine, 4, 855–868.PubMedCrossRef Dharmawardana, P. G., Giubellino, A., & Bottaro, D. P. (2004). Hereditary papillary renal carcinoma type I. Current Molecular Medicine, 4, 855–868.PubMedCrossRef
110.
Zurück zum Zitat Bussolino, F., Di Renzo, M. F., Ziche, M., et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology, 119, 629–641.PubMedCrossRef Bussolino, F., Di Renzo, M. F., Ziche, M., et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology, 119, 629–641.PubMedCrossRef
111.
Zurück zum Zitat Kitajima, Y., Ide, T., Ohtsuka, T., & Miyazaki, K. (2008). Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Science, 99, 1341–1347.PubMedCrossRef Kitajima, Y., Ide, T., Ohtsuka, T., & Miyazaki, K. (2008). Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Science, 99, 1341–1347.PubMedCrossRef
112.
Zurück zum Zitat Kubota, T., Taiyoh, H., Matsumura, A., et al. (2009). NK4, an HGF antagonist, prevents hematogenous pulmonary metastasis by inhibiting adhesion of CT26 cells to endothelial cells. Clinical and Experimental Metastasis, 26, 447–456.PubMedCrossRef Kubota, T., Taiyoh, H., Matsumura, A., et al. (2009). NK4, an HGF antagonist, prevents hematogenous pulmonary metastasis by inhibiting adhesion of CT26 cells to endothelial cells. Clinical and Experimental Metastasis, 26, 447–456.PubMedCrossRef
113.
Zurück zum Zitat Sulpice, E., Ding, S., Muscatelli-Groux, B., et al. (2009). Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell, 101, 525–539.PubMedCrossRef Sulpice, E., Ding, S., Muscatelli-Groux, B., et al. (2009). Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell, 101, 525–539.PubMedCrossRef
114.
Zurück zum Zitat Puri, N., Khramtsov, A., Ahmed, S., et al. (2007). A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Research, 67, 3529–3534.PubMedCrossRef Puri, N., Khramtsov, A., Ahmed, S., et al. (2007). A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Research, 67, 3529–3534.PubMedCrossRef
115.
Zurück zum Zitat Cantelmo, A. R., Cammarota, R., Noonan, D. M., et al. (2010). Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene, 29, 5286–5298.PubMedPubMedCentralCrossRef Cantelmo, A. R., Cammarota, R., Noonan, D. M., et al. (2010). Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene, 29, 5286–5298.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Gherardi, E., Birchmeier, W., Birchmeier, C., & Woude, G. V. (2012). Targeting MET in cancer: rationale and progress. Nature Reviews Cancer, 12, 89–103.PubMedCrossRef Gherardi, E., Birchmeier, W., Birchmeier, C., & Woude, G. V. (2012). Targeting MET in cancer: rationale and progress. Nature Reviews Cancer, 12, 89–103.PubMedCrossRef
117.
Zurück zum Zitat Hara, S., Nakashiro, K., Klosek, S. K., Ishikawa, T., Shintani, S., & Hamakawa, H. (2006). Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncology, 42, 593–598.PubMedCrossRef Hara, S., Nakashiro, K., Klosek, S. K., Ishikawa, T., Shintani, S., & Hamakawa, H. (2006). Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncology, 42, 593–598.PubMedCrossRef
118.
Zurück zum Zitat Ide, T., Kitajima, Y., Miyoshi, A., et al. (2006). Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. International Journal of Cancer, 119, 2750–2759.PubMedCrossRef Ide, T., Kitajima, Y., Miyoshi, A., et al. (2006). Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. International Journal of Cancer, 119, 2750–2759.PubMedCrossRef
119.
Zurück zum Zitat Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.PubMedCrossRef Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.PubMedCrossRef
120.
Zurück zum Zitat Qian, F., Engst, S., Yamaguchi, K., et al. (2009). Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Research, 69, 8009–8016.PubMedCrossRef Qian, F., Engst, S., Yamaguchi, K., et al. (2009). Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Research, 69, 8009–8016.PubMedCrossRef
121.
Zurück zum Zitat Nakagawa, T., Tohyama, O., Yamaguchi, A., et al. (2010). E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Science, 101, 210–215.PubMedCrossRef Nakagawa, T., Tohyama, O., Yamaguchi, A., et al. (2010). E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Science, 101, 210–215.PubMedCrossRef
122.
Zurück zum Zitat You, W. K., & McDonald, D. M. (2008). The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Reports, 41, 833–839.PubMedPubMedCentralCrossRef You, W. K., & McDonald, D. M. (2008). The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Reports, 41, 833–839.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Shojaei, F., Lee, J. H., Simmons, B. H., et al. (2010). HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Research, 70, 10090–10100.PubMedCrossRef Shojaei, F., Lee, J. H., Simmons, B. H., et al. (2010). HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Research, 70, 10090–10100.PubMedCrossRef
124.
