Skip to main content
Erschienen in: medizinische genetik 2/2019

01.06.2019 | Einführung zum Thema: NGS aktuell

NGS: Gestern, heute und morgen

verfasst von: Hanno J. Bolz, Alexander Hoischen

Erschienen in: medizinische genetik | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Auszug

Wie im Falle der Array-CGH-Technik, kamen die unter next-generation sequencing (NGS) zusammengefassten Verfahren der Hochdurchsatz-DNA-Sequenzierung zunächst in der Forschung zum Einsatz – insbesondere mit dem Ziel der Identifizierung neuer Gene für monogene Erkrankungen – bevor sie eine technische Reife erreicht hatten, die ab etwa 2010 eine zunehmende Anwendung in der molekulargenetischen Routinediagnostik erlaubte. …
Literatur
1.
Zurück zum Zitat Funari VA, Krakow D, Nevarez L et al (2010) BMPER mutation in diaphanospondylodysostosis identified by ancestral autozygosity mapping and targeted high-throughput sequencing. Am J Hum Genet 87(4):532–537CrossRef Funari VA, Krakow D, Nevarez L et al (2010) BMPER mutation in diaphanospondylodysostosis identified by ancestral autozygosity mapping and targeted high-throughput sequencing. Am J Hum Genet 87(4):532–537CrossRef
2.
Zurück zum Zitat Rajadhyaksha AM, Elemento O, Puffenberger EG et al (2010) Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am J Hum Genet 87(5):643–654CrossRef Rajadhyaksha AM, Elemento O, Puffenberger EG et al (2010) Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am J Hum Genet 87(5):643–654CrossRef
3.
Zurück zum Zitat Najmabadi H, Hu H, Garshasbi M et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478(7367):57–63CrossRef Najmabadi H, Hu H, Garshasbi M et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478(7367):57–63CrossRef
4.
Zurück zum Zitat Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276CrossRef Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276CrossRef
5.
Zurück zum Zitat Hoischen A, van Bon BW, Gilissen C et al (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42(6):483–485CrossRef Hoischen A, van Bon BW, Gilissen C et al (2010) De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42(6):483–485CrossRef
6.
Zurück zum Zitat de Ligt J, Willemsen MH, van Bon BW et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929CrossRef de Ligt J, Willemsen MH, van Bon BW et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929CrossRef
7.
Zurück zum Zitat Rauch A, Wieczorek D, Graf E et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380(9854):1674–1682CrossRef Rauch A, Wieczorek D, Graf E et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380(9854):1674–1682CrossRef
8.
Zurück zum Zitat Vissers LE, de Ligt J, Gilissen C et al (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112CrossRef Vissers LE, de Ligt J, Gilissen C et al (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112CrossRef
9.
Zurück zum Zitat Lupski JR, Reid JG, Gonzaga-Jauregui C et al (2010) Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 362(13):1181–1191CrossRef Lupski JR, Reid JG, Gonzaga-Jauregui C et al (2010) Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 362(13):1181–1191CrossRef
10.
Zurück zum Zitat Sobreira NL, Cirulli ET, Avramopoulos D et al (2010) Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. Plos Genet 6(6):e1000991CrossRef Sobreira NL, Cirulli ET, Avramopoulos D et al (2010) Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. Plos Genet 6(6):e1000991CrossRef
11.
Zurück zum Zitat Belkadi A, Bolze A, Itan Y et al (2015) Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A 112(17):5473–5478CrossRef Belkadi A, Bolze A, Itan Y et al (2015) Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A 112(17):5473–5478CrossRef
12.
Zurück zum Zitat Gilissen C, Hehir-Kwa JY, Thung DT et al (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature 511(7509):344–347CrossRef Gilissen C, Hehir-Kwa JY, Thung DT et al (2014) Genome sequencing identifies major causes of severe intellectual disability. Nature 511(7509):344–347CrossRef
