Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2016

11.04.2016 | NON-THEMATIC REVIEW

Understanding the cellular roles of Fyn-related kinase (FRK): implications in cancer biology

verfasst von: Raghuveera Kumar Goel, Kiven Erique Lukong

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

The non-receptor tyrosine kinase Fyn-related kinase (FRK) is a member of the BRK family kinases (BFKs) and is distantly related to the Src family kinases (SFKs). FRK was first discovered in 1993, and studies pursued thereafter attributed a potential tumour-suppressive function to the enzyme. In recent years, however, further functional characterization of the tyrosine kinase in diverse cancer types suggests that FRK may potentially play an oncogenic role as well. Specifically, while ectopic expression of FRK suppresses cell proliferation and migration in breast and brain cancers, knockdown or catalytic inhibition of FRK suppresses these cellular processes in pancreatic and liver cancer. Such functional paradox is therefore evidently exhibited in a tissue-specific context. This review sheds light on the recent developments emerged from investigations on FRK which include: (a) a review of the expression pattern of the protein in mammalian cells/tissues, (b) underlying genomic perturbations and (c) a mechanistic function of the enzyme across different cellular environments. Given its functional heterogeneity observed across different cancers, we also discuss the therapeutic significance of FRK.
Literatur
1.
Zurück zum Zitat Goel, R. K., & Lukong, K. E. (2015). Tracing the footprints of the breast cancer oncogene BRK—past till present. Biochimica et biophysica acta, 1856, 39–54.PubMed Goel, R. K., & Lukong, K. E. (2015). Tracing the footprints of the breast cancer oncogene BRK—past till present. Biochimica et biophysica acta, 1856, 39–54.PubMed
2.
Zurück zum Zitat Cance, W. G., Craven, R. J., Weiner, T. M., & Liu, E. T. (1993). Novel protein kinases expressed in human breast cancer, International journal of cancer. Journal international du cancer, 54, 571–577.CrossRefPubMed Cance, W. G., Craven, R. J., Weiner, T. M., & Liu, E. T. (1993). Novel protein kinases expressed in human breast cancer, International journal of cancer. Journal international du cancer, 54, 571–577.CrossRefPubMed
3.
Zurück zum Zitat Cance, W. G., Craven, R. J., Bergman, M., Xu, L., Alitalo, K., & Liu, E. T. (1994). Rak, a novel nuclear tyrosine kinase expressed in epithelial cells. Cell growth & differentiation, 5, 1347–1355. Cance, W. G., Craven, R. J., Bergman, M., Xu, L., Alitalo, K., & Liu, E. T. (1994). Rak, a novel nuclear tyrosine kinase expressed in epithelial cells. Cell growth & differentiation, 5, 1347–1355.
4.
Zurück zum Zitat Lee, J., Wang, Z., Luoh, S. M., Wood, W. I., & Scadden, D. T. (1994). Cloning of FRK, a novel human intracellular SRC-like tyrosine kinase-encoding gene. Gene, 138, 247–251.CrossRefPubMed Lee, J., Wang, Z., Luoh, S. M., Wood, W. I., & Scadden, D. T. (1994). Cloning of FRK, a novel human intracellular SRC-like tyrosine kinase-encoding gene. Gene, 138, 247–251.CrossRefPubMed
5.
Zurück zum Zitat Brauer, P. M., & Tyner, A. L. (2009). RAKing in AKT: a tumor suppressor function for the intracellular tyrosine kinase FRK. Cell Cycle, 8, 2728–2732.CrossRefPubMedPubMedCentral Brauer, P. M., & Tyner, A. L. (2009). RAKing in AKT: a tumor suppressor function for the intracellular tyrosine kinase FRK. Cell Cycle, 8, 2728–2732.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Sheng, Z. M., Marchetti, A., Buttitta, F., Champeme, M. H., Campani, D., Bistocchi, M., Lidereau, R., & Callahan, R. (1996). Multiple regions of chromosome 6q affected by loss of heterozygosity in primary human breast carcinomas. British journal of cancer, 73, 144–147.CrossRefPubMedPubMedCentral Sheng, Z. M., Marchetti, A., Buttitta, F., Champeme, M. H., Campani, D., Bistocchi, M., Lidereau, R., & Callahan, R. (1996). Multiple regions of chromosome 6q affected by loss of heterozygosity in primary human breast carcinomas. British journal of cancer, 73, 144–147.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Becher, R., Gibas, Z., Karakousis, C., & Sandberg, A. A. (1983). Nonrandom chromosome changes in malignant melanoma. Cancer research, 43, 5010–5016.PubMed Becher, R., Gibas, Z., Karakousis, C., & Sandberg, A. A. (1983). Nonrandom chromosome changes in malignant melanoma. Cancer research, 43, 5010–5016.PubMed
8.
Zurück zum Zitat Becher, R., Gibas, Z., & Sandberg, A. A. (1983). Chromosome 6 in malignant melanoma. Cancer genetics and cytogenetics, 9, 173–175.CrossRefPubMed Becher, R., Gibas, Z., & Sandberg, A. A. (1983). Chromosome 6 in malignant melanoma. Cancer genetics and cytogenetics, 9, 173–175.CrossRefPubMed
9.
Zurück zum Zitat Girard, L., Zochbauer-Muller, S., Virmani, A. K., Gazdar, A. F., & Minna, J. D. (2000). Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer research, 60, 4894–4906.PubMed Girard, L., Zochbauer-Muller, S., Virmani, A. K., Gazdar, A. F., & Minna, J. D. (2000). Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer research, 60, 4894–4906.PubMed
10.
Zurück zum Zitat Oberg-Welsh, C., & Welsh, M. (1995). Cloning of BSK, a murine FRK homologue with a specific pattern of tissue distribution. Gene, 152, 239–242.CrossRefPubMed Oberg-Welsh, C., & Welsh, M. (1995). Cloning of BSK, a murine FRK homologue with a specific pattern of tissue distribution. Gene, 152, 239–242.CrossRefPubMed
11.
Zurück zum Zitat Thuveson, M., Albrecht, D., Zurcher, G., Andres, A. C., & Ziemiecki, A. (1995). iyk, a novel intracellular protein tyrosine kinase differentially expressed in the mouse mammary gland and intestine. Biochemical and biophysical research communications, 209, 582–589.CrossRefPubMed Thuveson, M., Albrecht, D., Zurcher, G., Andres, A. C., & Ziemiecki, A. (1995). iyk, a novel intracellular protein tyrosine kinase differentially expressed in the mouse mammary gland and intestine. Biochemical and biophysical research communications, 209, 582–589.CrossRefPubMed
12.