Zurück zum Zitat Tomioka, D., Maehara, N., Kuba, K., et al. (2001). Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Research, 61, 7518–7524.PubMed Tomioka, D., Maehara, N., Kuba, K., et al. (2001). Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Research, 61, 7518–7524.PubMed
125.
Zurück zum Zitat Burgess, T., Coxon, A., Meyer, S., et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Research, 66, 1721–1729.PubMedCrossRef Burgess, T., Coxon, A., Meyer, S., et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Research, 66, 1721–1729.PubMedCrossRef
126.
Zurück zum Zitat Martin, L. P., Sill, M., Shahin, M. S., et al. (2014). A phase II evaluation of AMG 102 (rilotumumab) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 132, 526–530.PubMedPubMedCentralCrossRef Martin, L. P., Sill, M., Shahin, M. S., et al. (2014). A phase II evaluation of AMG 102 (rilotumumab) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 132, 526–530.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Buckanovich, R. J., Berger, R., Sella, A., et al. (2011). Results from phase II randomized discontinuation trial. Journal of Clinical Oncology ASCO Annual Meeting. 29, abstract 5008. Buckanovich, R. J., Berger, R., Sella, A., et al. (2011). Results from phase II randomized discontinuation trial. Journal of Clinical Oncology ASCO Annual Meeting. 29, abstract 5008.
128.
Zurück zum Zitat Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.PubMedCrossRef Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.PubMedCrossRef
129.
Zurück zum Zitat Walker-Daniels, J., Hess, A. R., Hendrix, M. J., & Kinch, M. S. (2003). Differential regulation of EphA2 in normal and malignant cells. American Journal of Pathology, 162, 1037–1042.PubMedPubMedCentralCrossRef Walker-Daniels, J., Hess, A. R., Hendrix, M. J., & Kinch, M. S. (2003). Differential regulation of EphA2 in normal and malignant cells. American Journal of Pathology, 162, 1037–1042.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Pasquale, E. B. (1997). The Eph family of receptors. Current Opinion in Cell Biology, 9, 608–615.PubMedCrossRef Pasquale, E. B. (1997). The Eph family of receptors. Current Opinion in Cell Biology, 9, 608–615.PubMedCrossRef
131.
Zurück zum Zitat Thaker, P. H., Deavers, M., Celestino, J., et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clinical Cancer Research, 10, 5145–5150.PubMedCrossRef Thaker, P. H., Deavers, M., Celestino, J., et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clinical Cancer Research, 10, 5145–5150.PubMedCrossRef
132.
Zurück zum Zitat Cheng, N., Brantley, D. M., Liu, H., et al. (2002). Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Molecular Cancer Research, 1, 2–11.PubMedCrossRef Cheng, N., Brantley, D. M., Liu, H., et al. (2002). Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Molecular Cancer Research, 1, 2–11.PubMedCrossRef
133.
Zurück zum Zitat Spannuth, W. A., Sood, A. K., & Coleman, R. L. (2008). Angiogenesis as a strategic target for ovarian cancer therapy. Nature Clinical Practice Oncology, 5, 194–204.PubMedCrossRef Spannuth, W. A., Sood, A. K., & Coleman, R. L. (2008). Angiogenesis as a strategic target for ovarian cancer therapy. Nature Clinical Practice Oncology, 5, 194–204.PubMedCrossRef
134.
Zurück zum Zitat Lu, X. S., Sun, W., Ge, C. Y., Zhang, W. Z., & Fan, Y. Z. (2013). Contribution of the PI3K/MMPs/Ln-5gamma2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. International Journal of Oncology, 42, 2103–2115.PubMed Lu, X. S., Sun, W., Ge, C. Y., Zhang, W. Z., & Fan, Y. Z. (2013). Contribution of the PI3K/MMPs/Ln-5gamma2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. International Journal of Oncology, 42, 2103–2115.PubMed
135.
Zurück zum Zitat Hess, A. R., Seftor, E. A., Gardner, L. M., et al. (2001). Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Research, 61, 3250–3255.PubMed Hess, A. R., Seftor, E. A., Gardner, L. M., et al. (2001). Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Research, 61, 3250–3255.PubMed
136.
Zurück zum Zitat Landen, C. N., Jr., Chavez-Reyes, A., Bucana, C., et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65, 6910–6918.PubMedCrossRef Landen, C. N., Jr., Chavez-Reyes, A., Bucana, C., et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65, 6910–6918.PubMedCrossRef
137.
