Skip to main content
Erschienen in: Current Diabetes Reports 5/2012

01.10.2012 | Pathogenesis of Type 1 Diabetes (AG Ziegler, Section Editor)

Anti-Inflammatory Therapy in Type 1 Diabetes

verfasst von: Bernd Baumann, Heba H. Salem, Bernhard O. Boehm

Erschienen in: Current Diabetes Reports | Ausgabe 5/2012

Einloggen, um Zugang zu erhalten

Abstract

Type 1 diabetes (T1D) is a multi-factorial, organ-specific autoimmune disease in genetically susceptible individuals, which is characterized by a selective and progressive loss of insulin-producing β-cells. Cells mediating innate as well as adaptive immunity infiltrate pancreatic islets, thereby generating an aberrant inflammatory process called insulitis that can be mirrored by a pathologic autoantibody production and autoreactive T-cells. In tight cooperation with infiltrating innate immune cells, which secrete high levels of pro-inflammatory cytokines like IL-1β, TNFα, and INFγ effector T-cells trigger the fatal destruction process of β-cells. There is ongoing discussion on the contribution of inflammation in T1D pathogenesis, ranging from a bystander reaction of autoimmunity to a dysregulation of immune responses that initiate inflammatory processes and thereby actively promoting β-cell death. Here, we review recent advances in anti-inflammatory interventions in T1D animal models and preclinical studies and discuss their mode of action as well as their capacity to interfere with T1D development.
Literatur
1.
Zurück zum Zitat Mordes JP, Bortell R, Doukas J, Rigby M, Whalen B, et al. The BB/Wor rat and the balance hypothesis of autoimmunity. Diabetes Metab Rev. 1996;12:103–9.PubMed Mordes JP, Bortell R, Doukas J, Rigby M, Whalen B, et al. The BB/Wor rat and the balance hypothesis of autoimmunity. Diabetes Metab Rev. 1996;12:103–9.PubMed
2.
Zurück zum Zitat Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.PubMedCrossRef Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.PubMedCrossRef
3.
Zurück zum Zitat Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–81.PubMedCrossRef Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–81.PubMedCrossRef
4.
Zurück zum Zitat Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A. 2007;104:5115–20.PubMedCrossRef Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A. 2007;104:5115–20.PubMedCrossRef
5.
Zurück zum Zitat Uno S, Imagawa A, Okita K, Sayama K, Moriwaki M, et al. Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumor necrosis factor-alpha in patients with recent-onset type 1 diabetes. Diabetologia. 2007;50:596–601.PubMedCrossRef Uno S, Imagawa A, Okita K, Sayama K, Moriwaki M, et al. Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumor necrosis factor-alpha in patients with recent-onset type 1 diabetes. Diabetologia. 2007;50:596–601.PubMedCrossRef
6.
Zurück zum Zitat •• Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60. This study definitely provides evidence that human islets from T1D patients contain CD8 + T-cells with autoreactivity against either single or multiple islet autoantigens by using in situ tetramer staining.PubMedCrossRef •• Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60. This study definitely provides evidence that human islets from T1D patients contain CD8 + T-cells with autoreactivity against either single or multiple islet autoantigens by using in situ tetramer staining.PubMedCrossRef
7.
Zurück zum Zitat • Richardson SJ, Willcox A, Bone AJ, Morgan NG, Foulis AK. Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol. 2011;33:9–21. This article is a comprehensive review on the immunohistopathologic features of human T1D pathogenesis which differs markedly compared with the NOD model.PubMedCrossRef • Richardson SJ, Willcox A, Bone AJ, Morgan NG, Foulis AK. Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol. 2011;33:9–21. This article is a comprehensive review on the immunohistopathologic features of human T1D pathogenesis which differs markedly compared with the NOD model.PubMedCrossRef
8.
Zurück zum Zitat Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9.PubMedCrossRef Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9.PubMedCrossRef
9.
Zurück zum Zitat Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8:e1002552.PubMedCrossRef Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8:e1002552.PubMedCrossRef
10.
Zurück zum Zitat Sarkar SA, Lee CE, Victorino F, Nguyen TT, Walters JA, et al. Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes. 2012;61:436–46.PubMedCrossRef Sarkar SA, Lee CE, Victorino F, Nguyen TT, Walters JA, et al. Expression and regulation of chemokines in murine and human type 1 diabetes. Diabetes. 2012;61:436–46.PubMedCrossRef
11.