13.
Zurück zum Zitat Wheeler DA, Srinivasan M, Egholm M et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876CrossRef Wheeler DA, Srinivasan M, Egholm M et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876CrossRef
14.
Zurück zum Zitat Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42(1):30–35CrossRef Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42(1):30–35CrossRef
15.
Zurück zum Zitat Krawitz PM, Schweiger MR, Rodelsperger C et al (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42(10):827–829CrossRef Krawitz PM, Schweiger MR, Rodelsperger C et al (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42(10):827–829CrossRef
16.
Zurück zum Zitat Becker J, Semler O, Gilissen C et al (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88(3):362–371CrossRef Becker J, Semler O, Gilissen C et al (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88(3):362–371CrossRef
17.
Zurück zum Zitat Zheng GX, Lau BT, Schnall-Levin M et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311CrossRef Zheng GX, Lau BT, Schnall-Levin M et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311CrossRef
19.
Zurück zum Zitat Boycott KM, Rath A, Chong JX et al (2017) International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet 100(5):695–705CrossRef Boycott KM, Rath A, Chong JX et al (2017) International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet 100(5):695–705CrossRef
20.
Zurück zum Zitat Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19(5):253–268CrossRef Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19(5):253–268CrossRef
21.
Zurück zum Zitat den Hollander AI, Koenekoop RK, Yzer S et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79(3):556–561CrossRef den Hollander AI, Koenekoop RK, Yzer S et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79(3):556–561CrossRef
27.
Zurück zum Zitat Chaisson MJ, Huddleston J, Dennis MY et al (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517(7536):608–611CrossRef Chaisson MJ, Huddleston J, Dennis MY et al (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517(7536):608–611CrossRef
28.
Zurück zum Zitat Jain M, Koren S, Miga KH et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36(4):338–345CrossRef Jain M, Koren S, Miga KH et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36(4):338–345CrossRef
29.
Zurück zum Zitat Joo JE, Dowty JG, Milne RL et al (2018) Heritable DNA methylation marks associated with susceptibility to breast cancer. Nat Commun 9(1):867CrossRef Joo JE, Dowty JG, Milne RL et al (2018) Heritable DNA methylation marks associated with susceptibility to breast cancer. Nat Commun 9(1):867CrossRef
30.
Zurück zum Zitat Freed D, Pevsner J (2016) The contribution of mosaic variants to autism spectrum disorder. Plos Genet 12(9):e1006245CrossRef Freed D, Pevsner J (2016) The contribution of mosaic variants to autism spectrum disorder. Plos Genet 12(9):e1006245CrossRef
31.
Zurück zum Zitat Abu-Safieh L, Al-Anazi S, Al-Abdi L et al (2012) In search of triallelism in Bardet-Biedl syndrome. Eur J Hum Genet 20(4):420–427CrossRef Abu-Safieh L, Al-Anazi S, Al-Abdi L et al (2012) In search of triallelism in Bardet-Biedl syndrome. Eur J Hum Genet 20(4):420–427CrossRef
34.
Zurück zum Zitat Bessette AP, DeBenedictis MJ, Traboulsi EI (2018) Clinical characteristics of recessive retinal degeneration due to mutations in the CDHR1 gene and a review of the literature. Ophthalmic Genet 39(1):51–55CrossRef Bessette AP, DeBenedictis MJ, Traboulsi EI (2018) Clinical characteristics of recessive retinal degeneration due to mutations in the CDHR1 gene and a review of the literature. Ophthalmic Genet 39(1):51–55CrossRef
35.
Zurück zum Zitat Hoischen A, van Bon BW, Rodriguez-Santiago B et al (2011) De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 43(8):729–731CrossRef Hoischen A, van Bon BW, Rodriguez-Santiago B et al (2011) De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 43(8):729–731CrossRef