Zurück zum Zitat Adam, M. G., Berger, C., Feldner, A., et al. (2013). Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circulation Research, 113, 1206–1218.PubMedCrossRef Adam, M. G., Berger, C., Feldner, A., et al. (2013). Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circulation Research, 113, 1206–1218.PubMedCrossRef
138.
Zurück zum Zitat Hu, W., Lu, C., Dong, H. H., et al. (2011). Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Research, 71, 6030–6039.PubMedPubMedCentralCrossRef Hu, W., Lu, C., Dong, H. H., et al. (2011). Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Research, 71, 6030–6039.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Gale, N. W., Dominguez, M. G., Noguera, I., et al. (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101, 15949–15954.PubMedPubMedCentralCrossRef Gale, N. W., Dominguez, M. G., Noguera, I., et al. (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101, 15949–15954.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Lobov, I. B., Renard, R. A., Papadopoulos, N., et al. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences of the United States of America, 104, 3219–3224.PubMedPubMedCentralCrossRef Lobov, I. B., Renard, R. A., Papadopoulos, N., et al. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences of the United States of America, 104, 3219–3224.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7, 327–331.PubMedCrossRef Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7, 327–331.PubMedCrossRef
142.
Zurück zum Zitat Ridgway, J., Zhang, G., Wu, Y., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444, 1083–1087.PubMedCrossRef Ridgway, J., Zhang, G., Wu, Y., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444, 1083–1087.PubMedCrossRef
143.
Zurück zum Zitat Li, J. L., Sainson, R. C., Shi, W., et al. (2007). Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Research, 67, 11244–11253.PubMedCrossRef Li, J. L., Sainson, R. C., Shi, W., et al. (2007). Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Research, 67, 11244–11253.PubMedCrossRef
144.
Zurück zum Zitat Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., et al. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30, 2348–2353.PubMedCrossRef Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., et al. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30, 2348–2353.PubMedCrossRef
145.
Zurück zum Zitat Sahebjam, S., Bedard, P. L., Castonguay, V., et al. (2013). A phase i study of the combination of ro4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). British Journal of Cancer, 109, 943–949.PubMedPubMedCentralCrossRef Sahebjam, S., Bedard, P. L., Castonguay, V., et al. (2013). A phase i study of the combination of ro4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). British Journal of Cancer, 109, 943–949.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Diaz-Padilla, I., Hirte, H., Oza, A. M., et al. (2013). A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Investigational New Drugs, 31, 1182–1191.PubMedPubMedCentralCrossRef Diaz-Padilla, I., Hirte, H., Oza, A. M., et al. (2013). A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Investigational New Drugs, 31, 1182–1191.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Strosberg, J. R., Yeatman, T., Weber, J., et al. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48, 997–1003.PubMedPubMedCentralCrossRef Strosberg, J. R., Yeatman, T., Weber, J., et al. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48, 997–1003.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Reviews, 22, 337–358.PubMedCrossRef Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Reviews, 22, 337–358.PubMedCrossRef
149.
Zurück zum Zitat Ma, W. W., & Adjei, A. A. (2009). Novel agents on the horizon for cancer therapy. CA: A Cancer Journal for Clinicians, 59, 111–137. Ma, W. W., & Adjei, A. A. (2009). Novel agents on the horizon for cancer therapy. CA: A Cancer Journal for Clinicians, 59, 111–137.
150.
Zurück zum Zitat Frame, M. C. (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochimica et Biophysica Acta, 1602, 114–130.PubMed Frame, M. C. (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochimica et Biophysica Acta, 1602, 114–130.PubMed
151.
Zurück zum Zitat Trevino, J. G., Summy, J. M., Gray, M. J., et al. (2005). Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Research, 65, 7214–7222.PubMedCrossRef Trevino, J. G., Summy, J. M., Gray, M. J., et al. (2005). Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Research, 65, 7214–7222.PubMedCrossRef
152.
Zurück zum Zitat Kanda, S., Miyata, Y., Kanetake, H., & Smithgall, T. E. (2007). Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (review). International Journal of Molecular Medicine, 20, 113–121.PubMed Kanda, S., Miyata, Y., Kanetake, H., & Smithgall, T. E. (2007). Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (review). International Journal of Molecular Medicine, 20, 113–121.PubMed
153.
Zurück zum Zitat Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., & Béliveau, R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Molecular Biology of the Cell, 14, 334–347.PubMedPubMedCentralCrossRef Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., & Béliveau, R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Molecular Biology of the Cell, 14, 334–347.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Eliceiri, B. P., Puente, X. S., Hood, J. D., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. Journal of Cell Biology, 157, 149–160.PubMedPubMedCentralCrossRef Eliceiri, B. P., Puente, X. S., Hood, J. D., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. Journal of Cell Biology, 157, 149–160.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Kim, Y. M., Lee, Y. M., Kim, H. S., et al. (2002). TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. Journal of Biological Chemistry, 277, 6799–6805.PubMedCrossRef Kim, Y. M., Lee, Y. M., Kim, H. S., et al. (2002). TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. Journal of Biological Chemistry, 277, 6799–6805.PubMedCrossRef
156.
