Skip to main content
Erschienen in: Obesity Surgery 12/2014

01.12.2014 | Original Contributions

Duodenal-Jejunal Bypass Surgery Suppresses Hepatic De Novo Lipogenesis and Alleviates Liver Fat Accumulation in a Diabetic Rat Model

verfasst von: Haifeng Han, Chunxiao Hu, Lei Wang, Guangyong Zhang, Shaozhuang Liu, Feng Li, Dong Sun, Sanyuan Hu

Erschienen in: Obesity Surgery | Ausgabe 12/2014

Einloggen, um Zugang zu erhalten

Abstract

Background

Duodenal-jejunal bypass (DJB) surgery can induce rapid and durable remission of type 2 diabetes mellitus (T2DM), but the intrinsic mechanisms remain to be elucidated. Recent studies indicated that improved hepatic insulin resistance and insulin signaling transduction might contribute to the diabetic control after DJB. Given the important role of liver adiposity in hepatic insulin resistance, this study was aimed at investigating the effects of DJB on glucose homeostasis and liver fat accumulation in a T2DM rat model induced by high-fat diet (HFD) and small dose of streptozotocin (STZ).

Methods

Forty adult male diabetic rats induced by HFD and small dose of STZ were randomly assigned to sham and DJB groups. Body weight, calorie intake, hormone levels, glucose, and lipid parameters were measured at indicated time points. Subsequently, hepatic triglycerides (TG) content and the protein levels of sterol regulatory element binding protein-1 (SREBP-1), carbohydrate response element binding protein (ChREBP), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) were evaluated at 2 and 8 weeks postoperatively.

Results

Compared with sham group, DJB induced rapid and significant improvements in glucose homeostasis and insulin sensitivity independently of weight loss and calorie restriction. The DJB-operated rats exhibited lower liver TG content and decreased hepatic SREBP-1, ChREBP, ACC, and FAS at 8 weeks postoperatively.