Zurück zum Zitat Sunitha, I., & Avigan, M. I. (1994). A newly identified tyrosine kinase is preferentially expressed in the gastrointestinal tract. Biochimica et biophysica acta, 1221, 348–352.CrossRefPubMed Sunitha, I., & Avigan, M. I. (1994). A newly identified tyrosine kinase is preferentially expressed in the gastrointestinal tract. Biochimica et biophysica acta, 1221, 348–352.CrossRefPubMed
13.
Zurück zum Zitat Sunitha, I., & Avigan, M. I. (1996). The apical membranes of maturing gut columnar epithelial cells contain the enzymatically active form of a newly identified fyn-related tyrosine kinase. Oncogene, 13, 547–559.PubMed Sunitha, I., & Avigan, M. I. (1996). The apical membranes of maturing gut columnar epithelial cells contain the enzymatically active form of a newly identified fyn-related tyrosine kinase. Oncogene, 13, 547–559.PubMed
14.
Zurück zum Zitat Oberg-Welsh, C., Anneren, C., & Welsh, M. (1998). Mutation of C-terminal tyrosine residues Y497/Y504 of the Src-family member Bsk/Iyk decreases NIH3T3 cell proliferation. Growth Factors, 16, 111–124.CrossRefPubMed Oberg-Welsh, C., Anneren, C., & Welsh, M. (1998). Mutation of C-terminal tyrosine residues Y497/Y504 of the Src-family member Bsk/Iyk decreases NIH3T3 cell proliferation. Growth Factors, 16, 111–124.CrossRefPubMed
15.
Zurück zum Zitat Anneren, C., & Welsh, M. (2000). Role of the Bsk/Iyk non-receptor tyrosine kinase for the control of growth and hormone production in RINm5F cells. Growth Factors, 17, 233–247.CrossRefPubMed Anneren, C., & Welsh, M. (2000). Role of the Bsk/Iyk non-receptor tyrosine kinase for the control of growth and hormone production in RINm5F cells. Growth Factors, 17, 233–247.CrossRefPubMed
16.
Zurück zum Zitat Okada, M., & Nakagawa, H. (1989). A protein tyrosine kinase involved in regulation of pp60c-src function. The Journal of Biological Chemistry, 264, 20886–20893.PubMed Okada, M., & Nakagawa, H. (1989). A protein tyrosine kinase involved in regulation of pp60c-src function. The Journal of Biological Chemistry, 264, 20886–20893.PubMed
17.
Zurück zum Zitat Nada, S., Okada, M., MacAuley, A., Cooper, J. A., & Nakagawa, H. (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature, 351, 69–72.CrossRefPubMed Nada, S., Okada, M., MacAuley, A., Cooper, J. A., & Nakagawa, H. (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature, 351, 69–72.CrossRefPubMed
18.
Zurück zum Zitat Partanen, J., Armstrong, E., Bergman, M., Makela, T. P., Hirvonen, H., Huebner, K., & Alitalo, K. (1991). cyl encodes a putative cytoplasmic tyrosine kinase lacking the conserved tyrosine autophosphorylation site (Y416src). Oncogene, 6, 2013–2018.PubMed Partanen, J., Armstrong, E., Bergman, M., Makela, T. P., Hirvonen, H., Huebner, K., & Alitalo, K. (1991). cyl encodes a putative cytoplasmic tyrosine kinase lacking the conserved tyrosine autophosphorylation site (Y416src). Oncogene, 6, 2013–2018.PubMed
19.
Zurück zum Zitat Sabe, H., Knudsen, B., Okada, M., Nada, S., Nakagawa, H., & Hanafusa, H. (1992). Molecular cloning and expression of chicken C-terminal Src kinase: lack of stable association with c-Src protein. Proceedings of the National Academy of Sciences of the United States of America, 89, 2190–2194.CrossRefPubMedPubMedCentral Sabe, H., Knudsen, B., Okada, M., Nada, S., Nakagawa, H., & Hanafusa, H. (1992). Molecular cloning and expression of chicken C-terminal Src kinase: lack of stable association with c-Src protein. Proceedings of the National Academy of Sciences of the United States of America, 89, 2190–2194.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: a protein-tyrosine kinase involved in regulation of src family kinases. The Journal of Biological Chemistry, 266, 24249–24252.PubMed Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: a protein-tyrosine kinase involved in regulation of src family kinases. The Journal of Biological Chemistry, 266, 24249–24252.PubMed
21.
Zurück zum Zitat Meyer, T., Xu, L., Chang, J., Liu, E. T., Craven, R. J., & Cance, W. G. (2003). Breast cancer cell line proliferation blocked by the Src-related Rak tyrosine kinase, International journal of cancer. Journal international du cancer, 104, 139–146.CrossRefPubMed Meyer, T., Xu, L., Chang, J., Liu, E. T., Craven, R. J., & Cance, W. G. (2003). Breast cancer cell line proliferation blocked by the Src-related Rak tyrosine kinase, International journal of cancer. Journal international du cancer, 104, 139–146.CrossRefPubMed
22.
Zurück zum Zitat Qiu, H., & Miller, W. T. (2004). Role of the Brk SH3 domain in substrate recognition. Oncogene, 23, 2216–2223.CrossRefPubMed Qiu, H., & Miller, W. T. (2004). Role of the Brk SH3 domain in substrate recognition. Oncogene, 23, 2216–2223.CrossRefPubMed
23.
Zurück zum Zitat Snyder, M. A., Bishop, J. M., McGrath, J. P., & Levinson, A. D. (1985). A mutation at the ATP-binding site of pp60v-src abolishes kinase activity, transformation, and tumorigenicity. Molecular and cellular biology, 5, 1772–1779.CrossRefPubMedPubMedCentral Snyder, M. A., Bishop, J. M., McGrath, J. P., & Levinson, A. D. (1985). A mutation at the ATP-binding site of pp60v-src abolishes kinase activity, transformation, and tumorigenicity. Molecular and cellular biology, 5, 1772–1779.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Goel, R. K., Miah, S., Black, K., Kalra, N., Dai, C., & Lukong, K. E. (2013). The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. The FEBS journal, 280, 4539–4559.CrossRefPubMed Goel, R. K., Miah, S., Black, K., Kalra, N., Dai, C., & Lukong, K. E. (2013). The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. The FEBS journal, 280, 4539–4559.CrossRefPubMed
25.
