Skip to main content
Erschienen in: Current Cardiology Reports 6/2018

01.06.2018 | Interventional Cardiology (SR Bailey, Section Editor)

The Various Applications of 3D Printing in Cardiovascular Diseases

verfasst von: Abdallah El Sabbagh, Mackram F. Eleid, Mohammed Al-Hijji, Nandan S. Anavekar, David R. Holmes, Vuyisile T. Nkomo, Gustavo S. Oderich, Stephen D. Cassivi, Sameh M. Said, Charanjit S. Rihal, Jane M. Matsumoto, Thomas A. Foley

Erschienen in: Current Cardiology Reports | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

To highlight the various applications of 3D printing in cardiovascular disease and discuss its limitations and future direction.

Recent Findings

Use of handheld 3D printed models of cardiovascular structures has emerged as a facile modality in procedural and surgical planning as well as education and communication.

Summary

Three-dimensional (3D) printing is a novel imaging modality which involves creating patient-specific models of cardiovascular structures. As percutaneous and surgical therapies evolve, spatial recognition of complex cardiovascular anatomic relationships by cardiologists and cardiovascular surgeons is imperative. Handheld 3D printed models of cardiovascular structures provide a facile and intuitive road map for procedural and surgical planning, complementing conventional imaging modalities. Moreover, 3D printed models are efficacious educational and communication tools. This review highlights the various applications of 3D printing in cardiovascular diseases and discusses its limitations and future directions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117:2388–94.CrossRefPubMed Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117:2388–94.CrossRefPubMed
2.
Zurück zum Zitat Mankovich NJ, Cheeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990;3(3):200–3.CrossRefPubMed Mankovich NJ, Cheeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990;3(3):200–3.CrossRefPubMed
3.
Zurück zum Zitat Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr. 2015;28:398–403.CrossRefPubMed Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr. 2015;28:398–403.CrossRefPubMed
4.
Zurück zum Zitat Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13:701–18.CrossRefPubMed Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13:701–18.CrossRefPubMed
5.
Zurück zum Zitat Byrne N, Velasco Forte M, Tandon A, Valverde I, Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis. 2016;5:2048004016645467.PubMedPubMedCentral Byrne N, Velasco Forte M, Tandon A, Valverde I, Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis. 2016;5:2048004016645467.PubMedPubMedCentral
6.
Zurück zum Zitat Meier LM, Meineri M, Qua Hiansen J, Horlick EM. Structural and congenital heart disease interventions: the role of three-dimensional printing. Netherlands Heart J: Mon J Netherlands Soc Cardiol Netherlands Heart Found. 2017;25:65–75.CrossRef Meier LM, Meineri M, Qua Hiansen J, Horlick EM. Structural and congenital heart disease interventions: the role of three-dimensional printing. Netherlands Heart J: Mon J Netherlands Soc Cardiol Netherlands Heart Found. 2017;25:65–75.CrossRef
7.
Zurück zum Zitat Sheth R, Balesh ER, Zhang YS, Hirsch JA, Khademhosseini A, Oklu R. Three-dimensional printing: an enabling technology for IR. J Vasc Interv Radiol: JVIR. 2016;27:859–65.CrossRefPubMed Sheth R, Balesh ER, Zhang YS, Hirsch JA, Khademhosseini A, Oklu R. Three-dimensional printing: an enabling technology for IR. J Vasc Interv Radiol: JVIR. 2016;27:859–65.CrossRefPubMed
9.
Zurück zum Zitat Fujita B, Kutting M, Seiffert M, Scholtz S, Egron S, Prashovikj E, et al. Calcium distribution patterns of the aortic valve as a risk factor for the need of permanent pacemaker implantation after transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging. 2016;17:1385–93.CrossRefPubMed Fujita B, Kutting M, Seiffert M, Scholtz S, Egron S, Prashovikj E, et al. Calcium distribution patterns of the aortic valve as a risk factor for the need of permanent pacemaker implantation after transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging. 2016;17:1385–93.CrossRefPubMed
10.
Zurück zum Zitat Hernandez-Enriquez M, Brugaletta S, Andreu D, Macia-Munoz G, Castrejon-Subira M, Fernandez-Suelves S, et al. Three-dimensional printing of an aortic model for transcatheter aortic valve implantation: possible clinical applications. Int J Cardiovasc Imaging. 2017;33:283–5.CrossRefPubMed Hernandez-Enriquez M, Brugaletta S, Andreu D, Macia-Munoz G, Castrejon-Subira M, Fernandez-Suelves S, et al. Three-dimensional printing of an aortic model for transcatheter aortic valve implantation: possible clinical applications. Int J Cardiovasc Imaging. 2017;33:283–5.CrossRefPubMed
11.