36.
Zurück zum Zitat Carlston CM, O’Donnell-Luria AH, Underhill HR et al (2017) Pathogenic ASXL1 somatic variants in reference databases complicate germline variant interpretation for Bohring-Opitz Syndrome. Hum Mutat 38(5):517–523CrossRef Carlston CM, O’Donnell-Luria AH, Underhill HR et al (2017) Pathogenic ASXL1 somatic variants in reference databases complicate germline variant interpretation for Bohring-Opitz Syndrome. Hum Mutat 38(5):517–523CrossRef
37.
Zurück zum Zitat Soukarieh O, Gaildrat P, Hamieh M et al (2016) Exonic splicing mutations are more prevalent than currently estimated and can be predicted by using in silico tools. Plos Genet 12(1):e1005756CrossRef Soukarieh O, Gaildrat P, Hamieh M et al (2016) Exonic splicing mutations are more prevalent than currently estimated and can be predicted by using in silico tools. Plos Genet 12(1):e1005756CrossRef
39.
Zurück zum Zitat Kremer LS, Bader DM, Mertes C et al (2017) Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun 8:15824CrossRef Kremer LS, Bader DM, Mertes C et al (2017) Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun 8:15824CrossRef
40.
Zurück zum Zitat Gonorazky HD, Naumenko S, Ramani AK et al (2019) Expanding the boundaries of RNA sequencing as a diagnostic tool for rare mendelian disease. Am J Hum Genet 104(3):466–483CrossRef Gonorazky HD, Naumenko S, Ramani AK et al (2019) Expanding the boundaries of RNA sequencing as a diagnostic tool for rare mendelian disease. Am J Hum Genet 104(3):466–483CrossRef
41.
Zurück zum Zitat Manzoni C, Kia DA, Vandrovcova J et al (2018) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinformatics 19(2):286–302CrossRef Manzoni C, Kia DA, Vandrovcova J et al (2018) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinformatics 19(2):286–302CrossRef
44.
Zurück zum Zitat Cao J, Spielmann M, Qiu X et al (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566(7745):496–502CrossRef Cao J, Spielmann M, Qiu X et al (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566(7745):496–502CrossRef
45.
Zurück zum Zitat Buenrostro JD, Wu B, Litzenburger UM et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490CrossRef Buenrostro JD, Wu B, Litzenburger UM et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490CrossRef
47.
Zurück zum Zitat Nicolas G, Veltman JA (2019) The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 137(2):183–207CrossRef Nicolas G, Veltman JA (2019) The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 137(2):183–207CrossRef
48.
Zurück zum Zitat Martin HC, Jones WD, McIntyre R et al (2018) Quantifying the contribution of recessive coding variation to developmental disorders. Science 362(6419):1161–1164CrossRef Martin HC, Jones WD, McIntyre R et al (2018) Quantifying the contribution of recessive coding variation to developmental disorders. Science 362(6419):1161–1164CrossRef
49.
Zurück zum Zitat Short PJ, McRae JF, Gallone G et al (2018) De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555(7698):611–616CrossRef Short PJ, McRae JF, Gallone G et al (2018) De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555(7698):611–616CrossRef
50.
Zurück zum Zitat Nilsson D, Pettersson M, Gustavsson P et al (2017) Whole-genome sequencing of cytogenetically balanced chromosome translocations identifies potentially pathological gene disruptions and highlights the importance of Microhomology in the mechanism of formation. Hum Mutat 38(2):180–192CrossRef Nilsson D, Pettersson M, Gustavsson P et al (2017) Whole-genome sequencing of cytogenetically balanced chromosome translocations identifies potentially pathological gene disruptions and highlights the importance of Microhomology in the mechanism of formation. Hum Mutat 38(2):180–192CrossRef
51.