Zurück zum Zitat McPherson, R. A., Taylor, M. M., Hershey, E. D., & Sturgill, T. W. (2000). A different function for a critical tryptophan in c-Raf and Hck. Oncogene, 19, 3616–3622.CrossRefPubMed McPherson, R. A., Taylor, M. M., Hershey, E. D., & Sturgill, T. W. (2000). A different function for a critical tryptophan in c-Raf and Hck. Oncogene, 19, 3616–3622.CrossRefPubMed
26.
Zurück zum Zitat Berclaz, G., Altermatt, H. J., Rohrbach, V., Dreher, E., Ziemiecki, A., & Andres, A. C. (2000). Hormone-dependent nuclear localization of the tyrosine kinase iyk in the normal human breast epithelium and loss of expression during carcinogenesis, International journal of cancer. Journal international du cancer, 85, 889–894.CrossRefPubMed Berclaz, G., Altermatt, H. J., Rohrbach, V., Dreher, E., Ziemiecki, A., & Andres, A. C. (2000). Hormone-dependent nuclear localization of the tyrosine kinase iyk in the normal human breast epithelium and loss of expression during carcinogenesis, International journal of cancer. Journal international du cancer, 85, 889–894.CrossRefPubMed
27.
Zurück zum Zitat Serfas, M. S., & Tyner, A. L. (2003). Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases. Oncology research, 13, 409–419.CrossRefPubMed Serfas, M. S., & Tyner, A. L. (2003). Brk, Srm, Frk, and Src42A form a distinct family of intracellular Src-like tyrosine kinases. Oncology research, 13, 409–419.CrossRefPubMed
28.
Zurück zum Zitat L. Jin, R.J. Craven. (2013). The Rak/Frk tyrosine kinase associates with and internalizes the epidermal growth factor receptor. Oncogene. L. Jin, R.J. Craven. (2013). The Rak/Frk tyrosine kinase associates with and internalizes the epidermal growth factor receptor. Oncogene.
29.
Zurück zum Zitat Ie Kim, H., & Lee, S. T. (2009). Oncogenic functions of PTK6 are enhanced by its targeting to plasma membrane but abolished by its targeting to nucleus. Journal of biochemistry, 146, 133–139.CrossRefPubMed Ie Kim, H., & Lee, S. T. (2009). Oncogenic functions of PTK6 are enhanced by its targeting to plasma membrane but abolished by its targeting to nucleus. Journal of biochemistry, 146, 133–139.CrossRefPubMed
30.
Zurück zum Zitat Brauer, P. M., Zheng, Y., Wang, L., & Tyner, A. L. (2010). Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells. Cell Cycle, 9, 4190–4199.CrossRefPubMedPubMedCentral Brauer, P. M., Zheng, Y., Wang, L., & Tyner, A. L. (2010). Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells. Cell Cycle, 9, 4190–4199.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Peng, M., Emmadi, R., Wang, Z., Wiley, E. L., Gann, P. H., Khan, S. A., Banerji, N., McDonald, W., Asztalos, S., Pham, T. N., Tonetti, D. A., & Tyner, A. L. (2014). PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. Oncotarget, 5, 6038–6048.CrossRefPubMedPubMedCentral Peng, M., Emmadi, R., Wang, Z., Wiley, E. L., Gann, P. H., Khan, S. A., Banerji, N., McDonald, W., Asztalos, S., Pham, T. N., Tonetti, D. A., & Tyner, A. L. (2014). PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. Oncotarget, 5, 6038–6048.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Zhou, X., Hua, L., Zhang, W., Zhu, M., Shi, Q., Li, F., Zhang, L., Song, C., & Yu, R. (2012). FRK controls migration and invasion of human glioma cells by regulating JNK/c-Jun signaling. Journal of neuro-oncology, 110, 9–19.CrossRefPubMed Zhou, X., Hua, L., Zhang, W., Zhu, M., Shi, Q., Li, F., Zhang, L., Song, C., & Yu, R. (2012). FRK controls migration and invasion of human glioma cells by regulating JNK/c-Jun signaling. Journal of neuro-oncology, 110, 9–19.CrossRefPubMed
33.
Zurück zum Zitat Hua, L., Zhu, M., Song, X., Wang, J., Fang, Z., Zhang, C., Shi, Q., Zhan, W., Wang, L., Meng, Q., Zhou, X., & Yu, R. (2014). FRK suppresses the proliferation of human glioma cells by inhibiting cyclin D1 nuclear accumulation. Journal of neuro-oncology, 119, 49–58.CrossRefPubMed Hua, L., Zhu, M., Song, X., Wang, J., Fang, Z., Zhang, C., Shi, Q., Zhan, W., Wang, L., Meng, Q., Zhou, X., & Yu, R. (2014). FRK suppresses the proliferation of human glioma cells by inhibiting cyclin D1 nuclear accumulation. Journal of neuro-oncology, 119, 49–58.CrossRefPubMed
34.
Zurück zum Zitat Zhao, B., Tan, P. H., Li, S. S., & Pei, D. (2013). Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases. Journal of proteomics, 81, 56–69.CrossRefPubMed Zhao, B., Tan, P. H., Li, S. S., & Pei, D. (2013). Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases. Journal of proteomics, 81, 56–69.CrossRefPubMed
35.
Zurück zum Zitat Yim, E. K., Peng, G., Dai, H., Hu, R., Li, K., Lu, Y., Mills, G. B., Meric-Bernstam, F., Hennessy, B. T., Craven, R. J., & Lin, S. Y. (2009). Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell, 15, 304–314.CrossRefPubMedPubMedCentral Yim, E. K., Peng, G., Dai, H., Hu, R., Li, K., Lu, Y., Mills, G. B., Meric-Bernstam, F., Hennessy, B. T., Craven, R. J., & Lin, S. Y. (2009). Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell, 15, 304–314.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Craven, R. J., Cance, W. G., & Liu, E. T. (1995). The nuclear tyrosine kinase Rak associates with the retinoblastoma protein pRb. Cancer research, 55, 3969–3972.PubMed Craven, R. J., Cance, W. G., & Liu, E. T. (1995). The nuclear tyrosine kinase Rak associates with the retinoblastoma protein pRb. Cancer research, 55, 3969–3972.PubMed
37.