Zurück zum Zitat Fairfax BP, Makino S, Radhakrishnan J, Plant K, Leslie S, et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet. 2012;44:502–10.PubMedCrossRef Fairfax BP, Makino S, Radhakrishnan J, Plant K, Leslie S, et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet. 2012;44:502–10.PubMedCrossRef
12.
Zurück zum Zitat Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, et al. Islet beta-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the non-obese diabetic mouse model. Diabetes. 2012;61:818–27.PubMedCrossRef Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, et al. Islet beta-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the non-obese diabetic mouse model. Diabetes. 2012;61:818–27.PubMedCrossRef
13.
Zurück zum Zitat Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13:11–22.PubMedCrossRef Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13:11–22.PubMedCrossRef
14.
Zurück zum Zitat Karin M. The IκB kinase–a bridge between inflammation and cancer. Cell Res. 2008;18:334–42.PubMedCrossRef Karin M. The IκB kinase–a bridge between inflammation and cancer. Cell Res. 2008;18:334–42.PubMedCrossRef
15.
Zurück zum Zitat Scheidereit C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene. 2006;25:6685–705.PubMedCrossRef Scheidereit C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene. 2006;25:6685–705.PubMedCrossRef
16.
Zurück zum Zitat Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12:781–92.PubMedCrossRef Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12:781–92.PubMedCrossRef
17.
Zurück zum Zitat Hegazy DM, O'Reilly DA, Yang BM, Hodgkinson AD, Millward BA, et al. NFκB polymorphisms and susceptibility to type 1 diabetes. Genes Immun. 2001;2:304–8.PubMedCrossRef Hegazy DM, O'Reilly DA, Yang BM, Hodgkinson AD, Millward BA, et al. NFκB polymorphisms and susceptibility to type 1 diabetes. Genes Immun. 2001;2:304–8.PubMedCrossRef
18.
Zurück zum Zitat Berchtold LA, Storling ZM, Ortis F, Lage K, Bang-Berthelsen C, et al. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis. Proc Natl Acad Sci U S A. 2011;108:E681–8.PubMedCrossRef Berchtold LA, Storling ZM, Ortis F, Lage K, Bang-Berthelsen C, et al. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis. Proc Natl Acad Sci U S A. 2011;108:E681–8.PubMedCrossRef
19.
Zurück zum Zitat Katarina K, Daniela P, Peter N, Marianna R, Pavlina C, et al. HLA, NFκB1, and NFKBIA gene polymorphism profile in autoimmune diabetes mellitus patients. Exp Clin Endocrinol Diabetes. 2007;115:124–9.PubMedCrossRef Katarina K, Daniela P, Peter N, Marianna R, Pavlina C, et al. HLA, NFκB1, and NFKBIA gene polymorphism profile in autoimmune diabetes mellitus patients. Exp Clin Endocrinol Diabetes. 2007;115:124–9.PubMedCrossRef
20.
Zurück zum Zitat Guo D, Li M, Zhang Y, Yang P, Eckenrode S, et al. A functional variant of SUMO4, a new IκB alpha modifier, is associated with type 1 diabetes. Nat Genet. 2004;36:837–41.PubMedCrossRef Guo D, Li M, Zhang Y, Yang P, Eckenrode S, et al. A functional variant of SUMO4, a new IκB alpha modifier, is associated with type 1 diabetes. Nat Genet. 2004;36:837–41.PubMedCrossRef
21.
Zurück zum Zitat Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA. Dendritic cell development and survival require distinct NF-κB subunits. Immunity. 2002;16:257–70.PubMedCrossRef Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA. Dendritic cell development and survival require distinct NF-κB subunits. Immunity. 2002;16:257–70.PubMedCrossRef
22.
Zurück zum Zitat Martin E, O'Sullivan B, Low P. Thomas R Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity. 2003;18:155–67.PubMedCrossRef Martin E, O'Sullivan B, Low P. Thomas R Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity. 2003;18:155–67.PubMedCrossRef
23.
Zurück zum Zitat Moore F, Buonocore S, Aksoy E, Ouled-Haddou N, Goriely S, et al. An alternative pathway of NF-κB activation results in maturation and T cell priming activity of dendritic cells overexpressing a mutated IκBα. J Immunol. 2007;178:1301–11.PubMed Moore F, Buonocore S, Aksoy E, Ouled-Haddou N, Goriely S, et al. An alternative pathway of NF-κB activation results in maturation and T cell priming activity of dendritic cells overexpressing a mutated IκBα. J Immunol. 2007;178:1301–11.PubMed
24.