Zurück zum Zitat Laird, A. D., Li, G., Moss, K. G., et al. (2003). Src family kinase activity is required for signal tranducer and activator of transcription 3 and focal adhesion kinase phosphorylation and vascular endothelial growth factor signaling in vivo and for anchorage-dependent and -independent growth of human tumor cells. Molecular Cancer Therapeutics, 2, 461–469.PubMed Laird, A. D., Li, G., Moss, K. G., et al. (2003). Src family kinase activity is required for signal tranducer and activator of transcription 3 and focal adhesion kinase phosphorylation and vascular endothelial growth factor signaling in vivo and for anchorage-dependent and -independent growth of human tumor cells. Molecular Cancer Therapeutics, 2, 461–469.PubMed
157.
Zurück zum Zitat Bankhead, C. (2010). ESMO: failed trials dominate gyn cancer session. Accessed 14 Oct 2010. Bankhead, C. (2010). ESMO: failed trials dominate gyn cancer session. Accessed 14 Oct 2010.
158.
Zurück zum Zitat McNeish, I. A., Ledermann, J. A., Webber, L. C., et al. (2013). A randomized placebo-controlled trial of saracatinib (AZD0530) plus weekly paclitaxel in platinum-resistant ovarian, fallopian-tube, or primary peritoneal cancer (SaPPrOC). Journal of Clinical Oncology, 31. McNeish, I. A., Ledermann, J. A., Webber, L. C., et al. (2013). A randomized placebo-controlled trial of saracatinib (AZD0530) plus weekly paclitaxel in platinum-resistant ovarian, fallopian-tube, or primary peritoneal cancer (SaPPrOC). Journal of Clinical Oncology, 31.
159.
Zurück zum Zitat Hermann, C., Assmus, B., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2000). Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 402–409.PubMedCrossRef Hermann, C., Assmus, B., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2000). Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 402–409.PubMedCrossRef
160.
Zurück zum Zitat Granville, C. A., Memmott, R. M., Gills, J. J., & Dennis, P. A. (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clinical Cancer Research, 12, 679–689.PubMedCrossRef Granville, C. A., Memmott, R. M., Gills, J. J., & Dennis, P. A. (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clinical Cancer Research, 12, 679–689.PubMedCrossRef
161.
Zurück zum Zitat Frisch, S. M., & Ruoslahti, E. (1997). Integrins and anoikis. Current Opinion in Cell Biology, 9, 701–706.PubMedCrossRef Frisch, S. M., & Ruoslahti, E. (1997). Integrins and anoikis. Current Opinion in Cell Biology, 9, 701–706.PubMedCrossRef
162.
Zurück zum Zitat Gerber, H. P., McMurtrey, A., Kowalski, J., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273, 30336–30343.PubMedCrossRef Gerber, H. P., McMurtrey, A., Kowalski, J., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273, 30336–30343.PubMedCrossRef
163.
Zurück zum Zitat Brunet, A., Bonni, A., Zigmond, M. J., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–868.PubMedCrossRef Brunet, A., Bonni, A., Zigmond, M. J., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–868.PubMedCrossRef
164.
Zurück zum Zitat Yang, D., Sun, Y., Hu, L., et al. (2013). Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 23, 186–199.PubMedPubMedCentralCrossRef Yang, D., Sun, Y., Hu, L., et al. (2013). Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 23, 186–199.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Bianco, R., Garofalo, S., Rosa, R., et al. (2008). Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. British Journal of Cancer, 98, 923–930.PubMedPubMedCentralCrossRef Bianco, R., Garofalo, S., Rosa, R., et al. (2008). Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. British Journal of Cancer, 98, 923–930.PubMedPubMedCentralCrossRef
166.
167.
Zurück zum Zitat Ruegg, C., & Mariotti, A. (2003). Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cellular and Molecular Life Sciences, 60, 1135–1157.PubMed Ruegg, C., & Mariotti, A. (2003). Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cellular and Molecular Life Sciences, 60, 1135–1157.PubMed
168.
Zurück zum Zitat da Silva, R. G., Tavora, B., Robinson, S. D., et al. (2010). Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. American Journal of Pathology, 177, 1534–1548.PubMedPubMedCentralCrossRef da Silva, R. G., Tavora, B., Robinson, S. D., et al. (2010). Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. American Journal of Pathology, 177, 1534–1548.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Urbich, C., Dernbach, E., Reissner, A., Vasa, M., Zeiher, A. M., & Dimmeler, S. (2002). Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 69–75.PubMedCrossRef Urbich, C., Dernbach, E., Reissner, A., Vasa, M., Zeiher, A. M., & Dimmeler, S. (2002). Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 69–75.PubMedCrossRef
171.