Zurück zum Zitat Benedict, W. F., Murphree, A. L., Banerjee, A., Spina, C. A., Sparkes, M. C., & Sparkes, R. S. (1983). Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science, 219, 973–975.CrossRefPubMed Benedict, W. F., Murphree, A. L., Banerjee, A., Spina, C. A., Sparkes, M. C., & Sparkes, R. S. (1983). Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science, 219, 973–975.CrossRefPubMed
38.
Zurück zum Zitat Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. Cell, 81, 323–330.CrossRefPubMed Weinberg, R. A. (1995). The retinoblastoma protein and cell cycle control. Cell, 81, 323–330.CrossRefPubMed
39.
Zurück zum Zitat Welch, P. J., & Wang, J. Y. (1993). A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell, 75, 779–790.CrossRefPubMed Welch, P. J., & Wang, J. Y. (1993). A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell, 75, 779–790.CrossRefPubMed
40.
Zurück zum Zitat Yim, E. K., Siwko, S., & Lin, S. Y. (2009). Exploring Rak tyrosine kinase function in breast cancer. Cell Cycle, 8, 2360–2364.CrossRefPubMed Yim, E. K., Siwko, S., & Lin, S. Y. (2009). Exploring Rak tyrosine kinase function in breast cancer. Cell Cycle, 8, 2360–2364.CrossRefPubMed
41.
Zurück zum Zitat J.L. Kim, G.H. Ha, L. Campo, M.F. Denning, T.B. Patel, C. Osipo, S.Y. Lin, E.K. Breuer. (2015). The role of Rak in the regulation of stability and function of BRCA1. Oncotarget. J.L. Kim, G.H. Ha, L. Campo, M.F. Denning, T.B. Patel, C. Osipo, S.Y. Lin, E.K. Breuer. (2015). The role of Rak in the regulation of stability and function of BRCA1. Oncotarget.
42.
Zurück zum Zitat Yoshida, K., & Miki, Y. (2004). Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer science, 95, 866–871.CrossRefPubMed Yoshida, K., & Miki, Y. (2004). Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer science, 95, 866–871.CrossRefPubMed
43.
Zurück zum Zitat Bougie, O., & Weberpals, J. I. (2011). Clinical considerations of BRCA1- and BRCA2-mutation carriers: a review. International journal of surgical oncology, 2011, 374012.CrossRefPubMedPubMedCentral Bougie, O., & Weberpals, J. I. (2011). Clinical considerations of BRCA1- and BRCA2-mutation carriers: a review. International journal of surgical oncology, 2011, 374012.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Pendergast, A. M. (1996). Nuclear tyrosine kinases: from Abl to WEE1. Current opinion in cell biology, 8, 174–181.CrossRefPubMed Pendergast, A. M. (1996). Nuclear tyrosine kinases: from Abl to WEE1. Current opinion in cell biology, 8, 174–181.CrossRefPubMed
46.
Zurück zum Zitat Anneren, C., Reedquist, K. A., Bos, J. L., & Welsh, M. (2000). GTK, a Src-related tyrosine kinase, induces nerve growth factor-independent neurite outgrowth in PC12 cells through activation of the Rap1 pathway. Relationship to Shb tyrosine phosphorylation and elevated levels of focal adhesion kinase. The Journal of Biological Chemistry, 275, 29153–29161.CrossRefPubMed Anneren, C., Reedquist, K. A., Bos, J. L., & Welsh, M. (2000). GTK, a Src-related tyrosine kinase, induces nerve growth factor-independent neurite outgrowth in PC12 cells through activation of the Rap1 pathway. Relationship to Shb tyrosine phosphorylation and elevated levels of focal adhesion kinase. The Journal of Biological Chemistry, 275, 29153–29161.CrossRefPubMed
47.
Zurück zum Zitat Anneren, C., & Welsh, M. (2002). GTK tyrosine kinase-induced alteration of IRS-protein signalling in insulin producing cells. Molecular Medicine, 8, 705–713.PubMedPubMedCentral Anneren, C., & Welsh, M. (2002). GTK tyrosine kinase-induced alteration of IRS-protein signalling in insulin producing cells. Molecular Medicine, 8, 705–713.PubMedPubMedCentral
48.
Zurück zum Zitat Anneren, C., Lindholm, C. K., Kriz, V., & Welsh, M. (2003). The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Current molecular medicine, 3, 313–324.CrossRefPubMed Anneren, C., Lindholm, C. K., Kriz, V., & Welsh, M. (2003). The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Current molecular medicine, 3, 313–324.CrossRefPubMed
49.
Zurück zum Zitat Chen, J. S., Hung, W. S., Chan, H. H., Tsai, S. J., & Sun, H. S. (2013). In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics, 29, 420–427.CrossRefPubMed Chen, J. S., Hung, W. S., Chan, H. H., Tsai, S. J., & Sun, H. S. (2013). In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics, 29, 420–427.CrossRefPubMed
50.
Zurück zum Zitat Je, D. W., YM, O., Ji, Y. G., Cho, Y., & Lee, D. H. (2014). The inhibition of SRC family kinase suppresses pancreatic cancer cell proliferation, migration, and invasion. Pancreas, 43, 768–776.CrossRefPubMed Je, D. W., YM, O., Ji, Y. G., Cho, Y., & Lee, D. H. (2014). The inhibition of SRC family kinase suppresses pancreatic cancer cell proliferation, migration, and invasion. Pancreas, 43, 768–776.CrossRefPubMed
51.
Zurück zum Zitat Tan, A. C., Jimeno, A., Lin, S. H., Wheelhouse, J., Chan, F., Solomon, A., Rajeshkumar, N. V., Rubio-Viqueira, B., & Hidalgo, M. (2009). Characterizing DNA methylation patterns in pancreatic cancer genome. Molecular oncology, 3, 425–438.CrossRefPubMed Tan, A. C., Jimeno, A., Lin, S. H., Wheelhouse, J., Chan, F., Solomon, A., Rajeshkumar, N. V., Rubio-Viqueira, B., & Hidalgo, M. (2009). Characterizing DNA methylation patterns in pancreatic cancer genome. Molecular oncology, 3, 425–438.CrossRefPubMed
52.