Zurück zum Zitat Lamhamedi-Cherradi SE, Zheng S, Hilliard BA, Xu L, Sun J, et al. Transcriptional regulation of type I diabetes by NF-κ B. J Immunol. 2003;171:4886–92.PubMed Lamhamedi-Cherradi SE, Zheng S, Hilliard BA, Xu L, Sun J, et al. Transcriptional regulation of type I diabetes by NF-κ B. J Immunol. 2003;171:4886–92.PubMed
25.
Zurück zum Zitat Mabley JG, Hasko G, Liaudet L, Soriano FG, Southan GJ, et al. NFκB1 (p50)-deficient mice are not susceptible to multiple low-dose streptozotocin-induced diabetes. J Endocrinol. 2002;173:457–64.PubMedCrossRef Mabley JG, Hasko G, Liaudet L, Soriano FG, Southan GJ, et al. NFκB1 (p50)-deficient mice are not susceptible to multiple low-dose streptozotocin-induced diabetes. J Endocrinol. 2002;173:457–64.PubMedCrossRef
26.
Zurück zum Zitat Weaver Jr DJ, Poligone B, Bui T, Abdel-Motal UM, Baldwin Jr AS, et al. Dendritic cells from nonobese diabetic mice exhibit a defect in NF-κB regulation due to a hyperactive IκB kinase. J Immunol. 2001;167:1461–8.PubMed Weaver Jr DJ, Poligone B, Bui T, Abdel-Motal UM, Baldwin Jr AS, et al. Dendritic cells from nonobese diabetic mice exhibit a defect in NF-κB regulation due to a hyperactive IκB kinase. J Immunol. 2001;167:1461–8.PubMed
27.
Zurück zum Zitat Poligone B, Weaver Jr DJ, Sen P, Baldwin Jr AS, Tisch R. Elevated NF-κB activation in non-obese diabetic mouse dendritic cells results in enhanced APC function. J Immunol. 2002;168:188–96.PubMed Poligone B, Weaver Jr DJ, Sen P, Baldwin Jr AS, Tisch R. Elevated NF-κB activation in non-obese diabetic mouse dendritic cells results in enhanced APC function. J Immunol. 2002;168:188–96.PubMed
28.
Zurück zum Zitat Wheat W, Kupfer R, Gutches DG, Rayat GR, Beilke J, et al. Increased NF-κ B activity in B cells and bone marrow-derived dendritic cells from NOD mice. Eur J Immunol. 2004;34:1395–404.PubMedCrossRef Wheat W, Kupfer R, Gutches DG, Rayat GR, Beilke J, et al. Increased NF-κ B activity in B cells and bone marrow-derived dendritic cells from NOD mice. Eur J Immunol. 2004;34:1395–404.PubMedCrossRef
29.
Zurück zum Zitat Katz JD, Benoist C, Mathis D. T helper cell subsets in insulin-dependent diabetes. Science. 1995;268:1185–8.PubMedCrossRef Katz JD, Benoist C, Mathis D. T helper cell subsets in insulin-dependent diabetes. Science. 1995;268:1185–8.PubMedCrossRef
30.
Zurück zum Zitat Boothby MR, Mora AL, Scherer DC, Brockman JA, Ballard DW. Perturbation of the T lymphocyte lineage in transgenic mice expressing a constitutive repressor of nuclear factor (NF)-κB. J Exp Med. 1997;185:1897–907.PubMedCrossRef Boothby MR, Mora AL, Scherer DC, Brockman JA, Ballard DW. Perturbation of the T lymphocyte lineage in transgenic mice expressing a constitutive repressor of nuclear factor (NF)-κB. J Exp Med. 1997;185:1897–907.PubMedCrossRef
31.
Zurück zum Zitat Wan YY, DeGregori J. The survival of antigen-stimulated T cells requires NFκB-mediated inhibition of p73 expression. Immunity. 2003;18:331–42.PubMedCrossRef Wan YY, DeGregori J. The survival of antigen-stimulated T cells requires NFκB-mediated inhibition of p73 expression. Immunity. 2003;18:331–42.PubMedCrossRef
32.
Zurück zum Zitat Dale E, Davis M, Faustman DL. A role for transcription factor NF-κB in autoimmunity: possible interactions of genes, sex, and the immune response. Adv Physiol Educ. 2006;30:152–8.PubMedCrossRef Dale E, Davis M, Faustman DL. A role for transcription factor NF-κB in autoimmunity: possible interactions of genes, sex, and the immune response. Adv Physiol Educ. 2006;30:152–8.PubMedCrossRef
33.