Zurück zum Zitat Murcia Pienkowski V, Kucharczyk M, Mlynek M et al (2019) Mapping of breakpoints in balanced chromosomal translocations by shallow whole-genome sequencing points to EFNA5, BAHD1 and PPP2R5E as novel candidates for genes causing human Mendelian disorders. J Med Genet 56(2):104–112CrossRef Murcia Pienkowski V, Kucharczyk M, Mlynek M et al (2019) Mapping of breakpoints in balanced chromosomal translocations by shallow whole-genome sequencing points to EFNA5, BAHD1 and PPP2R5E as novel candidates for genes causing human Mendelian disorders. J Med Genet 56(2):104–112CrossRef
52.
Zurück zum Zitat Redin C, Brand H, Collins RL et al (2017) The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet 49(1):36–45CrossRef Redin C, Brand H, Collins RL et al (2017) The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet 49(1):36–45CrossRef
53.
Zurück zum Zitat Boycott KM, Innes AM (2017) When one diagnosis is not enough. N Engl J Med 376(1):83–85CrossRef Boycott KM, Innes AM (2017) When one diagnosis is not enough. N Engl J Med 376(1):83–85CrossRef
54.
Zurück zum Zitat Posey JE, Harel T, Liu P et al (2017) Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med 376(1):21–31CrossRef Posey JE, Harel T, Liu P et al (2017) Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med 376(1):21–31CrossRef
55.
Zurück zum Zitat Ebermann I, Elsayed SM, Abdel-Ghaffar TY et al (2008) Double homozygosity for mutations of AGL and SCN9A mimicking neurohepatopathy syndrome. Neurology 70(24):2343–2344CrossRef Ebermann I, Elsayed SM, Abdel-Ghaffar TY et al (2008) Double homozygosity for mutations of AGL and SCN9A mimicking neurohepatopathy syndrome. Neurology 70(24):2343–2344CrossRef
56.
Zurück zum Zitat Pfundt R, Del Rosario M, Vissers L et al (2017) Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet Med 19(6):667–675CrossRef Pfundt R, Del Rosario M, Vissers L et al (2017) Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet Med 19(6):667–675CrossRef
57.
Zurück zum Zitat Wright CF, McRae JF, Clayton S et al (2018) Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders. Genet Med 20(10):1216–1223CrossRef Wright CF, McRae JF, Clayton S et al (2018) Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders. Genet Med 20(10):1216–1223CrossRef
58.
Zurück zum Zitat Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14(5):307–320CrossRef Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14(5):307–320CrossRef
59.
Zurück zum Zitat Lelieveld SH, Reijnders MR, Pfundt R et al (2016) Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci 19(9):1194–1196CrossRef Lelieveld SH, Reijnders MR, Pfundt R et al (2016) Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci 19(9):1194–1196CrossRef
60.
Zurück zum Zitat Ercan-Sencicek AG, Jambi S, Franjic D et al (2015) Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans. Eur J Hum Genet 23(2):165–172CrossRef Ercan-Sencicek AG, Jambi S, Franjic D et al (2015) Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans. Eur J Hum Genet 23(2):165–172CrossRef
61.
Zurück zum Zitat Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278(5341):1315–1318CrossRef Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278(5341):1315–1318CrossRef
62.
Zurück zum Zitat Platzer K, Cogne B, Hague J et al (2018) Haploinsufficiency of CUX1 causes nonsyndromic global developmental delay with possible catch-up development. Ann Neurol 84(2):200–207CrossRef Platzer K, Cogne B, Hague J et al (2018) Haploinsufficiency of CUX1 causes nonsyndromic global developmental delay with possible catch-up development. Ann Neurol 84(2):200–207CrossRef
Metadaten
Titel
NGS: Gestern, heute und morgen
verfasst von
Hanno J. Bolz
Alexander Hoischen
Publikationsdatum
01.06.2019
Verlag
Springer Medizin
Erschienen in
medizinische genetik / Ausgabe 2/2019
Print ISSN: 0936-5931
Elektronische ISSN: 1863-5490
DOI
https://doi.org/10.1007/s11825-019-0240-8

Weitere Artikel der Ausgabe 2/2019

medizinische genetik 2/2019 Zur Ausgabe

Mitteilungen des BVDH

Mitteilungen des BVDH

Aktuelle Nachrichten

Aktuelle Nachrichten

Schwerpunktthema: NGS aktuell

Long-read sequencing in human genetics