Zurück zum Zitat Klijn, C., Durinck, S., Stawiski, E. W., Haverty, P. M., Jiang, Z., Liu, H., Degenhardt, J., Mayba, O., Gnad, F., Liu, J., Pau, G., Reeder, J., Cao, Y., Mukhyala, K., Selvaraj, S. K., Yu, M., Zynda, G. J., Brauer, M. J., Wu, T. D., Gentleman, R. C., Manning, G., Yauch, R. L., Bourgon, R., Stokoe, D., Modrusan, Z., Neve, R. M., de Sauvage, F. J., Settleman, J., Seshagiri, S., & Zhang, Z. (2015). A comprehensive transcriptional portrait of human cancer cell lines. Nature biotechnology, 33, 306–312.CrossRefPubMed Klijn, C., Durinck, S., Stawiski, E. W., Haverty, P. M., Jiang, Z., Liu, H., Degenhardt, J., Mayba, O., Gnad, F., Liu, J., Pau, G., Reeder, J., Cao, Y., Mukhyala, K., Selvaraj, S. K., Yu, M., Zynda, G. J., Brauer, M. J., Wu, T. D., Gentleman, R. C., Manning, G., Yauch, R. L., Bourgon, R., Stokoe, D., Modrusan, Z., Neve, R. M., de Sauvage, F. J., Settleman, J., Seshagiri, S., & Zhang, Z. (2015). A comprehensive transcriptional portrait of human cancer cell lines. Nature biotechnology, 33, 306–312.CrossRefPubMed
53.
Zurück zum Zitat Hosoya, N., Qiao, Y., Hangaishi, A., Wang, L., Nannya, Y., Sanada, M., Kurokawa, M., Chiba, S., Hirai, H., & Ogawa, S. (2005). Identification of a SRC-like tyrosine kinase gene, FRK, fused with ETV6 in a patient with acute myelogenous leukemia carrying a t(6;12)(q21;p13) translocation. Genes, chromosomes & cancer, 42, 269–279.CrossRef Hosoya, N., Qiao, Y., Hangaishi, A., Wang, L., Nannya, Y., Sanada, M., Kurokawa, M., Chiba, S., Hirai, H., & Ogawa, S. (2005). Identification of a SRC-like tyrosine kinase gene, FRK, fused with ETV6 in a patient with acute myelogenous leukemia carrying a t(6;12)(q21;p13) translocation. Genes, chromosomes & cancer, 42, 269–279.CrossRef
54.
Zurück zum Zitat Pilati, C., Letouze, E., Nault, J. C., Imbeaud, S., Boulai, A., Calderaro, J., Poussin, K., Franconi, A., Couchy, G., Morcrette, G., Mallet, M., Taouji, S., Balabaud, C., Terris, B., Canal, F., Paradis, V., Scoazec, J. Y., de Muret, A., Guettier, C., Bioulac-Sage, P., Chevet, E., Calvo, F., & Zucman-Rossi, J. (2014). Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell, 25, 428–441.CrossRefPubMed Pilati, C., Letouze, E., Nault, J. C., Imbeaud, S., Boulai, A., Calderaro, J., Poussin, K., Franconi, A., Couchy, G., Morcrette, G., Mallet, M., Taouji, S., Balabaud, C., Terris, B., Canal, F., Paradis, V., Scoazec, J. Y., de Muret, A., Guettier, C., Bioulac-Sage, P., Chevet, E., Calvo, F., & Zucman-Rossi, J. (2014). Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell, 25, 428–441.CrossRefPubMed
55.
Zurück zum Zitat Knowlton, M. L., Selfors, L. M., Wrobel, C. N., Gu, T. L., Ballif, B. A., Gygi, S. P., Polakiewicz, R., & Brugge, J. S. (2010). Profiling Y561-dependent and -independent substrates of CSF-1R in epithelial cells. PloS one, 5, e13587.CrossRefPubMedPubMedCentral Knowlton, M. L., Selfors, L. M., Wrobel, C. N., Gu, T. L., Ballif, B. A., Gygi, S. P., Polakiewicz, R., & Brugge, J. S. (2010). Profiling Y561-dependent and -independent substrates of CSF-1R in epithelial cells. PloS one, 5, e13587.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Sunitha, I., Shen, R., McKillop, I. H., Lee, J. H., Resau, J., & Avigan, M. (1999). A src-related kinase in the brush border membranes of gastrointestinal cells is regulated by c-met. Experimental cell research, 250, 86–98.CrossRefPubMed Sunitha, I., Shen, R., McKillop, I. H., Lee, J. H., Resau, J., & Avigan, M. (1999). A src-related kinase in the brush border membranes of gastrointestinal cells is regulated by c-met. Experimental cell research, 250, 86–98.CrossRefPubMed
57.
Zurück zum Zitat Palka-Hamblin, H. L., Gierut, J. J., Bie, W., Brauer, P. M., Zheng, Y., Asara, J. M., & Tyner, A. L. (2010). Identification of beta-catenin as a target of the intracellular tyrosine kinase PTK6. Journal of Cell Science, 123, 236–245.CrossRefPubMed Palka-Hamblin, H. L., Gierut, J. J., Bie, W., Brauer, P. M., Zheng, Y., Asara, J. M., & Tyner, A. L. (2010). Identification of beta-catenin as a target of the intracellular tyrosine kinase PTK6. Journal of Cell Science, 123, 236–245.CrossRefPubMed
58.
Zurück zum Zitat Shi, Q., Song, X., Wang, J., Gu, J., Zhang, W., Hu, J., Zhou, X., & Yu, R. (2015). FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/beta-catenin complex formation. Journal of molecular neuroscience, 55, 32–41.CrossRefPubMed Shi, Q., Song, X., Wang, J., Gu, J., Zhang, W., Hu, J., Zhou, X., & Yu, R. (2015). FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/beta-catenin complex formation. Journal of molecular neuroscience, 55, 32–41.CrossRefPubMed
59.
Zurück zum Zitat Camand, E., Peglion, F., Osmani, N., Sanson, M., & Etienne-Manneville, S. (2012). N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. Journal of Cell Science, 125, 844–857.CrossRefPubMed Camand, E., Peglion, F., Osmani, N., Sanson, M., & Etienne-Manneville, S. (2012). N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. Journal of Cell Science, 125, 844–857.CrossRefPubMed
60.