Zurück zum Zitat Schreck R, Baeuerle PA. NF-κ B as inducible transcriptional activator of the granulocyte-macrophage colony-stimulating factor gene. Mol Cell Biol. 1990;10:1281–6.PubMed Schreck R, Baeuerle PA. NF-κ B as inducible transcriptional activator of the granulocyte-macrophage colony-stimulating factor gene. Mol Cell Biol. 1990;10:1281–6.PubMed
34.
Zurück zum Zitat Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269:4705–8.PubMed Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269:4705–8.PubMed
35.
Zurück zum Zitat Sen P, Bhattacharyya S, Wallet M, Wong CP, Poligone B, et al. NF-κ B hyperactivation has differential effects on the APC function of non-obese diabetic mouse macrophages. J Immunol. 2003;170:1770–80.PubMed Sen P, Bhattacharyya S, Wallet M, Wong CP, Poligone B, et al. NF-κ B hyperactivation has differential effects on the APC function of non-obese diabetic mouse macrophages. J Immunol. 2003;170:1770–80.PubMed
36.
Zurück zum Zitat Liou HC, Hsia CY. Distinctions between c-Rel and other NF-κB proteins in immunity and disease. Bioessays. 2003;25:767–80.PubMedCrossRef Liou HC, Hsia CY. Distinctions between c-Rel and other NF-κB proteins in immunity and disease. Bioessays. 2003;25:767–80.PubMedCrossRef
37.
38.
Zurück zum Zitat Marino E, Silveira PA, Stolp J, Grey ST. B cell-directed therapies in type 1 diabetes. Trends Immunol. 2011;32:287–94.PubMedCrossRef Marino E, Silveira PA, Stolp J, Grey ST. B cell-directed therapies in type 1 diabetes. Trends Immunol. 2011;32:287–94.PubMedCrossRef
39.
Zurück zum Zitat Rahman A, Fazal F. Blocking NF-κB: an inflammatory issue. Proc Am Thorac Soc. 2012;8:497–503.CrossRef Rahman A, Fazal F. Blocking NF-κB: an inflammatory issue. Proc Am Thorac Soc. 2012;8:497–503.CrossRef
40.
Zurück zum Zitat Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, et al. Unraveling the complexities of the NF-κB signaling pathway using mouse knockout and transgenic models. Oncogene. 2006;25:6781–99.PubMedCrossRef Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, et al. Unraveling the complexities of the NF-κB signaling pathway using mouse knockout and transgenic models. Oncogene. 2006;25:6781–99.PubMedCrossRef
41.
Zurück zum Zitat Vlantis K, Pasparakis M. Role of TNF in pathologies induced by nuclear factor κB deficiency. Curr Dir Autoimmun. 2010;11:80–93.PubMedCrossRef Vlantis K, Pasparakis M. Role of TNF in pathologies induced by nuclear factor κB deficiency. Curr Dir Autoimmun. 2010;11:80–93.PubMedCrossRef
42.
Zurück zum Zitat Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 2012;3:51.PubMed Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 2012;3:51.PubMed
43.
Zurück zum Zitat Patel S, Santani D. Role of NF-κ B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep. 2009;61:595–603.PubMed Patel S, Santani D. Role of NF-κ B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep. 2009;61:595–603.PubMed
44.
Zurück zum Zitat Zhao Y, Krishnamurthy B, Mollah ZU, Kay TW, Thomas HE. NF-κB in type 1 diabetes. Inflamm Allergy Drug Targets. 2011;10:208–17.PubMed Zhao Y, Krishnamurthy B, Mollah ZU, Kay TW, Thomas HE. NF-κB in type 1 diabetes. Inflamm Allergy Drug Targets. 2011;10:208–17.PubMed
45.
Zurück zum Zitat Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, et al. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54 Suppl 2:S97–107.PubMedCrossRef Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, et al. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54 Suppl 2:S97–107.PubMedCrossRef
46.
Zurück zum Zitat Eizirik DL, Mandrup-Poulsen T. A choice of death–the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44:2115–33.PubMedCrossRef Eizirik DL, Mandrup-Poulsen T. A choice of death–the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44:2115–33.PubMedCrossRef
47.