Zurück zum Zitat Jung JI, Koh YS, Chang K. 3D printing model before and after transcatheter aortic valve implantation for a better understanding of the anatomy of aortic root. Korean Circ J. 2016;46:588–9.CrossRefPubMedPubMedCentral Jung JI, Koh YS, Chang K. 3D printing model before and after transcatheter aortic valve implantation for a better understanding of the anatomy of aortic root. Korean Circ J. 2016;46:588–9.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Maragiannis D, Jackson MS, Igo SR, Chang SM, Zoghbi WA, Little SH. Functional 3D printed patient-specific modeling of severe aortic stenosis. J Am Coll Cardiol. 2014;64:1066–8.CrossRefPubMed Maragiannis D, Jackson MS, Igo SR, Chang SM, Zoghbi WA, Little SH. Functional 3D printed patient-specific modeling of severe aortic stenosis. J Am Coll Cardiol. 2014;64:1066–8.CrossRefPubMed
13.
Zurück zum Zitat Maragiannis D, Jackson MS, Igo SR, Schutt RC, Connell P, Grande-Allen J, et al. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging. 2015;8:e003626.CrossRefPubMed Maragiannis D, Jackson MS, Igo SR, Schutt RC, Connell P, Grande-Allen J, et al. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circ Cardiovasc Imaging. 2015;8:e003626.CrossRefPubMed
14.
Zurück zum Zitat Fujita T, Saito N, Minakata K, Imai M, Yamazaki K, Kimura T. Transfemoral transcatheter aortic valve implantation in the presence of a mechanical mitral valve prosthesis using a dedicated TAVI guidewire: utility of a patient-specific three-dimensional heart model. Cardiovasc Interv Ther. 2016; Fujita T, Saito N, Minakata K, Imai M, Yamazaki K, Kimura T. Transfemoral transcatheter aortic valve implantation in the presence of a mechanical mitral valve prosthesis using a dedicated TAVI guidewire: utility of a patient-specific three-dimensional heart model. Cardiovasc Interv Ther. 2016;
15.
Zurück zum Zitat Gallo M, D'Onofrio A, Tarantini G, Nocerino E, Remondino F, Gerosa G. 3D-printing model for complex aortic transcatheter valve treatment. Int J Cardiol. 2016;210:139–40.CrossRefPubMed Gallo M, D'Onofrio A, Tarantini G, Nocerino E, Remondino F, Gerosa G. 3D-printing model for complex aortic transcatheter valve treatment. Int J Cardiol. 2016;210:139–40.CrossRefPubMed
16.
Zurück zum Zitat Ripley B, Kelil T, Cheezum MK, Goncalves A, Di Carli MF, Rybicki FJ, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2016;10:28–36.CrossRefPubMed Ripley B, Kelil T, Cheezum MK, Goncalves A, Di Carli MF, Rybicki FJ, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2016;10:28–36.CrossRefPubMed
17.
Zurück zum Zitat Mashari A, Knio Z, Jeganathan J, Montealegre-Gallegos M, Yeh L, Amador Y, et al. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: a clinical application of three-dimensional printing. J Cardiothorac Vasc Anesth. 2016;30:1278–85.CrossRefPubMed Mashari A, Knio Z, Jeganathan J, Montealegre-Gallegos M, Yeh L, Amador Y, et al. Hemodynamic testing of patient-specific mitral valves using a pulse duplicator: a clinical application of three-dimensional printing. J Cardiothorac Vasc Anesth. 2016;30:1278–85.CrossRefPubMed
18.
Zurück zum Zitat Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH. 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng. 2017;45:508–19.CrossRefPubMed Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH. 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng. 2017;45:508–19.CrossRefPubMed
19.
Zurück zum Zitat Witschey WR, Pouch AM, McGarvey JR, Ikeuchi K, Contijoch F, Levack MM, Yushkevick PA, Sehgal CM, Jackson BM, Gorman RC and Gorman JH, 3rd. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg 2014;98:691–694. Witschey WR, Pouch AM, McGarvey JR, Ikeuchi K, Contijoch F, Levack MM, Yushkevick PA, Sehgal CM, Jackson BM, Gorman RC and Gorman JH, 3rd. Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg 2014;98:691–694.
20.
Zurück zum Zitat Guerrero M, Dvir D, Himbert D, Urena M, Eleid M, Wang DD, et al. Transcatheter mitral valve replacement in native mitral valve disease with severe mitral annular calcification: results from the first multicenter global registry. JACC Cardiovasc Interv. 2016;9:1361–71.CrossRefPubMed Guerrero M, Dvir D, Himbert D, Urena M, Eleid M, Wang DD, et al. Transcatheter mitral valve replacement in native mitral valve disease with severe mitral annular calcification: results from the first multicenter global registry. JACC Cardiovasc Interv. 2016;9:1361–71.CrossRefPubMed
21.
Zurück zum Zitat Little SH, Vukicevic M, Avenatti E, Ramchandani M, Barker CM. 3D printed modeling for patient-specific mitral valve intervention: repair with a clip and a plug. JACC Cardiovasc Interv. 2016;9:973–5.CrossRefPubMed Little SH, Vukicevic M, Avenatti E, Ramchandani M, Barker CM. 3D printed modeling for patient-specific mitral valve intervention: repair with a clip and a plug. JACC Cardiovasc Interv. 2016;9:973–5.CrossRefPubMed
22.
Zurück zum Zitat Dahle G, Rein KA, Fiane AE. Single centre experience with transapical transcatheter mitral valve implantation. Interact Cardiovasc Thorac Surg. 2017;25:177–84.CrossRefPubMed Dahle G, Rein KA, Fiane AE. Single centre experience with transapical transcatheter mitral valve implantation. Interact Cardiovasc Thorac Surg. 2017;25:177–84.CrossRefPubMed
23.