Zurück zum Zitat Zhang, X., Liu, G., Kang, Y., Dong, Z., Qian, Q., & Ma, X. (2013). N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines. PloS one, 8, e57692.CrossRefPubMedPubMedCentral Zhang, X., Liu, G., Kang, Y., Dong, Z., Qian, Q., & Ma, X. (2013). N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines. PloS one, 8, e57692.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Wang, J. L., Chen, Z. F., Chen, H. M., Wang, M. Y., Kong, X., Wang, Y. C., Sun, T. T., Hong, J., Zou, W., Xu, J., & Fang, J. Y. (2014). Elf3 drives beta-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell death & disease, 5, e1263.CrossRef Wang, J. L., Chen, Z. F., Chen, H. M., Wang, M. Y., Kong, X., Wang, Y. C., Sun, T. T., Hong, J., Zou, W., Xu, J., & Fang, J. Y. (2014). Elf3 drives beta-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell death & disease, 5, e1263.CrossRef
62.
Zurück zum Zitat Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M., & Tsai, L. H. (2000). Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Current biology, 10, 363–372.CrossRefPubMed Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M., & Tsai, L. H. (2000). Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase. Current biology, 10, 363–372.CrossRefPubMed
63.
Zurück zum Zitat Bhargava, R., Gerald, W. L., Li, A. R., Pan, Q., Lal, P., Ladanyi, M., & Chen, B. (2005). EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Modern pathology, 18, 1027–1033.CrossRefPubMed Bhargava, R., Gerald, W. L., Li, A. R., Pan, Q., Lal, P., Ladanyi, M., & Chen, B. (2005). EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Modern pathology, 18, 1027–1033.CrossRefPubMed
64.
Zurück zum Zitat Rimawi, M. F., Shetty, P. B., Weiss, H. L., Schiff, R., Osborne, C. K., Chamness, G. C., & Elledge, R. M. (2010). Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer, 116, 1234–1242.CrossRefPubMedPubMedCentral Rimawi, M. F., Shetty, P. B., Weiss, H. L., Schiff, R., Osborne, C. K., Chamness, G. C., & Elledge, R. M. (2010). Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer, 116, 1234–1242.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Sun, B., Yang, N., Jiang, Y., Zhang, H., Hou, C., Ji, C., Liu, Y., & Zuo, P. (2015). Antagomir-1290 suppresses CD133(+) cells in non-small cell lung cancer by targeting fyn-related Src family tyrosine kinase. Tumour biology, 36, 6223–6230.CrossRefPubMed Sun, B., Yang, N., Jiang, Y., Zhang, H., Hou, C., Ji, C., Liu, Y., & Zuo, P. (2015). Antagomir-1290 suppresses CD133(+) cells in non-small cell lung cancer by targeting fyn-related Src family tyrosine kinase. Tumour biology, 36, 6223–6230.CrossRefPubMed
66.
Zurück zum Zitat Varnholt, H., Drebber, U., Schulze, F., Wedemeyer, I., Schirmacher, P., Dienes, H. P., & Odenthal, M. (2008). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology, 47, 1223–1232.CrossRefPubMed Varnholt, H., Drebber, U., Schulze, F., Wedemeyer, I., Schirmacher, P., Dienes, H. P., & Odenthal, M. (2008). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology, 47, 1223–1232.CrossRefPubMed
67.
Zurück zum Zitat Shukla, S., Shishodia, G., Mahata, S., Hedau, S., Pandey, A., Bhambhani, S., Batra, S., Basir, S. F., Das, B. C., & Bharti, A. C. (2010). Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Molecular cancer, 9, 282.CrossRefPubMedPubMedCentral Shukla, S., Shishodia, G., Mahata, S., Hedau, S., Pandey, A., Bhambhani, S., Batra, S., Basir, S. F., Das, B. C., & Bharti, A. C. (2010). Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Molecular cancer, 9, 282.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Garcia, R., Bowman, T. L., Niu, G., Yu, H., Minton, S., Muro-Cacho, C. A., Cox, C. E., Falcone, R., Fairclough, R., Parsons, S., Laudano, A., Gazit, A., Levitzki, A., Kraker, A., & Jove, R. (2001). Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene, 20, 2499–2513.CrossRefPubMed Garcia, R., Bowman, T. L., Niu, G., Yu, H., Minton, S., Muro-Cacho, C. A., Cox, C. E., Falcone, R., Fairclough, R., Parsons, S., Laudano, A., Gazit, A., Levitzki, A., Kraker, A., & Jove, R. (2001). Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene, 20, 2499–2513.CrossRefPubMed
69.
Zurück zum Zitat Azare, J., Leslie, K., Al-Ahmadie, H., Gerald, W., Weinreb, P. H., Violette, S. M., & Bromberg, J. (2007). Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Molecular and cellular biology, 27, 4444–4453.CrossRefPubMedPubMedCentral Azare, J., Leslie, K., Al-Ahmadie, H., Gerald, W., Weinreb, P. H., Violette, S. M., & Bromberg, J. (2007). Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Molecular and cellular biology, 27, 4444–4453.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Welsh, M., Welsh, C., Ekman, M., Dixelius, J., Hagerkvist, R., Anneren, C., Akerblom, B., Mahboobi, S., Chandrasekharan, S., & Liu, E. T. (2004). The tyrosine kinase FRK/RAK participates in cytokine-induced islet cell cytotoxicity. The Biochemical journal, 382, 261–268.CrossRefPubMedPubMedCentral Welsh, M., Welsh, C., Ekman, M., Dixelius, J., Hagerkvist, R., Anneren, C., Akerblom, B., Mahboobi, S., Chandrasekharan, S., & Liu, E. T. (2004). The tyrosine kinase FRK/RAK participates in cytokine-induced islet cell cytotoxicity. The Biochemical journal, 382, 261–268.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Chandrasekharan, S., Qiu, T. H., Alkharouf, N., Brantley, K., Mitchell, J. B., & Liu, E. T. (2002). Characterization of mice deficient in the Src family nonreceptor tyrosine kinase Frk/rak. Molecular and cellular biology, 22, 5235–5247.CrossRefPubMedPubMedCentral Chandrasekharan, S., Qiu, T. H., Alkharouf, N., Brantley, K., Mitchell, J. B., & Liu, E. T. (2002). Characterization of mice deficient in the Src family nonreceptor tyrosine kinase Frk/rak. Molecular and cellular biology, 22, 5235–5247.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Akerblom, B., Anneren, C., & Welsh, M. (2007). A role of FRK in regulation of embryonal pancreatic beta cell formation. Molecular and cellular endocrinology, 270, 73–78.CrossRefPubMed Akerblom, B., Anneren, C., & Welsh, M. (2007). A role of FRK in regulation of embryonal pancreatic beta cell formation. Molecular and cellular endocrinology, 270, 73–78.CrossRefPubMed
73.