Zurück zum Zitat Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, et al. A comprehensive analysis of cytokine-induced and nuclear factor-κ B-dependent genes in primary rat pancreatic beta cells. J Biol Chem. 2001;276:48879–86.PubMedCrossRef Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, et al. A comprehensive analysis of cytokine-induced and nuclear factor-κ B-dependent genes in primary rat pancreatic beta cells. J Biol Chem. 2001;276:48879–86.PubMedCrossRef
48.
Zurück zum Zitat Giannoukakis N, Rudert WA, Trucco M, Robbins PD. Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an IκB repressor. J Biol Chem. 2000;275:36509–13.PubMedCrossRef Giannoukakis N, Rudert WA, Trucco M, Robbins PD. Protection of human islets from the effects of interleukin-1beta by adenoviral gene transfer of an IκB repressor. J Biol Chem. 2000;275:36509–13.PubMedCrossRef
49.
Zurück zum Zitat Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, et al. Inhibition of cytokine-induced NF-κB activation by adenovirus-mediated expression of a NF-κB super-repressor prevents beta-cell apoptosis. Diabetes. 2001;50:2219–24.PubMedCrossRef Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, et al. Inhibition of cytokine-induced NF-κB activation by adenovirus-mediated expression of a NF-κB super-repressor prevents beta-cell apoptosis. Diabetes. 2001;50:2219–24.PubMedCrossRef
50.
Zurück zum Zitat Chang I, Kim S, Kim JY, Cho N, Kim YH, et al. Nuclear factor κB protects pancreatic beta cells from tumor necrosis factor-α-mediated apoptosis. Diabetes. 2003;52:1169–75.PubMedCrossRef Chang I, Kim S, Kim JY, Cho N, Kim YH, et al. Nuclear factor κB protects pancreatic beta cells from tumor necrosis factor-α-mediated apoptosis. Diabetes. 2003;52:1169–75.PubMedCrossRef
51.
Zurück zum Zitat Thomas HE, Angstetra E, Fernandes RV, Mariana L, Irawaty W, et al. Perturbations in nuclear factor-κB or c-Jun N-terminal kinase pathways in pancreatic beta cells confer susceptibility to cytokine-induced cell death. Immunol Cell Biol. 2006;84:20–7.PubMedCrossRef Thomas HE, Angstetra E, Fernandes RV, Mariana L, Irawaty W, et al. Perturbations in nuclear factor-κB or c-Jun N-terminal kinase pathways in pancreatic beta cells confer susceptibility to cytokine-induced cell death. Immunol Cell Biol. 2006;84:20–7.PubMedCrossRef
52.
Zurück zum Zitat Kim S, Millet I, Kim HS, Kim JY, Han MS, et al. NF-κB prevents beta-cell death and autoimmune diabetes in NOD mice. Proc Natl Acad Sci U S A. 2007;104:1913–8.PubMedCrossRef Kim S, Millet I, Kim HS, Kim JY, Han MS, et al. NF-κB prevents beta-cell death and autoimmune diabetes in NOD mice. Proc Natl Acad Sci U S A. 2007;104:1913–8.PubMedCrossRef
53.
Zurück zum Zitat Cardozo AK, Proost P, Gysemans C, Chen MC, Mathieu C, et al. IL-1beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia. 2003;46:255–66.PubMed Cardozo AK, Proost P, Gysemans C, Chen MC, Mathieu C, et al. IL-1beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia. 2003;46:255–66.PubMed
54.
Zurück zum Zitat Kutlu B, Darville MI, Cardozo AK, Eizirik DL. Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic beta cells. Diabetes. 2003;52:348–55.PubMedCrossRef Kutlu B, Darville MI, Cardozo AK, Eizirik DL. Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic beta cells. Diabetes. 2003;52:348–55.PubMedCrossRef
55.
Zurück zum Zitat Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–46.PubMed Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–46.PubMed
56.
Zurück zum Zitat Herold KC, Vezys V, Sun Q, Viktora D, Seung E, et al. Regulation of cytokine production during development of autoimmune diabetes induced with multiple low doses of streptozotocin. J Immunol. 1996;156:3521–7.PubMed Herold KC, Vezys V, Sun Q, Viktora D, Seung E, et al. Regulation of cytokine production during development of autoimmune diabetes induced with multiple low doses of streptozotocin. J Immunol. 1996;156:3521–7.PubMed
57.