Zurück zum Zitat Abedi, H., & Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry, 272, 15442–15451.PubMedCrossRef Abedi, H., & Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry, 272, 15442–15451.PubMedCrossRef
172.
Zurück zum Zitat Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., & Cheresh, D. A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. Journal of Clinical Investigation, 96, 1815–1822.PubMedPubMedCentralCrossRef Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., & Cheresh, D. A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. Journal of Clinical Investigation, 96, 1815–1822.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Gutheil, J. C., Campbell, T. N., Pierce, P. R., et al. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clinical Cancer Research, 6, 3056–3061.PubMed Gutheil, J. C., Campbell, T. N., Pierce, P. R., et al. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clinical Cancer Research, 6, 3056–3061.PubMed
174.
Zurück zum Zitat Stupp, R., & Ruegg, C. (2007). Integrin inhibitors reaching the clinic. Journal of Clinical Oncology, 25, 1637–1638.PubMedCrossRef Stupp, R., & Ruegg, C. (2007). Integrin inhibitors reaching the clinic. Journal of Clinical Oncology, 25, 1637–1638.PubMedCrossRef
175.
Zurück zum Zitat Shibata, K., Kikkawa, F., Nawa, A., Suganuma, N., & Hamaguchi, M. (1997). Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Research, 57, 5416–5420.PubMed Shibata, K., Kikkawa, F., Nawa, A., Suganuma, N., & Hamaguchi, M. (1997). Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Research, 57, 5416–5420.PubMed
176.
Zurück zum Zitat Sawada, K., Mitra, A. K., Radjabi, A. R., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Research, 68, 2329–2339.PubMedPubMedCentralCrossRef Sawada, K., Mitra, A. K., Radjabi, A. R., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Research, 68, 2329–2339.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Park, C. C., Zhang, H., Pallavicini, M., et al. (2006). Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Research, 66, 1526–1535.PubMedPubMedCentralCrossRef Park, C. C., Zhang, H., Pallavicini, M., et al. (2006). Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Research, 66, 1526–1535.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Bhaskar, V., Zhang, D., Fox, M., et al. (2007). A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. Journal of Translational Medicine, 5, 61.PubMedPubMedCentralCrossRef Bhaskar, V., Zhang, D., Fox, M., et al. (2007). A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. Journal of Translational Medicine, 5, 61.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Bhaskar, V., Fox, M., Breinberg, D., et al. (2008). Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Investigational New Drugs, 26, 7–12.PubMedCrossRef Bhaskar, V., Fox, M., Breinberg, D., et al. (2008). Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Investigational New Drugs, 26, 7–12.PubMedCrossRef
180.
Zurück zum Zitat Ramakrishnan, V., Bhaskar, V., Law, D. A., et al. (2006). Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. Journal of Experimental Therapeutics and Oncology, 5, 273–286.PubMed Ramakrishnan, V., Bhaskar, V., Law, D. A., et al. (2006). Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. Journal of Experimental Therapeutics and Oncology, 5, 273–286.PubMed
181.
Zurück zum Zitat Bell-McGuinn, K. M., Matthews, C. M., Ho, S. N., et al. (2011). A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecologic Oncology, 121, 273–279.PubMedPubMedCentralCrossRef Bell-McGuinn, K. M., Matthews, C. M., Ho, S. N., et al. (2011). A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecologic Oncology, 121, 273–279.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Naylor, M. S., Stamp, G. W., Foulkes, W. D., Eccles, D., & Balkwill, F. R. (1993). Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. Journal of Clinical Investigation, 91, 2194–2206.PubMedPubMedCentralCrossRef Naylor, M. S., Stamp, G. W., Foulkes, W. D., Eccles, D., & Balkwill, F. R. (1993). Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. Journal of Clinical Investigation, 91, 2194–2206.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Wu, S., Boyer, C. M., Whitaker, R. S., et al. (1993). Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Research, 53, 1939–1944.PubMed Wu, S., Boyer, C. M., Whitaker, R. S., et al. (1993). Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Research, 53, 1939–1944.PubMed
184.
Zurück zum Zitat Kulbe, H., Thompson, R., Wilson, J. L., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67, 585–592.PubMedPubMedCentralCrossRef Kulbe, H., Thompson, R., Wilson, J. L., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67, 585–592.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Jin, D. K., Shido, K., Kopp, H. G., et al. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 12, 557–567.PubMedPubMedCentralCrossRef Jin, D. K., Shido, K., Kopp, H. G., et al. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 12, 557–567.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.PubMedPubMedCentralCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Kryczek, I., Lange, A., Mottram, P., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65, 465–472.PubMed Kryczek, I., Lange, A., Mottram, P., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65, 465–472.PubMed
188.