Zurück zum Zitat Anneren, C., & Welsh, M. (2001). Increased cytokine-induced cytotoxicity of pancreatic islet cells from transgenic mice expressing the Src-like tyrosine kinase GTK. Molecular Medicine, 7, 301–310.PubMedPubMedCentral Anneren, C., & Welsh, M. (2001). Increased cytokine-induced cytotoxicity of pancreatic islet cells from transgenic mice expressing the Src-like tyrosine kinase GTK. Molecular Medicine, 7, 301–310.PubMedPubMedCentral
74.
Zurück zum Zitat Anneren, C. (2002). Dual role of the tyrosine kinase GTK and the adaptor protein SHB in beta-cell growth: enhanced beta-cell replication after 60% pancreatectomy and increased sensitivity to streptozotocin. The Journal of endocrinology, 172, 145–153.CrossRefPubMed Anneren, C. (2002). Dual role of the tyrosine kinase GTK and the adaptor protein SHB in beta-cell growth: enhanced beta-cell replication after 60% pancreatectomy and increased sensitivity to streptozotocin. The Journal of endocrinology, 172, 145–153.CrossRefPubMed
75.
Zurück zum Zitat Anneren, C., Welsh, M., & Jansson, L. (2007). Glucose intolerance and reduced islet blood flow in transgenic mice expressing the FRK tyrosine kinase under the control of the rat insulin promoter, American journal of physiology. Endocrinology and metabolism, 292, E1183–1190.PubMed Anneren, C., Welsh, M., & Jansson, L. (2007). Glucose intolerance and reduced islet blood flow in transgenic mice expressing the FRK tyrosine kinase under the control of the rat insulin promoter, American journal of physiology. Endocrinology and metabolism, 292, E1183–1190.PubMed
76.
Zurück zum Zitat Roe, K., Bratland, A., Vlatkovic, L., Ragnum, H. B., Saelen, M. G., Olsen, D. R., Marignol, L., & Ree, A. H. (2013). Hypoxic tumor kinase signaling mediated by STAT5A in development of castration-resistant prostate cancer. PloS one, 8, e63723.CrossRefPubMedPubMedCentral Roe, K., Bratland, A., Vlatkovic, L., Ragnum, H. B., Saelen, M. G., Olsen, D. R., Marignol, L., & Ree, A. H. (2013). Hypoxic tumor kinase signaling mediated by STAT5A in development of castration-resistant prostate cancer. PloS one, 8, e63723.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Cowin, P. A., Anglesio, M., Etemadmoghadam, D., & Bowtell, D. D. (2010). Profiling the cancer genome. Annual review of genomics and human genetics, 11, 133–159.CrossRefPubMed Cowin, P. A., Anglesio, M., Etemadmoghadam, D., & Bowtell, D. D. (2010). Profiling the cancer genome. Annual review of genomics and human genetics, 11, 133–159.CrossRefPubMed
78.
Zurück zum Zitat Son, J. W., Jeong, K. J., Jean, W. S., Park, S. Y., Jheon, S., Cho, H. M., Park, C. G., Lee, H. Y., & Kang, J. (2011). Genome-wide combination profiling of DNA copy number and methylation for deciphering biomarkers in non-small cell lung cancer patients. Cancer letters, 311, 29–37.CrossRefPubMed Son, J. W., Jeong, K. J., Jean, W. S., Park, S. Y., Jheon, S., Cho, H. M., Park, C. G., Lee, H. Y., & Kang, J. (2011). Genome-wide combination profiling of DNA copy number and methylation for deciphering biomarkers in non-small cell lung cancer patients. Cancer letters, 311, 29–37.CrossRefPubMed
79.
Zurück zum Zitat Park, J. J., Kang, J. K., Hong, S., Ryu, E. S., Kim, J. I., Lee, J. H., & Seo, J. S. (2008). Genome-wide combination profiling of copy number and methylation offers an approach for deciphering misregulation and development in cancer cells. Gene, 407, 139–147.CrossRefPubMed Park, J. J., Kang, J. K., Hong, S., Ryu, E. S., Kim, J. I., Lee, J. H., & Seo, J. S. (2008). Genome-wide combination profiling of copy number and methylation offers an approach for deciphering misregulation and development in cancer cells. Gene, 407, 139–147.CrossRefPubMed
80.
Zurück zum Zitat Kleivi, K., Lothe, R. A., Heim, S., Tsarouha, H., Kraggerud, S. M., Pandis, N., Papadopoulou, A., Andersen, J., Jakobsen, K. S., & Teixeira, M. R. (2002). Genome profiling of breast cancer cells selected against in vitro shows copy number changes. Genes, chromosomes & cancer, 33, 304–309.CrossRef Kleivi, K., Lothe, R. A., Heim, S., Tsarouha, H., Kraggerud, S. M., Pandis, N., Papadopoulou, A., Andersen, J., Jakobsen, K. S., & Teixeira, M. R. (2002). Genome profiling of breast cancer cells selected against in vitro shows copy number changes. Genes, chromosomes & cancer, 33, 304–309.CrossRef
81.
Zurück zum Zitat Kashiwagi, H., & Uchida, K. (2000). Genome-wide profiling of gene amplification and deletion in cancer. Human cell, 13, 135–141.PubMed Kashiwagi, H., & Uchida, K. (2000). Genome-wide profiling of gene amplification and deletion in cancer. Human cell, 13, 135–141.PubMed
82.
Zurück zum Zitat Chen, Y., Hao, J., Jiang, W., He, T., Zhang, X., Jiang, T., & Jiang, R. (2013). Identifying potential cancer driver genes by genomic data integration. Scientific reports, 3, 3538.PubMedPubMedCentral Chen, Y., Hao, J., Jiang, W., He, T., Zhang, X., Jiang, T., & Jiang, R. (2013). Identifying potential cancer driver genes by genomic data integration. Scientific reports, 3, 3538.PubMedPubMedCentral
84.
Zurück zum Zitat Jin, G., Jeon, H. S., Yang, E., & Park, J. Y. (2011). Mutation analysis of the FRK gene in non-small cell lung cancers. Lung Cancer, 71, 115–117.CrossRefPubMed Jin, G., Jeon, H. S., Yang, E., & Park, J. Y. (2011). Mutation analysis of the FRK gene in non-small cell lung cancers. Lung Cancer, 71, 115–117.CrossRefPubMed
85.