Zurück zum Zitat Muller A, Schott-Ohly P, Dohle C, Gleichmann H. Differential regulation of Th1-type and Th2-type cytokine profiles in pancreatic islets of C57BL/6 and BALB/c mice by multiple low doses of streptozotocin. Immunobiology. 2002;205:35–50.PubMedCrossRef Muller A, Schott-Ohly P, Dohle C, Gleichmann H. Differential regulation of Th1-type and Th2-type cytokine profiles in pancreatic islets of C57BL/6 and BALB/c mice by multiple low doses of streptozotocin. Immunobiology. 2002;205:35–50.PubMedCrossRef
58.
Zurück zum Zitat Manikandan R, Thiagarajan R, Beulaja S, Sivakumar MR, Meiyalagan V, et al. 1, 2 di-substituted idopyranose from Vitex negundo l. Protects against streptozotocin-induced diabetes by inhibiting nuclear factor-κB and inducible nitric oxide synthase expression. Microsc Res Tech. 2011;74:301–7. Manikandan R, Thiagarajan R, Beulaja S, Sivakumar MR, Meiyalagan V, et al. 1, 2 di-substituted idopyranose from Vitex negundo l. Protects against streptozotocin-induced diabetes by inhibiting nuclear factor-κB and inducible nitric oxide synthase expression. Microsc Res Tech. 2011;74:301–7.
59.
Zurück zum Zitat Song MY, Jeong GS, Kwon KB, Ka SO, Jang HY, et al. Sulfuretin protects against cytokine-induced beta-cell damage and prevents streptozotocin-induced diabetes. Exp Mol Med. 2010;42:628–38.PubMedCrossRef Song MY, Jeong GS, Kwon KB, Ka SO, Jang HY, et al. Sulfuretin protects against cytokine-induced beta-cell damage and prevents streptozotocin-induced diabetes. Exp Mol Med. 2010;42:628–38.PubMedCrossRef
60.
Zurück zum Zitat Kwon KB, Kim EK, Jeong ES, Lee YH, Lee YR, et al. Cortex cinnamomi extract prevents streptozotocin- and cytokine-induced beta-cell damage by inhibiting NF-κB. World J Gastroenterol. 2006;12:4331–7.PubMed Kwon KB, Kim EK, Jeong ES, Lee YH, Lee YR, et al. Cortex cinnamomi extract prevents streptozotocin- and cytokine-induced beta-cell damage by inhibiting NF-κB. World J Gastroenterol. 2006;12:4331–7.PubMed
61.
Zurück zum Zitat Yuan HD, Chung SH. Fermented ginseng protects streptozotocin-induced damage in rat pancreas by inhibiting nuclear factor-κB. Phytother Res. 2010;24 Suppl 2:S190–5.PubMedCrossRef Yuan HD, Chung SH. Fermented ginseng protects streptozotocin-induced damage in rat pancreas by inhibiting nuclear factor-κB. Phytother Res. 2010;24 Suppl 2:S190–5.PubMedCrossRef
62.
Zurück zum Zitat Saha SS, Ghosh M. Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes. Br J Nutr. 2011. doi:10.1017/S0007114511006325. Saha SS, Ghosh M. Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes. Br J Nutr. 2011. doi:10.​1017/​S000711451100632​5.
63.
Zurück zum Zitat Hu CM, Li JS, Cheah KP, Lin CW, Yu WY, et al. Effect of Sanguis draconis (a dragon's blood resin) on streptozotocin- and cytokine-induced beta-cell damage, in vitro and in vivo. Diabetes Res Clin Pract. 2011;94:417–25.PubMedCrossRef Hu CM, Li JS, Cheah KP, Lin CW, Yu WY, et al. Effect of Sanguis draconis (a dragon's blood resin) on streptozotocin- and cytokine-induced beta-cell damage, in vitro and in vivo. Diabetes Res Clin Pract. 2011;94:417–25.PubMedCrossRef
64.
Zurück zum Zitat •• Ueberberg S, Deutschbein T, Klein HH, Dietrich JW, Akinturk S, et al. Protection from diabetes development by single-chain antibody-mediated delivery of a NF-κB inhibitor specifically to beta-cells in vivo. Am J Physiol Endocrinol Metab. 2011;301:E83–90. The authors show for the first time the highly selective, noninvasive delivery of a fusion protein into beta cells, which allows for the cell type specific inhibition of NF-κB in the context of MLDS-induced diabetes. New delivery strategies for peptide inhibitors in major inflammatory signaling components can be developed.PubMedCrossRef •• Ueberberg S, Deutschbein T, Klein HH, Dietrich JW, Akinturk S, et al. Protection from diabetes development by single-chain antibody-mediated delivery of a NF-κB inhibitor specifically to beta-cells in vivo. Am J Physiol Endocrinol Metab. 2011;301:E83–90. The authors show for the first time the highly selective, noninvasive delivery of a fusion protein into beta cells, which allows for the cell type specific inhibition of NF-κB in the context of MLDS-induced diabetes. New delivery strategies for peptide inhibitors in major inflammatory signaling components can be developed.PubMedCrossRef
65.