Zurück zum Zitat Aguayo, A., Kantarjian, H., Manshouri, T., et al. (2000). Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 96, 2240–2245.PubMed Aguayo, A., Kantarjian, H., Manshouri, T., et al. (2000). Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 96, 2240–2245.PubMed
189.
Zurück zum Zitat Charles, K. A., Kulbe, H., Soper, R., et al. (2009). The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. Journal of Clinical Investigation, 119, 3011–3023.PubMedPubMedCentralCrossRef Charles, K. A., Kulbe, H., Soper, R., et al. (2009). The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. Journal of Clinical Investigation, 119, 3011–3023.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Kulbe, H., Chakravarty, P., Leinster, D. A., et al. (2012). A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Research, 72, 66–75.PubMedPubMedCentralCrossRef Kulbe, H., Chakravarty, P., Leinster, D. A., et al. (2012). A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Research, 72, 66–75.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Madhusudan, S., Muthuramalingam, S. R., Braybrooke, J. P., et al. (2005). Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. Journal of Clinical Oncology, 23, 5950–5959.PubMedCrossRef Madhusudan, S., Muthuramalingam, S. R., Braybrooke, J. P., et al. (2005). Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. Journal of Clinical Oncology, 23, 5950–5959.PubMedCrossRef
192.
Zurück zum Zitat Giuntoli, R. L., 2nd, Webb, T. J., Zoso, A., et al. (2009). Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Research, 29, 2875–2884.PubMed Giuntoli, R. L., 2nd, Webb, T. J., Zoso, A., et al. (2009). Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Research, 29, 2875–2884.PubMed
193.
Zurück zum Zitat Lane, D., Matte, I., Rancourt, C., & Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11, 210.PubMedPubMedCentralCrossRef Lane, D., Matte, I., Rancourt, C., & Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11, 210.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Dankbar, B., Padro, T., Leo, R., et al. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood, 95, 2630–2636.PubMed Dankbar, B., Padro, T., Leo, R., et al. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood, 95, 2630–2636.PubMed
195.
Zurück zum Zitat Nilsson, M. B., Langley, R. R., & Fidler, I. J. (2005). Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Research, 65, 10794–10800.PubMedPubMedCentralCrossRef Nilsson, M. B., Langley, R. R., & Fidler, I. J. (2005). Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Research, 65, 10794–10800.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Rabinovich, A., Medina, L., Piura, B., Segal, S., & Huleihel, M. (2007). Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Research, 27, 267–272.PubMed Rabinovich, A., Medina, L., Piura, B., Segal, S., & Huleihel, M. (2007). Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Research, 27, 267–272.PubMed
197.
Zurück zum Zitat Scambia, G., Testa, U., Benedetti Panici, P., et al. (1995). Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. British Journal of Cancer, 71, 354–356.PubMedPubMedCentralCrossRef Scambia, G., Testa, U., Benedetti Panici, P., et al. (1995). Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. British Journal of Cancer, 71, 354–356.PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Guo, Y., Nemeth, J., O’Brien, C., et al. (2010). Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clinical Cancer Research, 16, 5759–5769.PubMedCrossRef Guo, Y., Nemeth, J., O’Brien, C., et al. (2010). Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clinical Cancer Research, 16, 5759–5769.PubMedCrossRef
199.
Zurück zum Zitat Coward, J., Kulbe, H., Chakravarty, P., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research, 17, 6083–6096.PubMedPubMedCentralCrossRef Coward, J., Kulbe, H., Chakravarty, P., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research, 17, 6083–6096.PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.PubMedCrossRef Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.PubMedCrossRef
201.
Zurück zum Zitat Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.PubMedCrossRef Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.PubMedCrossRef
202.
Zurück zum Zitat Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.PubMedCrossRef Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.PubMedCrossRef
203.
Zurück zum Zitat Fattal, E., & Bochot, A. (2006). Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Advanced Drug Delivery Reviews, 58, 1203–1223.PubMedCrossRef Fattal, E., & Bochot, A. (2006). Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Advanced Drug Delivery Reviews, 58, 1203–1223.PubMedCrossRef
204.
Zurück zum Zitat Bitko, V., Musiyenko, A., Shulyayeva, O., & Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nature Medicine, 11, 50–55.PubMedCrossRef Bitko, V., Musiyenko, A., Shulyayeva, O., & Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nature Medicine, 11, 50–55.PubMedCrossRef
205.