Zurück zum Zitat •• El Sabbagh A, Eleid MF, Matsumoto JM, Anavekar NS, Al-Hijji MA, Said SM, Nkomo VT, Holmes DR, Rihal CS and Foley TA. Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification. Catheter Cardiovasc Interv. 2018. This study highlights the advantages that 3D prototyping provides in planning including objective volumetric measurements of digital valve-annular interactions and anatomic modification to simulate procedures. •• El Sabbagh A, Eleid MF, Matsumoto JM, Anavekar NS, Al-Hijji MA, Said SM, Nkomo VT, Holmes DR, Rihal CS and Foley TA. Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification. Catheter Cardiovasc Interv. 2018. This study highlights the advantages that 3D prototyping provides in planning including objective volumetric measurements of digital valve-annular interactions and anatomic modification to simulate procedures.
24.
Zurück zum Zitat Wang DD, Eng M, Greenbaum A, Myers E, Forbes M, Pantelic M, et al. Predicting LVOT obstruction after TMVR. JACC Cardiovasc Imaging. 2016;9:1349–52.CrossRefPubMedPubMedCentral Wang DD, Eng M, Greenbaum A, Myers E, Forbes M, Pantelic M, et al. Predicting LVOT obstruction after TMVR. JACC Cardiovasc Imaging. 2016;9:1349–52.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Muraru D, Veronesi F, Maddalozzo A, Dequal D, Frajhof L, Rabischoffsky A, et al. 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur Heart J Cardiovasc Imaging. 2016; Muraru D, Veronesi F, Maddalozzo A, Dequal D, Frajhof L, Rabischoffsky A, et al. 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur Heart J Cardiovasc Imaging. 2016;
26.
Zurück zum Zitat O'Neill B, Wang DD, Pantelic M, Song T, Guerrero M, Greenbaum A, et al. Transcatheter caval valve implantation using multimodality imaging: roles of TEE, CT, and 3D printing. JACC Cardiovasc Imaging. 2015;8:221–5.CrossRefPubMed O'Neill B, Wang DD, Pantelic M, Song T, Guerrero M, Greenbaum A, et al. Transcatheter caval valve implantation using multimodality imaging: roles of TEE, CT, and 3D printing. JACC Cardiovasc Imaging. 2015;8:221–5.CrossRefPubMed
27.
Zurück zum Zitat Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology. 2007;242:490–7.CrossRefPubMed Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology. 2007;242:490–7.CrossRefPubMed
28.
Zurück zum Zitat Holmes DR Jr, Reddy VY. Left atrial appendage and closure: who, when, and how. Circ Cardiovasc Interv. 2016;9:e002942.CrossRefPubMed Holmes DR Jr, Reddy VY. Left atrial appendage and closure: who, when, and how. Circ Cardiovasc Interv. 2016;9:e002942.CrossRefPubMed
29.
Zurück zum Zitat Athanassopoulos GD. 3D printing for left atrial appendage (LAA) modeling based on transesophageal echocardiography: a step forward in closure with LAA devices. Cardiology. 2016;135:249–54.CrossRefPubMed Athanassopoulos GD. 3D printing for left atrial appendage (LAA) modeling based on transesophageal echocardiography: a step forward in closure with LAA devices. Cardiology. 2016;135:249–54.CrossRefPubMed
30.
Zurück zum Zitat Fan Y, Kwok KW, Zhang Y, Cheung GS, Chan AK, Lee AP. Three-dimensional printing for planning occlusion procedure for a double-lobed left atrial appendage. Circ Cardiovasc Interv. 2016;9:e003561.CrossRefPubMed Fan Y, Kwok KW, Zhang Y, Cheung GS, Chan AK, Lee AP. Three-dimensional printing for planning occlusion procedure for a double-lobed left atrial appendage. Circ Cardiovasc Interv. 2016;9:e003561.CrossRefPubMed
31.
Zurück zum Zitat Goitein O, Fink N, Guetta V, Beinart R, Brodov Y, Konen E, et al. Printed MDCT 3D models for prediction of left atrial appendage (LAA) occluder device size—a feasibility study. EuroIntervention. 2017;13:e1076–9.CrossRefPubMed Goitein O, Fink N, Guetta V, Beinart R, Brodov Y, Konen E, et al. Printed MDCT 3D models for prediction of left atrial appendage (LAA) occluder device size—a feasibility study. EuroIntervention. 2017;13:e1076–9.CrossRefPubMed
32.
Zurück zum Zitat Liu P, Liu R, Zhang Y, Liu Y, Tang X, Cheng Y. The value of 3D printing models of left atrial appendage using real-time 3D transesophageal echocardiographic data in left atrial appendage occlusion: applications toward an era of truly personalized medicine. Cardiology. 2016;135:255–61.CrossRefPubMed Liu P, Liu R, Zhang Y, Liu Y, Tang X, Cheng Y. The value of 3D printing models of left atrial appendage using real-time 3D transesophageal echocardiographic data in left atrial appendage occlusion: applications toward an era of truly personalized medicine. Cardiology. 2016;135:255–61.CrossRefPubMed
33.
Zurück zum Zitat Obasare E, Melendres E, Morris DL, Mainigi SK, Pressman GS. Patient specific 3D print of left atrial appendage for closure device. Int J Cardiovasc Imaging. 2016;32:1495–7.CrossRefPubMed Obasare E, Melendres E, Morris DL, Mainigi SK, Pressman GS. Patient specific 3D print of left atrial appendage for closure device. Int J Cardiovasc Imaging. 2016;32:1495–7.CrossRefPubMed
34.
Zurück zum Zitat Otton JM, Spina R, Sulas R, Subbiah RN, Jacobs N, Muller DW, et al. Left atrial appendage closure guided by personalized 3D-printed cardiac reconstruction. JACC Cardiovasc Interv. 2015;8:1004–6.CrossRefPubMed Otton JM, Spina R, Sulas R, Subbiah RN, Jacobs N, Muller DW, et al. Left atrial appendage closure guided by personalized 3D-printed cardiac reconstruction. JACC Cardiovasc Interv. 2015;8:1004–6.CrossRefPubMed
35.