Conclusions

DJB alleviated hepatic fat accumulation and downregulated the key transcriptional regulators and enzymes involved in hepatic de novo lipogenesis, which might contribute to improved hepatic insulin sensitivity and glucose homeostasis after DJB.
Literatur
1.
Zurück zum Zitat Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11. PMID: 14685093.PubMedCentralPubMedCrossRef Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11. PMID: 14685093.PubMedCentralPubMedCrossRef
2.
Zurück zum Zitat Jiao J, Bae EJ, Bandyopadhyay G, et al. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes. 2013;62(4):1074–83. PMID: 23248171.PubMedCentralPubMedCrossRef Jiao J, Bae EJ, Bandyopadhyay G, et al. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes. 2013;62(4):1074–83. PMID: 23248171.PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247(6):968–75. PMID: 18520224.PubMedCrossRef Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247(6):968–75. PMID: 18520224.PubMedCrossRef
4.
Zurück zum Zitat Sun D, Wang K, Yan Z, et al. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic goto-kakizaki rats. Obes Surg. 2013;23(11):1734–42. PMID: 23700236.PubMedCrossRef Sun D, Wang K, Yan Z, et al. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic goto-kakizaki rats. Obes Surg. 2013;23(11):1734–42. PMID: 23700236.PubMedCrossRef
5.
Zurück zum Zitat DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313–9. PMID: 6754515.PubMedCrossRef DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313–9. PMID: 6754515.PubMedCrossRef
6.
Zurück zum Zitat Leclercq IA, Da Silva MA, Schroyen B, et al. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol. 2007;47(1):142–56. PMID: 17512085.PubMedCrossRef Leclercq IA, Da Silva MA, Schroyen B, et al. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol. 2007;47(1):142–56. PMID: 17512085.PubMedCrossRef
7.
Zurück zum Zitat Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506. PMID: 17681171.PubMedCrossRef Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506. PMID: 17681171.PubMedCrossRef
8.
Zurück zum Zitat Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87(7):3023–8. PMID: 12107194.PubMedCrossRef Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87(7):3023–8. PMID: 12107194.PubMedCrossRef
9.
Zurück zum Zitat Kotronen A, Juurinen L, Tiikkainen M, et al. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology. 2008;135(1):122–30. PMID: 18474251.PubMedCrossRef Kotronen A, Juurinen L, Tiikkainen M, et al. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology. 2008;135(1):122–30. PMID: 18474251.PubMedCrossRef
10.
Zurück zum Zitat Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53. PMID: 15166226.PubMedCrossRef Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53. PMID: 15166226.PubMedCrossRef
11.
Zurück zum Zitat Kotronen A, Juurinen L, Hakkarainen A, et al. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care. 2008;31(1):165–9. PMID: 17934148.PubMedCrossRef Kotronen A, Juurinen L, Hakkarainen A, et al. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care. 2008;31(1):165–9. PMID: 17934148.PubMedCrossRef
12.
Zurück zum Zitat Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221–31. PMID: 11961152.PubMedCrossRef Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221–31. PMID: 11961152.PubMedCrossRef
13.
Zurück zum Zitat Medina J, Fernandez-Salazar LI, Garcia-Buey L, et al. Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care. 2004;27(8):2057–66. PMID: 15277442.PubMedCrossRef Medina J, Fernandez-Salazar LI, Garcia-Buey L, et al. Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care. 2004;27(8):2057–66. PMID: 15277442.PubMedCrossRef
14.
Zurück zum Zitat Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23(2):201–29. PMID: 11943743.PubMedCrossRef Lewis GF, Carpentier A, Adeli K, et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23(2):201–29. PMID: 11943743.PubMedCrossRef
15.
Zurück zum Zitat Mottin CC, Moretto M, Padoin AV, et al. Histological behavior of hepatic steatosis in morbidly obese patients after weight loss induced by bariatric surgery. Obes Surg. 2005;15(6):788–93. PMID: 15978148.PubMedCrossRef Mottin CC, Moretto M, Padoin AV, et al. Histological behavior of hepatic steatosis in morbidly obese patients after weight loss induced by bariatric surgery. Obes Surg. 2005;15(6):788–93. PMID: 15978148.PubMedCrossRef
16.
Zurück zum Zitat Weiner RA. Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):274–9. PMID: 20460923.PubMedCrossRef Weiner RA. Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease. Dig Dis. 2010;28(1):274–9. PMID: 20460923.PubMedCrossRef
17.
Zurück zum Zitat Dixon JB, Bhathal PS, O’Brien PE. Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg. 2006;16(10):1278–86. PMID: 17059735.PubMedCrossRef Dixon JB, Bhathal PS, O’Brien PE. Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg. 2006;16(10):1278–86. PMID: 17059735.PubMedCrossRef
18.