Zurück zum Zitat Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2010). Nanomedicine based approaches for the delivery of siRNA in cancer. Journal of Internal Medicine, 267, 44–53.PubMedCrossRef Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2010). Nanomedicine based approaches for the delivery of siRNA in cancer. Journal of Internal Medicine, 267, 44–53.PubMedCrossRef
206.
Zurück zum Zitat Zhou, J., Shum, K. T., Burnett, J. C., & Rossi, J. J. (2013). Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel), 6, 85–107.CrossRef Zhou, J., Shum, K. T., Burnett, J. C., & Rossi, J. J. (2013). Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel), 6, 85–107.CrossRef
207.
Zurück zum Zitat Tan, W. B., Jiang, S., & Zhang, Y. (2007). Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 28, 1565–1571.PubMedCrossRef Tan, W. B., Jiang, S., & Zhang, Y. (2007). Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 28, 1565–1571.PubMedCrossRef
208.
Zurück zum Zitat Lee, J. H., Lee, K., Moon, S. H., Lee, Y., Park, T. G., & Cheon, J. (2009). All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angewandte Chemie International Edition in English, 48, 4174–4179.CrossRef Lee, J. H., Lee, K., Moon, S. H., Lee, Y., Park, T. G., & Cheon, J. (2009). All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angewandte Chemie International Edition in English, 48, 4174–4179.CrossRef
209.
Zurück zum Zitat Yu, D., Peng, P., Dharap, S. S., et al. (2005). Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. Journal of Controlled Release, 110, 90–102.PubMedCrossRef Yu, D., Peng, P., Dharap, S. S., et al. (2005). Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. Journal of Controlled Release, 110, 90–102.PubMedCrossRef
210.
Zurück zum Zitat Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41, 189–207.PubMedCrossRef Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41, 189–207.PubMedCrossRef
211.
Zurück zum Zitat Nikitenko, N. A., & Prassolov, V. S. (2013). Non-viral delivery and therapeutic application of small interfering RNAs. Acta Naturae, 5, 35–53.PubMedPubMedCentral Nikitenko, N. A., & Prassolov, V. S. (2013). Non-viral delivery and therapeutic application of small interfering RNAs. Acta Naturae, 5, 35–53.PubMedPubMedCentral
212.
Zurück zum Zitat Davis, M. E., Zuckerman, J. E., Choi, C. H., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464, 1067–1070.PubMedPubMedCentralCrossRef Davis, M. E., Zuckerman, J. E., Choi, C. H., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464, 1067–1070.PubMedPubMedCentralCrossRef
213.
Zurück zum Zitat Heidel, J. D., Yu, Z., Liu, J. Y., et al. (2007). Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proceedings of the National Academy of Sciences of the United States of America, 104, 5715–5721.PubMedPubMedCentralCrossRef Heidel, J. D., Yu, Z., Liu, J. Y., et al. (2007). Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proceedings of the National Academy of Sciences of the United States of America, 104, 5715–5721.PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Matei, D., Emerson, R. E., Schilder, J., et al. (2008). Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer, 113, 723–732.PubMedCrossRef Matei, D., Emerson, R. E., Schilder, J., et al. (2008). Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer, 113, 723–732.PubMedCrossRef
215.
Zurück zum Zitat Juretzka, M., Hensley, M. L., Tew, W., et al. (2008). A phase 2 trial of oral imatinib in patients with epithelial ovarian, fallopian tube, or peritoneal carcinoma in second or greater remission. European Journal of Gynaecological Oncology, 29, 568–572.PubMed Juretzka, M., Hensley, M. L., Tew, W., et al. (2008). A phase 2 trial of oral imatinib in patients with epithelial ovarian, fallopian tube, or peritoneal carcinoma in second or greater remission. European Journal of Gynaecological Oncology, 29, 568–572.PubMed
216.
Zurück zum Zitat Liu, J. F., Tolaney, S. M., Birrer, M., et al. (2013). A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. European Journal of Cancer, 49, 2972–2978.PubMedPubMedCentralCrossRef Liu, J. F., Tolaney, S. M., Birrer, M., et al. (2013). A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. European Journal of Cancer, 49, 2972–2978.PubMedPubMedCentralCrossRef
217.
Zurück zum Zitat Hjalmarson, A. (1990). Heart rate and beta-adrenergic mechanisms in acute myocardial infarction. Basic Research in Cardiology, 85(Suppl 1), 325–333.PubMed Hjalmarson, A. (1990). Heart rate and beta-adrenergic mechanisms in acute myocardial infarction. Basic Research in Cardiology, 85(Suppl 1), 325–333.PubMed
218.