Zurück zum Zitat Pellegrino PL, Fassini G, DIB M, Tondo C. Left atrial appendage closure guided by 3D printed cardiac reconstruction: emerging directions and future trends. J Cardiovasc Electrophysiol. 2016;27:768–71.CrossRefPubMed Pellegrino PL, Fassini G, DIB M, Tondo C. Left atrial appendage closure guided by 3D printed cardiac reconstruction: emerging directions and future trends. J Cardiovasc Electrophysiol. 2016;27:768–71.CrossRefPubMed
37.
Zurück zum Zitat Bartel T, Rivard A, Jimenez A, Mestres CA, Muller S. Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery. Eur Heart J. 2017; Bartel T, Rivard A, Jimenez A, Mestres CA, Muller S. Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery. Eur Heart J. 2017;
38.
Zurück zum Zitat Jacobs S, Grunert R, Mohr FW, Falk V. 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7:6–9.CrossRefPubMed Jacobs S, Grunert R, Mohr FW, Falk V. 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7:6–9.CrossRefPubMed
39.
Zurück zum Zitat Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, et al. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery. 2016;159:1485–500.CrossRefPubMed Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, et al. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery. 2016;159:1485–500.CrossRefPubMed
40.
Zurück zum Zitat Schmauss D, Haeberle S, Hagl C, Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardiothorac Surg. 2015;47:1044–52.CrossRefPubMed Schmauss D, Haeberle S, Hagl C, Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardiothorac Surg. 2015;47:1044–52.CrossRefPubMed
41.
Zurück zum Zitat Yang DH, Kang JW, Kim N, Song JK, Lee JW, Lim TH. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation. 2015;132:300–1.CrossRefPubMed Yang DH, Kang JW, Kim N, Song JK, Lee JW, Lim TH. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation. 2015;132:300–1.CrossRefPubMed
43.
Zurück zum Zitat Mafeld S, Nesbitt C, McCaslin J, Bagnall A, Davey P, Bose P, et al. Three-dimensional (3D) printed endovascular simulation models: a feasibility study. Ann Transl Med. 2017;5:42.CrossRefPubMedPubMedCentral Mafeld S, Nesbitt C, McCaslin J, Bagnall A, Davey P, Bose P, et al. Three-dimensional (3D) printed endovascular simulation models: a feasibility study. Ann Transl Med. 2017;5:42.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Huang J, Li G, Wang W, Wu K, Le T. 3D printing guiding stent graft fenestration: a novel technique for fenestration in endovascular aneurysm repair. Vascular. 2016;1708538116682913 Huang J, Li G, Wang W, Wu K, Le T. 3D printing guiding stent graft fenestration: a novel technique for fenestration in endovascular aneurysm repair. Vascular. 2016;1708538116682913
45.
Zurück zum Zitat Schmauss D, Gerber N, Sodian R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg. 2013;145:1407–8.CrossRefPubMed Schmauss D, Gerber N, Sodian R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg. 2013;145:1407–8.CrossRefPubMed
46.
Zurück zum Zitat Tam MD, Latham TR, Lewis M, Khanna K, Zaman A, Parker M, et al. A pilot study assessing the impact of 3-D printed models of aortic aneurysms on management decisions in EVAR planning. Vasc Endovasc Surg. 2016;50:4–9.CrossRef Tam MD, Latham TR, Lewis M, Khanna K, Zaman A, Parker M, et al. A pilot study assessing the impact of 3-D printed models of aortic aneurysms on management decisions in EVAR planning. Vasc Endovasc Surg. 2016;50:4–9.CrossRef
47.
Zurück zum Zitat Antoniadis AP, Mortier P, Kassab G, Dubini G, Foin N, Murasato Y, et al. Biomechanical modeling to improve coronary artery bifurcation stenting: expert review document on techniques and clinical implementation. JACC Cardiovasc Interv. 2015;8:1281–96.CrossRefPubMed Antoniadis AP, Mortier P, Kassab G, Dubini G, Foin N, Murasato Y, et al. Biomechanical modeling to improve coronary artery bifurcation stenting: expert review document on techniques and clinical implementation. JACC Cardiovasc Interv. 2015;8:1281–96.CrossRefPubMed
48.
Zurück zum Zitat Javan R, Herrin D, Tangestanipoor A. Understanding spatially complex segmental and branch anatomy using 3D printing: liver, lung, prostate, coronary arteries, and circle of Willis. Acad Radiol. 2016;23(9):1183–9.CrossRefPubMed Javan R, Herrin D, Tangestanipoor A. Understanding spatially complex segmental and branch anatomy using 3D printing: liver, lung, prostate, coronary arteries, and circle of Willis. Acad Radiol. 2016;23(9):1183–9.CrossRefPubMed
49.
Zurück zum Zitat Kolli KK, Min JK, Ha S, Soohoo H, Xiong G. Effect of varying hemodynamic and vascular conditions on fractional flow reserve: an in vitro study. J Am Heart Assoc. 2016;5:e003634.CrossRefPubMedPubMedCentral Kolli KK, Min JK, Ha S, Soohoo H, Xiong G. Effect of varying hemodynamic and vascular conditions on fractional flow reserve: an in vitro study. J Am Heart Assoc. 2016;5:e003634.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Wang H, Liu J, Zheng X, Rong X, Zheng X, Peng H, et al. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies. Sci Rep. 2015;5:10945.CrossRefPubMedPubMedCentral Wang H, Liu J, Zheng X, Rong X, Zheng X, Peng H, et al. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies. Sci Rep. 2015;5:10945.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat de las Nieves Velasco Forte M, Byrne N, Valverde Perez I, Bell A, Gomez-Ciriza G, Krasemann T, Sievert H, Simpson J, Pushparajah K, Razavi R, Qureshi S and Hussain T. 3D printed models in patients with coronary artery fistulae: anatomical assessment and interventional planning. EuroIntervention. 2017. de las Nieves Velasco Forte M, Byrne N, Valverde Perez I, Bell A, Gomez-Ciriza G, Krasemann T, Sievert H, Simpson J, Pushparajah K, Razavi R, Qureshi S and Hussain T. 3D printed models in patients with coronary artery fistulae: anatomical assessment and interventional planning. EuroIntervention. 2017.