Zurück zum Zitat Kral JG, Thung SN, Biron S, et al. Effects of surgical treatment of the metabolic syndrome on liver fibrosis and cirrhosis. Surgery. 2004;135(1):48–58. PMID: 14694300.PubMedCrossRef Kral JG, Thung SN, Biron S, et al. Effects of surgical treatment of the metabolic syndrome on liver fibrosis and cirrhosis. Surgery. 2004;135(1):48–58. PMID: 14694300.PubMedCrossRef
19.
Zurück zum Zitat Mummadi RR, Kasturi KS, Chennareddygari S, et al. Effect of bariatric surgery on nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2008;6(12):1396–402. PMID: 18986848.PubMedCrossRef Mummadi RR, Kasturi KS, Chennareddygari S, et al. Effect of bariatric surgery on nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2008;6(12):1396–402. PMID: 18986848.PubMedCrossRef
20.
Zurück zum Zitat Kindel TL, Yoder SM, Seeley RJ, et al. Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J Gastrointest Surg. 2009;13(10):1762–72. PMID: 19488823.PubMedCrossRef Kindel TL, Yoder SM, Seeley RJ, et al. Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J Gastrointest Surg. 2009;13(10):1762–72. PMID: 19488823.PubMedCrossRef
21.
Zurück zum Zitat Ben-Shlomo S, Zvibel I, Shnell M, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54(6):1214–23. PMID: 21145820.PubMedCrossRef Ben-Shlomo S, Zvibel I, Shnell M, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54(6):1214–23. PMID: 21145820.PubMedCrossRef
22.
Zurück zum Zitat de Jonge C, Rensen SS, Koek GH, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves plasma parameters of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(11):1517–20. PMID: 23920034.PubMedCrossRef de Jonge C, Rensen SS, Koek GH, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves plasma parameters of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11(11):1517–20. PMID: 23920034.PubMedCrossRef
23.
Zurück zum Zitat Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390–4. PMID: 11092499.PubMedCrossRef Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390–4. PMID: 11092499.PubMedCrossRef
24.
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. PMID: 3899825.PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. PMID: 3899825.PubMedCrossRef
25.
Zurück zum Zitat Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70. PMID: 10480510.PubMedCrossRef Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70. PMID: 10480510.PubMedCrossRef
26.
Zurück zum Zitat Jurowich CF, Rikkala PR, Thalheimer A, et al. Duodenal-jejunal bypass improves glycemia and decreases SGLT1-mediated glucose absorption in rats with streptozotocin-induced type 2 diabetes. Ann Surg. 2013;258(1):89–97. PMID: 23478528.PubMedCrossRef Jurowich CF, Rikkala PR, Thalheimer A, et al. Duodenal-jejunal bypass improves glycemia and decreases SGLT1-mediated glucose absorption in rats with streptozotocin-induced type 2 diabetes. Ann Surg. 2013;258(1):89–97. PMID: 23478528.PubMedCrossRef
27.
Zurück zum Zitat Liu S, Zhang G, Wang L, et al. The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats. Ann Surg. 2012;256(6):1049–58. PMID: 23001083.PubMedCrossRef Liu S, Zhang G, Wang L, et al. The entire small intestine mediates the changes in glucose homeostasis after intestinal surgery in Goto-Kakizaki rats. Ann Surg. 2012;256(6):1049–58. PMID: 23001083.PubMedCrossRef
28.
Zurück zum Zitat Speck M, Cho YM, Asadi A, et al. Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab. 2011;300(5):E923–32. PMID: 21304061.PubMedCrossRef Speck M, Cho YM, Asadi A, et al. Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab. 2011;300(5):E923–32. PMID: 21304061.PubMedCrossRef
29.
Zurück zum Zitat Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7. PMID: 19360006.CrossRef Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7. PMID: 19360006.CrossRef
30.
Zurück zum Zitat Cummings BP, Bettaieb A, Graham JL, et al. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats. Dis Model Mech. 2013;6(2):443–56. PMID: 23264565.PubMedCentralPubMedCrossRef Cummings BP, Bettaieb A, Graham JL, et al. Bile-acid-mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCD-T2DM rats. Dis Model Mech. 2013;6(2):443–56. PMID: 23264565.PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Kohli R, Kirby M, Setchell KD, et al. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G652–60. PMID: 20595624.PubMedCentralPubMedCrossRef Kohli R, Kirby M, Setchell KD, et al. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G652–60. PMID: 20595624.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Cummings BP, Bettaieb A, Graham JL, et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology. 2012;153(8):3620–32. PMID: 22719048.PubMedCentralPubMedCrossRef Cummings BP, Bettaieb A, Graham JL, et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology. 2012;153(8):3620–32. PMID: 22719048.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102–9. PMID: 16557297.PubMedCentralPubMedCrossRef Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102–9. PMID: 16557297.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–18. PMID: 15146238.PubMedCentralPubMedCrossRef Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–18. PMID: 15146238.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. PMID: 16400329.PubMedCrossRef Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. PMID: 16400329.PubMedCrossRef