Zurück zum Zitat Eldor R, Yeffet A, Baum K, Doviner V, Amar D, et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A. 2006;103:5072–7.PubMedCrossRef Eldor R, Yeffet A, Baum K, Doviner V, Amar D, et al. Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A. 2006;103:5072–7.PubMedCrossRef
66.
Zurück zum Zitat Schott-Ohly P, Lgssiar A, Partke HJ, Hassan M, Friesen N, et al. Prevention of spontaneous and experimentally induced diabetes in mice with zinc sulfate-enriched drinking water is associated with activation and reduction of NF-κ B and AP-1 in islets, respectively. Exp Biol Med (Maywood). 2004;229:1177–85. Schott-Ohly P, Lgssiar A, Partke HJ, Hassan M, Friesen N, et al. Prevention of spontaneous and experimentally induced diabetes in mice with zinc sulfate-enriched drinking water is associated with activation and reduction of NF-κ B and AP-1 in islets, respectively. Exp Biol Med (Maywood). 2004;229:1177–85.
67.
Zurück zum Zitat Bellenger J, Bellenger S, Bataille A, Massey KA, Nicolaou A, et al. High pancreatic n-3 fatty acids prevent STZ-induced diabetes in fat-1 mice: inflammatory pathway inhibition. Diabetes. 2011;60:1090–9.PubMedCrossRef Bellenger J, Bellenger S, Bataille A, Massey KA, Nicolaou A, et al. High pancreatic n-3 fatty acids prevent STZ-induced diabetes in fat-1 mice: inflammatory pathway inhibition. Diabetes. 2011;60:1090–9.PubMedCrossRef
68.
Zurück zum Zitat Norlin S, Ahlgren U, Edlund H. Nuclear factor-κB activity in beta-cells is required for glucose-stimulated insulin secretion. Diabetes. 2005;54:125–32.PubMedCrossRef Norlin S, Ahlgren U, Edlund H. Nuclear factor-κB activity in beta-cells is required for glucose-stimulated insulin secretion. Diabetes. 2005;54:125–32.PubMedCrossRef
69.
Zurück zum Zitat Koulmanda M, Budo E, Bonner-Weir S, Qipo A, Putheti P, et al. Modification of adverse inflammation is required to cure new-onset type 1 diabetic hosts. Proc Natl Acad Sci U S A. 2007;104:13074–9.PubMedCrossRef Koulmanda M, Budo E, Bonner-Weir S, Qipo A, Putheti P, et al. Modification of adverse inflammation is required to cure new-onset type 1 diabetic hosts. Proc Natl Acad Sci U S A. 2007;104:13074–9.PubMedCrossRef
70.
Zurück zum Zitat Thomas HE, Irawaty W, Darwiche R, Brodnicki TC, Santamaria P, et al. IL-1 receptor deficiency slows progression to diabetes in the NOD mouse. Diabetes. 2004;53:113–21.PubMedCrossRef Thomas HE, Irawaty W, Darwiche R, Brodnicki TC, Santamaria P, et al. IL-1 receptor deficiency slows progression to diabetes in the NOD mouse. Diabetes. 2004;53:113–21.PubMedCrossRef
71.
Zurück zum Zitat Lee SM, Yang H, Tartar DM, Gao B, Luo X, et al. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia. 2011;54:1136–46.PubMedCrossRef Lee SM, Yang H, Tartar DM, Gao B, Luo X, et al. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia. 2011;54:1136–46.PubMedCrossRef
72.
Zurück zum Zitat Gonzalez R, Ballester I, Lopez-Posadas R, Suarez MD, Zarzuelo A, et al. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr. 2012;51:331–62.CrossRef Gonzalez R, Ballester I, Lopez-Posadas R, Suarez MD, Zarzuelo A, et al. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr. 2012;51:331–62.CrossRef
73.