52.
Zurück zum Zitat Benet A, Plata-Bello J, Abla AA, Acevedo-Bolton G, Saloner D, Lawton MT. Implantation of 3D-printed patient-specific aneurysm models into cadaveric specimens: a new training paradigm to allow for improvements in cerebrovascular surgery and research. Biomed Res Int. 2015;2015:939387.CrossRefPubMedPubMedCentral Benet A, Plata-Bello J, Abla AA, Acevedo-Bolton G, Saloner D, Lawton MT. Implantation of 3D-printed patient-specific aneurysm models into cadaveric specimens: a new training paradigm to allow for improvements in cerebrovascular surgery and research. Biomed Res Int. 2015;2015:939387.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Itagaki MW. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagn Interv Radiol. 2015;21:338–41.CrossRefPubMedPubMedCentral Itagaki MW. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance. Diagn Interv Radiol. 2015;21:338–41.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Lin JC, Myers E. Three-dimensional printing for preoperative planning of renal artery aneurysm surgery. J Vasc Surg. 2016;64:810.CrossRefPubMed Lin JC, Myers E. Three-dimensional printing for preoperative planning of renal artery aneurysm surgery. J Vasc Surg. 2016;64:810.CrossRefPubMed
55.
Zurück zum Zitat Russ M, O'Hara R, Setlur Nagesh SV, Mokin M, Jimenez C, Siddiqui A, et al. Treatment planning for image-guided neuro-vascular interventions using patient-specific 3D printed phantoms. Proc SPIE-Int Soc Opt Eng. 2015;9417 Russ M, O'Hara R, Setlur Nagesh SV, Mokin M, Jimenez C, Siddiqui A, et al. Treatment planning for image-guided neuro-vascular interventions using patient-specific 3D printed phantoms. Proc SPIE-Int Soc Opt Eng. 2015;9417
56.
Zurück zum Zitat Giannopoulos AA, Steigner ML, George E, Barile M, Hunsaker AR, Rybicki FJ, et al. Cardiothoracic applications of 3-dimensional printing. J Thorac Imaging. 2016;31:253–72.CrossRefPubMedPubMedCentral Giannopoulos AA, Steigner ML, George E, Barile M, Hunsaker AR, Rybicki FJ, et al. Cardiothoracic applications of 3-dimensional printing. J Thorac Imaging. 2016;31:253–72.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Bhatla P, Tretter JT, Ludomirsky A, Argilla M, Latson LA, Jr., Chakravarti S, Barker PC, Yoo SJ, McElhinney DB, Wake N and Mosca RS. Utility and scope of rapid prototyping in patients with complex muscular ventricular septal defects or double-outlet right ventricle: does it alter management decisions? Pediatr Cardiol 2017;38:103–114. Bhatla P, Tretter JT, Ludomirsky A, Argilla M, Latson LA, Jr., Chakravarti S, Barker PC, Yoo SJ, McElhinney DB, Wake N and Mosca RS. Utility and scope of rapid prototyping in patients with complex muscular ventricular septal defects or double-outlet right ventricle: does it alter management decisions? Pediatr Cardiol 2017;38:103–114.
58.
Zurück zum Zitat Garekar S, Bharati A, Chokhandre M, Mali S, Trivedi B, Changela VP, et al. Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg. 2016;7:344–50.CrossRefPubMed Garekar S, Bharati A, Chokhandre M, Mali S, Trivedi B, Changela VP, et al. Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg. 2016;7:344–50.CrossRefPubMed
59.
Zurück zum Zitat Hadeed K, Dulac Y, Acar P. Three-dimensional printing of a complex CHD to plan surgical repair. Cardiol Young. 2016;26:1432–4.CrossRefPubMed Hadeed K, Dulac Y, Acar P. Three-dimensional printing of a complex CHD to plan surgical repair. Cardiol Young. 2016;26:1432–4.CrossRefPubMed
60.
Zurück zum Zitat Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc Imaging. 2015;8:103–4.CrossRefPubMed Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc Imaging. 2015;8:103–4.CrossRefPubMed
61.
Zurück zum Zitat Farooqi KM, Saeed O, Zaidi A, Sanz J, Nielsen JC, Hsu DT, et al. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail. 2016;4:301–11.CrossRefPubMed Farooqi KM, Saeed O, Zaidi A, Sanz J, Nielsen JC, Hsu DT, et al. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail. 2016;4:301–11.CrossRefPubMed
62.
Zurück zum Zitat Smith ML, McGuinness J, O'Reilly MK, Nolke L, Murray JG, Jones JF. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease. Ir J Med Sci. 2017;186:753–6.CrossRefPubMed Smith ML, McGuinness J, O'Reilly MK, Nolke L, Murray JG, Jones JF. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease. Ir J Med Sci. 2017;186:753–6.CrossRefPubMed
63.
Zurück zum Zitat Yoo SJ, Spray T, Austin EH 3rd, Yun TJ, van Arsdell GS. Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg. 2017;153:1530–40.CrossRefPubMed Yoo SJ, Spray T, Austin EH 3rd, Yun TJ, van Arsdell GS. Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg. 2017;153:1530–40.CrossRefPubMed