37.
Zurück zum Zitat Ryysy L, Hakkinen AM, Goto T, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes. 2000;49(5):749–58. PMID: 10905483.PubMedCrossRef Ryysy L, Hakkinen AM, Goto T, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes. 2000;49(5):749–58. PMID: 10905483.PubMedCrossRef
38.
Zurück zum Zitat Araujo AC, Bonfleur ML, Balbo SL, et al. Duodenal-jejunal bypass surgery enhances glucose tolerance and beta-cell function in Western diet obese rats. Obes Surg. 2012;22(5):819–26. PMID: 22411572.PubMedCrossRef Araujo AC, Bonfleur ML, Balbo SL, et al. Duodenal-jejunal bypass surgery enhances glucose tolerance and beta-cell function in Western diet obese rats. Obes Surg. 2012;22(5):819–26. PMID: 22411572.PubMedCrossRef
39.
Zurück zum Zitat Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138(7):2437–46. 2446 e1. PMID: 20226188.PubMedCentralPubMedCrossRef Cummings BP, Strader AD, Stanhope KL, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138(7):2437–46. 2446 e1. PMID: 20226188.PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829–38. PMID: 18317565.PubMedCentralPubMedCrossRef Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829–38. PMID: 18317565.PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9. PMID: 17060767.PubMedCentralPubMedCrossRef Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9. PMID: 17060767.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10. PMID: 8971073.PubMedCrossRef Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10. PMID: 8971073.PubMedCrossRef
43.
Zurück zum Zitat Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 2010;12 Suppl 2:83–92. PMID: 21029304.PubMedCrossRef Ferre P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 2010;12 Suppl 2:83–92. PMID: 21029304.PubMedCrossRef
44.
Zurück zum Zitat Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87(1):81–6. PMID: 15733741.PubMedCrossRef Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie. 2005;87(1):81–6. PMID: 15733741.PubMedCrossRef
45.
Zurück zum Zitat Mencarelli A, Renga B, D'Amore C, et al. Dissociation of intestinal and hepatic activities of FXR and LXRalpha supports metabolic effects of terminal ileum interposition in rodents. Diabetes. 2013;62(10):3384–93. PMID: 23835330.PubMedCentralPubMedCrossRef Mencarelli A, Renga B, D'Amore C, et al. Dissociation of intestinal and hepatic activities of FXR and LXRalpha supports metabolic effects of terminal ileum interposition in rodents. Diabetes. 2013;62(10):3384–93. PMID: 23835330.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Foretz M, Pacot C, Dugail I, et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol. 1999;19(5):3760–8. PMID: 10207099.PubMedCentralPubMed Foretz M, Pacot C, Dugail I, et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol. 1999;19(5):3760–8. PMID: 10207099.PubMedCentralPubMed
47.
Zurück zum Zitat Ide T, Shimano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol. 2004;6(4):351–7. PMID: 15048126.PubMedCrossRef Ide T, Shimano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol. 2004;6(4):351–7. PMID: 15048126.PubMedCrossRef
48.
Zurück zum Zitat Poupeau A, Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim Biophys Acta. 2011;1812(8):995–1006. PMID: 21453770.PubMedCrossRef Poupeau A, Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim Biophys Acta. 2011;1812(8):995–1006. PMID: 21453770.PubMedCrossRef
49.
Zurück zum Zitat Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–70. PMID: 16873678.PubMedCrossRef Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–70. PMID: 16873678.PubMedCrossRef
50.
Zurück zum Zitat Liu SZ, Sun D, Zhang GY, et al. A high-fat diet reverses improvement in glucose tolerance induced by duodenal-jejunal bypass in type 2 diabetic rats. Chin Med J (Engl). 2012;125(5):912–9. PMID: 22490596. Liu SZ, Sun D, Zhang GY, et al. A high-fat diet reverses improvement in glucose tolerance induced by duodenal-jejunal bypass in type 2 diabetic rats. Chin Med J (Engl). 2012;125(5):912–9. PMID: 22490596.
Metadaten
Titel
Duodenal-Jejunal Bypass Surgery Suppresses Hepatic De Novo Lipogenesis and Alleviates Liver Fat Accumulation in a Diabetic Rat Model
verfasst von
Haifeng Han
Chunxiao Hu
Lei Wang
Guangyong Zhang
Shaozhuang Liu
Feng Li
Dong Sun
Sanyuan Hu
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Obesity Surgery / Ausgabe 12/2014
Print ISSN: 0960-8923
Elektronische ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-014-1308-9

Weitere Artikel der Ausgabe 12/2014

Obesity Surgery 12/2014 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.