Skip to main content
Erschienen in: Documenta Ophthalmologica 3/2012

01.12.2012 | Original Research Article

Establishing baseline rod electroretinogram values in achromatopsia and cone dystrophy

verfasst von: Isaac Wang, Naheed W. Khan, Kari Branham, B. Wissinger, Susanne Kohl, J. R. Heckenlively

Erschienen in: Documenta Ophthalmologica | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To establish the normal range of values for rod-isolated b-wave amplitudes in achromatopsia and cone dystrophies.

Methods

We reviewed charts of 112 patients with various types of cone dystrophy, and compared their standardized electroretinographic rod b-wave amplitudes with age-matched normal controls. Twenty-six patients had known mutations in achromatopsia and cone dystrophy genes, while 53 were characterized by their inheritance pattern since they had yet to have their gene identified. Visual acuity information and scotomata were documented.

Results

We found that patients with achromatopsia and cone dystrophy had rod b-wave amplitudes that were significantly lower than age-matched controls, but found no evidence of rod amplitude progression nor loss of peripheral visual fields in the study group.

Conclusions

We found that cone dystrophy patients of all types had depressed rod-isolated ERGs across the board. If typical diagnostic criteria are used, these patients might be considered to have “abnormal” rod-isolated electroretinographic values, and might be called “cone-rod dystrophy”, even though the waveforms are stable for years. Patients with cone-rod dysfunction patterns on ERG can be better understood by also performing kinetic (Goldmann) visual fields, which will help to distinguish cone dystrophies from progressive cone-rod dystrophies by central scotomata size and progression over time in many forms of cone-rod dystrophy.
Literatur
1.
Zurück zum Zitat Atmaca-Sonmez P, Khan KW, Heckenlively JR (2008) Hereditary cone dystrophies. In: Albert D, Jakobiec F (eds) Retina and vitreous. Saunders, Philadelphia, pp 2253–2259 Atmaca-Sonmez P, Khan KW, Heckenlively JR (2008) Hereditary cone dystrophies. In: Albert D, Jakobiec F (eds) Retina and vitreous. Saunders, Philadelphia, pp 2253–2259
2.
Zurück zum Zitat Fishman GA, Sokol S (1990) Electrophysiologic testing in disorders of the retina, optic nerve, and visual pathway. American Academy of Ophthalmology, San Francisco, pp 60–64 Fishman GA, Sokol S (1990) Electrophysiologic testing in disorders of the retina, optic nerve, and visual pathway. American Academy of Ophthalmology, San Francisco, pp 60–64
3.
Zurück zum Zitat Sadowski B, Zrenner E (1997) Cone and rod function in cone degenerations. Vision Res 37:2303–2314PubMedCrossRef Sadowski B, Zrenner E (1997) Cone and rod function in cone degenerations. Vision Res 37:2303–2314PubMedCrossRef
4.
Zurück zum Zitat Heckenlively JR, Arden GB (2006) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 795–802 Heckenlively JR, Arden GB (2006) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 795–802
5.
Zurück zum Zitat Khan NW, Wissinger B, Kohl S, Sieving PA (2007) CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest Ophathalmol Vis Sci 48:3864–3871CrossRef Khan NW, Wissinger B, Kohl S, Sieving PA (2007) CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest Ophathalmol Vis Sci 48:3864–3871CrossRef
6.