64.
Zurück zum Zitat Wang Z, Liu Y, Xu Y, Gao C, Chen Y, Luo H. Three-dimensional printing-guided percutaneous transcatheter closure of secundum atrial septal defect with rim deficiency: first-in-human series. Cardiol J. 2016;23:599–603.CrossRefPubMed Wang Z, Liu Y, Xu Y, Gao C, Chen Y, Luo H. Three-dimensional printing-guided percutaneous transcatheter closure of secundum atrial septal defect with rim deficiency: first-in-human series. Cardiol J. 2016;23:599–603.CrossRefPubMed
65.
Zurück zum Zitat Chaowu Y, Hua L, Xin S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model. Circulation. 2016;133:e608–10.CrossRefPubMed Chaowu Y, Hua L, Xin S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model. Circulation. 2016;133:e608–10.CrossRefPubMed
66.
Zurück zum Zitat Qiu X, Lu B, Xu N, Yan CW, Ouyang WB, Liu Y, et al. Feasibility of device closure for multiple atrial septal defects using 3D printing and ultrasound-guided intervention technique. Zhonghua Yi Xue Za Zhi. 2017;97:1214–7.PubMed Qiu X, Lu B, Xu N, Yan CW, Ouyang WB, Liu Y, et al. Feasibility of device closure for multiple atrial septal defects using 3D printing and ultrasound-guided intervention technique. Zhonghua Yi Xue Za Zhi. 2017;97:1214–7.PubMed
67.
Zurück zum Zitat Bauch T, Vijayaraman P, Dandamudi G, Ellenbogen K. Three-dimensional printing for in vivo visualization of His bundle pacing leads. Am J Cardiol. 2015;116:485–6.CrossRefPubMed Bauch T, Vijayaraman P, Dandamudi G, Ellenbogen K. Three-dimensional printing for in vivo visualization of His bundle pacing leads. Am J Cardiol. 2015;116:485–6.CrossRefPubMed
68.
Zurück zum Zitat Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng. 2017;45:195–209.CrossRefPubMed Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng. 2017;45:195–209.CrossRefPubMed
69.
Zurück zum Zitat Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, et al. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg. 2017;153:924–32.CrossRefPubMed Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, et al. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg. 2017;153:924–32.CrossRefPubMed
70.
Zurück zum Zitat • Gao L, Kupfer ME, Jung JP, Yang L, Zhang P, Da Sie Y, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res. 2017;120:1318–25. This study highlights the role of 3D printing in myocardial tissue engineering, which has potential therapeutic implications. CrossRefPubMedPubMedCentral • Gao L, Kupfer ME, Jung JP, Yang L, Zhang P, Da Sie Y, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res. 2017;120:1318–25. This study highlights the role of 3D printing in myocardial tissue engineering, which has potential therapeutic implications. CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT. Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Ann Biomed Eng. 2017;45:360–77.CrossRefPubMed Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT. Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Ann Biomed Eng. 2017;45:360–77.CrossRefPubMed
72.
Zurück zum Zitat Biglino G, Capelli C, Koniordou D, Robertshaw D, Leaver LK, Schievano S, et al. Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenit Heart Dis. 2017;12:113–8.CrossRefPubMed Biglino G, Capelli C, Koniordou D, Robertshaw D, Leaver LK, Schievano S, et al. Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenit Heart Dis. 2017;12:113–8.CrossRefPubMed
73.
Zurück zum Zitat Bramlet M, Olivieri L, Farooqi K, Ripley B, Coakley M. Impact of three-dimensional printing on the study and treatment of congenital heart disease. Circ Res. 2017;120:904–7.CrossRefPubMedPubMedCentral Bramlet M, Olivieri L, Farooqi K, Ripley B, Coakley M. Impact of three-dimensional printing on the study and treatment of congenital heart disease. Circ Res. 2017;120:904–7.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Costello JP, Olivieri LJ, Krieger A, Thabit O, Marshall MB, Yoo SJ, et al. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg. 2014;5:421–6.CrossRefPubMed Costello JP, Olivieri LJ, Krieger A, Thabit O, Marshall MB, Yoo SJ, et al. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg. 2014;5:421–6.CrossRefPubMed
75.
Zurück zum Zitat Farooqi KM, Uppu SC, Nguyen K, Srivastava S, Ko HH, Choueiter N, et al. Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol. 2016;37:90–8.CrossRefPubMed Farooqi KM, Uppu SC, Nguyen K, Srivastava S, Ko HH, Choueiter N, et al. Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol. 2016;37:90–8.CrossRefPubMed
76.
Zurück zum Zitat Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Rev Esp Cardiol (English ed). 2017;70:282–91.CrossRef Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Rev Esp Cardiol (English ed). 2017;70:282–91.CrossRef
77.
Zurück zum Zitat Lim KH, Loo ZY, Goldie SJ, Adams JW, McMenamin PG. Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9:213–21.CrossRefPubMed Lim KH, Loo ZY, Goldie SJ, Adams JW, McMenamin PG. Use of 3D printed models in medical education: a randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9:213–21.CrossRefPubMed
78.