Zurück zum Zitat Grebien, F., Hantschel, O., Wojcik, J., Kaupe, I., Kovacic, B., Wyrzucki, A. M., Gish, G. D., Cerny-Reiterer, S., Koide, A., Beug, H., Pawson, T., Valent, P., Koide, S., & Superti-Furga, G. (2011). Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell, 147, 306–319.CrossRefPubMedPubMedCentral Grebien, F., Hantschel, O., Wojcik, J., Kaupe, I., Kovacic, B., Wyrzucki, A. M., Gish, G. D., Cerny-Reiterer, S., Koide, A., Beug, H., Pawson, T., Valent, P., Koide, S., & Superti-Furga, G. (2011). Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Cell, 147, 306–319.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Brauer, P. M., & Tyner, A. L. (2010). Building a better understanding of the intracellular tyrosine kinase PTK6 - BRK by BRK. Biochimica et Biophysica Acta, 1806, 66–73.PubMedPubMedCentral Brauer, P. M., & Tyner, A. L. (2010). Building a better understanding of the intracellular tyrosine kinase PTK6 - BRK by BRK. Biochimica et Biophysica Acta, 1806, 66–73.PubMedPubMedCentral
87.
Zurück zum Zitat Y. Zheng, J. Gierut, Z. Wang, J. Miao, J.M. Asara, A.L. Tyner. (2012). Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene. Y. Zheng, J. Gierut, Z. Wang, J. Miao, J.M. Asara, A.L. Tyner. (2012). Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene.
88.
Zurück zum Zitat Zheng, Y., & Tyner, A. L. (2013). Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. European journal of clinical investigation, 43, 397–404.CrossRefPubMedPubMedCentral Zheng, Y., & Tyner, A. L. (2013). Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. European journal of clinical investigation, 43, 397–404.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Haegebarth, A., Bie, W., Yang, R., Crawford, S. E., Vasioukhin, V., Fuchs, E., & Tyner, A. L. (2006). Protein tyrosine kinase 6 negatively regulates growth and promotes enterocyte differentiation in the small intestine. Molecular and cellular biology, 26, 4949–4957.CrossRefPubMedPubMedCentral Haegebarth, A., Bie, W., Yang, R., Crawford, S. E., Vasioukhin, V., Fuchs, E., & Tyner, A. L. (2006). Protein tyrosine kinase 6 negatively regulates growth and promotes enterocyte differentiation in the small intestine. Molecular and cellular biology, 26, 4949–4957.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Ma, S., Bao, J. Y., Kwan, P. S., Chan, Y. P., Tong, C. M., Fu, L., Zhang, N., Tong, A. H., Qin, Y. R., Tsao, S. W., Chan, K. W., Lok, S., & Guan, X. Y. (2012). Identification of PTK6, via RNA sequencing analysis, as a suppressor of esophageal squamous cell carcinoma. Gastroenterology, 143, 675–686. e671-612.CrossRefPubMed Ma, S., Bao, J. Y., Kwan, P. S., Chan, Y. P., Tong, C. M., Fu, L., Zhang, N., Tong, A. H., Qin, Y. R., Tsao, S. W., Chan, K. W., Lok, S., & Guan, X. Y. (2012). Identification of PTK6, via RNA sequencing analysis, as a suppressor of esophageal squamous cell carcinoma. Gastroenterology, 143, 675–686. e671-612.CrossRefPubMed
91.
Zurück zum Zitat Liu, X. K., Zhang, X. R., Zhong, Q., Li, M. Z., Liu, Z. M., Lin, Z. R., Wu, D., & Zeng, M. S. (2013). Low expression of PTK6/Brk predicts poor prognosis in patients with laryngeal squamous cell carcinoma. Journal of translational medicine, 11, 59.CrossRefPubMedPubMedCentral Liu, X. K., Zhang, X. R., Zhong, Q., Li, M. Z., Liu, Z. M., Lin, Z. R., Wu, D., & Zeng, M. S. (2013). Low expression of PTK6/Brk predicts poor prognosis in patients with laryngeal squamous cell carcinoma. Journal of translational medicine, 11, 59.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Li, X., Lu, Y., Liang, K., Hsu, J. M., Albarracin, C., Mills, G. B., Hung, M. C., & Fan, Z. (2012). Brk/PTK6 sustains activated EGFR signaling through inhibiting EGFR degradation and transactivating EGFR. Oncogene, 31, 4372–4383.CrossRefPubMedPubMedCentral Li, X., Lu, Y., Liang, K., Hsu, J. M., Albarracin, C., Mills, G. B., Hung, M. C., & Fan, Z. (2012). Brk/PTK6 sustains activated EGFR signaling through inhibiting EGFR degradation and transactivating EGFR. Oncogene, 31, 4372–4383.CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Xiang, B., Chatti, K., Qiu, H., Lakshmi, B., Krasnitz, A., Hicks, J., Yu, M., Miller, W. T., & Muthuswamy, S. K. (2008). Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 12463–12468.CrossRefPubMedPubMedCentral Xiang, B., Chatti, K., Qiu, H., Lakshmi, B., Krasnitz, A., Hicks, J., Yu, M., Miller, W. T., & Muthuswamy, S. K. (2008). Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 12463–12468.CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Li, J., Rix, U., Fang, B., Bai, Y., Edwards, A., Colinge, J., Bennett, K. L., Gao, J., Song, L., Eschrich, S., Superti-Furga, G., Koomen, J., & Haura, E. B. (2010). A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nature chemical biology, 6, 291–299.CrossRefPubMedPubMedCentral Li, J., Rix, U., Fang, B., Bai, Y., Edwards, A., Colinge, J., Bennett, K. L., Gao, J., Song, L., Eschrich, S., Superti-Furga, G., Koomen, J., & Haura, E. B. (2010). A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nature chemical biology, 6, 291–299.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Montero, J. C., Seoane, S., Ocana, A., & Pandiella, A. (2011). Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clinical cancer research, 17, 5546–5552.CrossRefPubMed Montero, J. C., Seoane, S., Ocana, A., & Pandiella, A. (2011). Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clinical cancer research, 17, 5546–5552.CrossRefPubMed
Metadaten
Titel
Understanding the cellular roles of Fyn-related kinase (FRK): implications in cancer biology
verfasst von
Raghuveera Kumar Goel
Kiven Erique Lukong
Publikationsdatum
11.04.2016
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2016
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9623-3

Weitere Artikel der Ausgabe 2/2016

Cancer and Metastasis Reviews 2/2016 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.