Zurück zum Zitat Bodnar, L., Gornas, M., & Szczylik, C. (2011). Sorafenib as a third line therapy in patients with epithelial ovarian cancer or primary peritoneal cancer: a phase II study. Gynecologic Oncology, 123, 33–36.PubMedCrossRef Bodnar, L., Gornas, M., & Szczylik, C. (2011). Sorafenib as a third line therapy in patients with epithelial ovarian cancer or primary peritoneal cancer: a phase II study. Gynecologic Oncology, 123, 33–36.PubMedCrossRef
219.
Zurück zum Zitat Campos, S. M., Penson, R. T., Matulonis, U., et al. (2013). A phase II trial of sunitinib malate in recurrent and refractory ovarian, fallopian tube and peritoneal carcinoma. Gynecologic Oncology, 128, 215–220.PubMedCrossRef Campos, S. M., Penson, R. T., Matulonis, U., et al. (2013). A phase II trial of sunitinib malate in recurrent and refractory ovarian, fallopian tube and peritoneal carcinoma. Gynecologic Oncology, 128, 215–220.PubMedCrossRef
220.
Zurück zum Zitat Baumann, K. H., du Bois, A., Meier, W., et al. (2012). A phase II trial (AGO 2.11) in platinum-resistant ovarian cancer: a randomized multicenter trial with sunitinib (SU11248) to evaluate dosage, schedule, tolerability, toxicity and effectiveness of a multitargeted receptor tyrosine kinase inhibitor monotherapy. Annals of Oncology, 23, 2265–2271.PubMedCrossRef Baumann, K. H., du Bois, A., Meier, W., et al. (2012). A phase II trial (AGO 2.11) in platinum-resistant ovarian cancer: a randomized multicenter trial with sunitinib (SU11248) to evaluate dosage, schedule, tolerability, toxicity and effectiveness of a multitargeted receptor tyrosine kinase inhibitor monotherapy. Annals of Oncology, 23, 2265–2271.PubMedCrossRef
221.
Zurück zum Zitat Karlan, B. Y., Oza, A. M., Richardson, G. E., et al. (2012). Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. Journal of Clinical Oncology, 30, 362–371.PubMedCrossRef Karlan, B. Y., Oza, A. M., Richardson, G. E., et al. (2012). Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. Journal of Clinical Oncology, 30, 362–371.PubMedCrossRef
222.
Zurück zum Zitat Secord, A. A., Teoh, D. K., Barry, W. T., et al. (2012). A phase I trial of dasatinib, an SRC-family kinase inhibitor, in combination with paclitaxel and carboplatin in patients with advanced or recurrent ovarian cancer. Clinical Cancer Research, 18, 5489–5498.PubMedPubMedCentralCrossRef Secord, A. A., Teoh, D. K., Barry, W. T., et al. (2012). A phase I trial of dasatinib, an SRC-family kinase inhibitor, in combination with paclitaxel and carboplatin in patients with advanced or recurrent ovarian cancer. Clinical Cancer Research, 18, 5489–5498.PubMedPubMedCentralCrossRef
223.
Zurück zum Zitat Schilder, R. J., Brady, W. E., Lankes, H. A., et al. (2012). Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 127, 70–74.PubMedPubMedCentralCrossRef Schilder, R. J., Brady, W. E., Lankes, H. A., et al. (2012). Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 127, 70–74.PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Behbakht, K., Sill, M. W., Darcy, K. M., et al. (2011). Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study. Gynecologic Oncology, 123, 19–26.PubMedPubMedCentralCrossRef Behbakht, K., Sill, M. W., Darcy, K. M., et al. (2011). Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study. Gynecologic Oncology, 123, 19–26.PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Temkin, S. M., Yamada, S. D., & Fleming, G. F. (2010). A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecologic Oncology, 117, 473–476.PubMedCrossRef Temkin, S. M., Yamada, S. D., & Fleming, G. F. (2010). A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecologic Oncology, 117, 473–476.PubMedCrossRef
226.
Zurück zum Zitat Kollmannsberger, C., Hirte, H., Siu, L. L., et al. (2012). Temsirolimus in combination with carboplatin and paclitaxel in patients with advanced solid tumors: a NCIC-CTG, phase I, open-label dose-escalation study (IND 179). Annals of Oncology, 23, 238–244.PubMedCrossRef Kollmannsberger, C., Hirte, H., Siu, L. L., et al. (2012). Temsirolimus in combination with carboplatin and paclitaxel in patients with advanced solid tumors: a NCIC-CTG, phase I, open-label dose-escalation study (IND 179). Annals of Oncology, 23, 238–244.PubMedCrossRef
Metadaten
Titel
Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches
verfasst von
Hyun-Jin Choi
Guillermo N. Armaiz Pena
Sunila Pradeep
Min Soon Cho
Robert L. Coleman
Anil K. Sood
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2015
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9538-9

Weitere Artikel der Ausgabe 1/2015

Cancer and Metastasis Reviews 1/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.