Zurück zum Zitat AbouHashem Y, Dayal M, Savanah S, Strkalj G. The application of 3D printing in anatomy education. Med Educ Online. 2015;20:29847.CrossRefPubMed AbouHashem Y, Dayal M, Savanah S, Strkalj G. The application of 3D printing in anatomy education. Med Educ Online. 2015;20:29847.CrossRefPubMed
79.
Zurück zum Zitat Drake RL, Pawlina W. An addition to the neighborhood: 3D printed anatomy teaching resources. Anat Sci Educ. 2014;7:419.CrossRefPubMed Drake RL, Pawlina W. An addition to the neighborhood: 3D printed anatomy teaching resources. Anat Sci Educ. 2014;7:419.CrossRefPubMed
80.
Zurück zum Zitat Estai M, Bunt S. Best teaching practices in anatomy education: a critical review. Ann Anat. 2016;208:151–7.CrossRefPubMed Estai M, Bunt S. Best teaching practices in anatomy education: a critical review. Ann Anat. 2016;208:151–7.CrossRefPubMed
81.
Zurück zum Zitat Coakley MF, Hurt DE, Weber N, Mtingwa M, Fincher EC, Alekseyev V, Chen DT, Yun A, Gizaw M, Swan J, Yoo TS and Huyen Y. The NIH 3D Print Exchange: a public resource for bioscientific and biomedical 3D prints. 3D Print Addit Manuf 2014;1:137–140. Coakley MF, Hurt DE, Weber N, Mtingwa M, Fincher EC, Alekseyev V, Chen DT, Yun A, Gizaw M, Swan J, Yoo TS and Huyen Y. The NIH 3D Print Exchange: a public resource for bioscientific and biomedical 3D prints. 3D Print Addit Manuf 2014;1:137–140.
82.
Zurück zum Zitat Wood RP, Khobragade P, Ying L, Snyder K, Wack D, Bednarek DR, et al. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography. Proc SPIE Int Soc Opt Eng. 2015;9417 Wood RP, Khobragade P, Ying L, Snyder K, Wack D, Bednarek DR, et al. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography. Proc SPIE Int Soc Opt Eng. 2015;9417
83.
Zurück zum Zitat Mooney JJ, Sarwani N, Coleman ML, Fotos JS. Evaluation of three-dimensional printed materials for simulation by computed tomography and ultrasound imaging. Simul Healthc. 2017;12:182–8.CrossRefPubMed Mooney JJ, Sarwani N, Coleman ML, Fotos JS. Evaluation of three-dimensional printed materials for simulation by computed tomography and ultrasound imaging. Simul Healthc. 2017;12:182–8.CrossRefPubMed
84.
Zurück zum Zitat Green SM, Klein AJ, Pancholy S, Rao SV, Steinberg D, Lipner R, et al. The current state of medical simulation in interventional cardiology: a clinical document from the Society for Cardiovascular Angiography and Intervention's (SCAI) Simulation Committee. Catheter Cardiovasc Interv. 2014;83:37–46.CrossRefPubMed Green SM, Klein AJ, Pancholy S, Rao SV, Steinberg D, Lipner R, et al. The current state of medical simulation in interventional cardiology: a clinical document from the Society for Cardiovascular Angiography and Intervention's (SCAI) Simulation Committee. Catheter Cardiovasc Interv. 2014;83:37–46.CrossRefPubMed
85.
Zurück zum Zitat Valverde I, Gomez G, Coserria JF, Suarez-Mejias C, Uribe S, Sotelo J, et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv. 2015;85:1006–12.CrossRefPubMed Valverde I, Gomez G, Coserria JF, Suarez-Mejias C, Uribe S, Sotelo J, et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv. 2015;85:1006–12.CrossRefPubMed
86.
Zurück zum Zitat Wilasrusmee C, Suvikrom J, Suthakorn J, Lertsithichai P, Sitthiseriprapip K, Proprom N, et al. Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees. Int J Angiol. 2008;17:129–33.CrossRefPubMedPubMedCentral Wilasrusmee C, Suvikrom J, Suthakorn J, Lertsithichai P, Sitthiseriprapip K, Proprom N, et al. Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees. Int J Angiol. 2008;17:129–33.CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Biglino G, Capelli C, Wray J, Schievano S, Leaver LK, Khambadkone S, et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open. 2015;5:e007165.CrossRefPubMedPubMedCentral Biglino G, Capelli C, Wray J, Schievano S, Leaver LK, Khambadkone S, et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open. 2015;5:e007165.CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Olivieri LJ, Su L, Hynes CF, Krieger A, Alfares FA, Ramakrishnan K, et al. “Just-in-time” simulation training using 3-D printed cardiac models after congenital cardiac surgery. World J Pediatr Congenit Heart Surg. 2016;7:164–8.CrossRefPubMed Olivieri LJ, Su L, Hynes CF, Krieger A, Alfares FA, Ramakrishnan K, et al. “Just-in-time” simulation training using 3-D printed cardiac models after congenital cardiac surgery. World J Pediatr Congenit Heart Surg. 2016;7:164–8.CrossRefPubMed
89.
Zurück zum Zitat Biglino G, Verschueren P, Zegels R, Taylor AM, Schievano S. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J Cardiovasc Magn Reson. 2013;15:2.CrossRefPubMedPubMedCentral Biglino G, Verschueren P, Zegels R, Taylor AM, Schievano S. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J Cardiovasc Magn Reson. 2013;15:2.CrossRefPubMedPubMedCentral
Metadaten
Titel
The Various Applications of 3D Printing in Cardiovascular Diseases
verfasst von
Abdallah El Sabbagh
Mackram F. Eleid
Mohammed Al-Hijji
Nandan S. Anavekar
David R. Holmes
Vuyisile T. Nkomo
Gustavo S. Oderich
Stephen D. Cassivi
Sameh M. Said
Charanjit S. Rihal
Jane M. Matsumoto
Thomas A. Foley
Publikationsdatum
01.06.2018
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 6/2018
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-018-0992-9