Zurück zum Zitat Wu H, Cowing JA, Michaelides M, Wilkie SE, Jeffery G, Jenkins SA, Mester V, Bird AC, RObson AG, Holder GE, Moore AT, Hunt DM, Webster AR (2006) Mutations in the gene KCNV2 encoding a voltage-gated potassium channel subunit cause cone dystrophy with supernormal rod electroretinogram in humans. Am J Hum Genet 79:574–579PubMedCrossRef Wu H, Cowing JA, Michaelides M, Wilkie SE, Jeffery G, Jenkins SA, Mester V, Bird AC, RObson AG, Holder GE, Moore AT, Hunt DM, Webster AR (2006) Mutations in the gene KCNV2 encoding a voltage-gated potassium channel subunit cause cone dystrophy with supernormal rod electroretinogram in humans. Am J Hum Genet 79:574–579PubMedCrossRef
7.
Zurück zum Zitat Ben Salah S, Kamei S, Senechal A, Lopez S, Bazalgette C, Bazalgette C, Eliaou CM, Zanionghi X, Hamel CP (2008) Novel KCNV2 mutations in cone dystrophy with supernormal rod electroretinogram. Am J Ophthalmol 145:1099–1106PubMedCrossRef Ben Salah S, Kamei S, Senechal A, Lopez S, Bazalgette C, Bazalgette C, Eliaou CM, Zanionghi X, Hamel CP (2008) Novel KCNV2 mutations in cone dystrophy with supernormal rod electroretinogram. Am J Ophthalmol 145:1099–1106PubMedCrossRef
8.
Zurück zum Zitat Thiagalingam S, McGee TL, Weleber RG, Sandberg MA, Trzupek KM, Berson EL, Dryja TP (2007) Novel mutations in the KCNV2 gene in patients with cone dystrophy and a supernormal rod electroretinogram. Ophthalmic Genet 28:135–142PubMedCrossRef Thiagalingam S, McGee TL, Weleber RG, Sandberg MA, Trzupek KM, Berson EL, Dryja TP (2007) Novel mutations in the KCNV2 gene in patients with cone dystrophy and a supernormal rod electroretinogram. Ophthalmic Genet 28:135–142PubMedCrossRef
9.
Zurück zum Zitat Johnson S, Michaelides M, Alilgianis IA, Ainsworth JR, Mollon JD, Maher ER, Moore AT, Hunt DM (2004) Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J Med Genet 41:e20PubMedCrossRef Johnson S, Michaelides M, Alilgianis IA, Ainsworth JR, Mollon JD, Maher ER, Moore AT, Hunt DM (2004) Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J Med Genet 41:e20PubMedCrossRef
10.
Zurück zum Zitat Reuter P, Koeppen K, Ladewig T, Kohl S, Baumann B, Wissinger B (2008) Mutations in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels, resulting in achromatopsia. Hum Mutat 2008(29):1228–1236CrossRef Reuter P, Koeppen K, Ladewig T, Kohl S, Baumann B, Wissinger B (2008) Mutations in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels, resulting in achromatopsia. Hum Mutat 2008(29):1228–1236CrossRef
11.
Zurück zum Zitat Xu J, Morris LM, Michalakis S, Biel M, Fliesler SJ, Sherry DM, Ding XQ (2012) CNGA3 deficiency affects cone synaptic terminal structure and function and leads to secondary rod dysfunction and degeneration. Invest Ophthalmol Vis Sci 53(3):1117–1129PubMedCrossRef Xu J, Morris LM, Michalakis S, Biel M, Fliesler SJ, Sherry DM, Ding XQ (2012) CNGA3 deficiency affects cone synaptic terminal structure and function and leads to secondary rod dysfunction and degeneration. Invest Ophthalmol Vis Sci 53(3):1117–1129PubMedCrossRef
12.
Zurück zum Zitat Frumkes TE (1991) Suppressive Rod-cone interaction. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. Mosby Year Book, St. Louis, pp 469–474 Frumkes TE (1991) Suppressive Rod-cone interaction. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. Mosby Year Book, St. Louis, pp 469–474
Metadaten
Titel
Establishing baseline rod electroretinogram values in achromatopsia and cone dystrophy
verfasst von
Isaac Wang
Naheed W. Khan
Kari Branham
B. Wissinger
Susanne Kohl
J. R. Heckenlively
Publikationsdatum
01.12.2012
Verlag
Springer-Verlag
Erschienen in
Documenta Ophthalmologica / Ausgabe 3/2012
Print ISSN: 0012-4486
Elektronische ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-012-9350-1

Weitere Artikel der Ausgabe 3/2012

Documenta Ophthalmologica 3/2012 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.