Weitere Artikel der Ausgabe 6/2018

Current Cardiology Reports 6/2018 Zur Ausgabe

Structural Heart Disease (RJ Siegel and NC Wunderlich, Section Editors)

Current State of Left Atrial Appendage Closure

Cardiac PET, CT, and MRI (F Pugliese and SE Petersen, Section Editors)

Imaging, Health Record, and Artificial Intelligence: Hype or Hope?

Structural Heart Disease (RJ Siegel and NC Wunderlich, Section Editors)

ASD Closure in Structural Heart Disease

Ischemic Heart Disease (D Mukherjee, Section Editor)

Current Endovascular Approach to the Management of Acute Ischemic Stroke

Structural Heart Disease (RJ Siegel and NC Wunderlich, Section Editors)

Mitral Valve Interventions in Structural Heart Disease

VHF-Ablation nützt wohl nur bei reduzierter Auswurfleistung

02.05.2024 Ablationstherapie Nachrichten

Ob die Katheterablation von Vorhofflimmern bei Patienten mit Herzinsuffizienz die Komplikationsraten senkt, scheint davon abzuhängen, ob die Auswurfleistung erhalten ist oder nicht. Das legen die Ergebnisse einer Metaanalyse nahe.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Weniger Extremitätenischämien mit dualer Plättchenhemmung

02.05.2024 Thrombozytenaggregationshemmer Nachrichten

Eine Behandlung mit Ticagrelor zusätzlich zu ASS kann das Risiko für Revaskularisierungen und Amputationen von Extremitäten bei Diabetikern mit stabiler KHK deutlich reduzieren, vor allem für solche mit PAVK. Dafür spricht eine Auswertung der Interventionsstudie THEMIS.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.