Zurück zum Zitat • Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, et al. The unique hypusine modification of eIF5A promotes islet beta-cell inflammation and dysfunction in mice. J Clin Invest. 2010;120:2156–70. The authors identify a novel, highly specific “druggable” target enzyme in beta cells, which is critically involved in the regulation of inflammatory processes in pancreatic islets.PubMedCrossRef • Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, et al. The unique hypusine modification of eIF5A promotes islet beta-cell inflammation and dysfunction in mice. J Clin Invest. 2010;120:2156–70. The authors identify a novel, highly specific “druggable” target enzyme in beta cells, which is critically involved in the regulation of inflammatory processes in pancreatic islets.PubMedCrossRef
74.
Zurück zum Zitat Ruan Q, Wang T, Kameswaran V, Wei Q, Johnson DS, et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta-cell death. Proc Natl Acad Sci U S A. 2011;108:12030–5.PubMedCrossRef Ruan Q, Wang T, Kameswaran V, Wei Q, Johnson DS, et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta-cell death. Proc Natl Acad Sci U S A. 2011;108:12030–5.PubMedCrossRef
75.
Zurück zum Zitat Lipton R, LaPorte RE, Becker DJ, Dorman JS, Orchard TJ, et al. Cyclosporin therapy for prevention and cure of IDDM. Epidemiological perspective of benefits and risks. Diabetes Care. 1990;13:776–84.PubMedCrossRef Lipton R, LaPorte RE, Becker DJ, Dorman JS, Orchard TJ, et al. Cyclosporin therapy for prevention and cure of IDDM. Epidemiological perspective of benefits and risks. Diabetes Care. 1990;13:776–84.PubMedCrossRef
76.
Zurück zum Zitat Blonska M, Lin X. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;21:55–70.PubMedCrossRef Blonska M, Lin X. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 2011;21:55–70.PubMedCrossRef
77.
Zurück zum Zitat Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to NF-κB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol. 2010;2:a003004.PubMedCrossRef Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to NF-κB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol. 2010;2:a003004.PubMedCrossRef
78.
Zurück zum Zitat Palkowitsch L, Marienfeld U, Brunner C, Eitelhuber A, Krappmann D, et al. The Ca2 + -dependent phosphatase calcineurin controls the formation of the Carma1-Bcl10-Malt1 complex during T cell receptor-induced NF-κB activation. J Biol Chem. 2011;286:7522–34.PubMedCrossRef Palkowitsch L, Marienfeld U, Brunner C, Eitelhuber A, Krappmann D, et al. The Ca2 + -dependent phosphatase calcineurin controls the formation of the Carma1-Bcl10-Malt1 complex during T cell receptor-induced NF-κB activation. J Biol Chem. 2011;286:7522–34.PubMedCrossRef
79.
Zurück zum Zitat von Noorden C, Die Zuckerkrankheit und ihre Behandlung. In: Hirschwald A, editor. Behandlung mit Arzneimitteln. 5. edition ed. 1910;258–67. von Noorden C, Die Zuckerkrankheit und ihre Behandlung. In: Hirschwald A, editor. Behandlung mit Arzneimitteln. 5. edition ed. 1910;258–67.
80.
Zurück zum Zitat Collet JP, Allali Y, Lesty C, Tanguy ML, Silvain J, et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol. 2006;26:2567–73.PubMedCrossRef Collet JP, Allali Y, Lesty C, Tanguy ML, Silvain J, et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol. 2006;26:2567–73.PubMedCrossRef
81.
Zurück zum Zitat Tehrani S, Mobarrez F, Antovic A, Santesson P, Lins PE, et al. Atorvastatin has antithrombotic effects in patients with type 1 diabetes and dyslipidemia. Thromb Res. 2010;126:e225–31.PubMedCrossRef Tehrani S, Mobarrez F, Antovic A, Santesson P, Lins PE, et al. Atorvastatin has antithrombotic effects in patients with type 1 diabetes and dyslipidemia. Thromb Res. 2010;126:e225–31.PubMedCrossRef
82.
Zurück zum Zitat Tehrani S, Antovic A, Mobarrez F, Mageed K, Lins PE, et al. High-dose aspirin is required to influence plasma fibrin network structure in patients with type 1 diabetes. Diabetes Care. 2012;35:404–8.PubMedCrossRef Tehrani S, Antovic A, Mobarrez F, Mageed K, Lins PE, et al. High-dose aspirin is required to influence plasma fibrin network structure in patients with type 1 diabetes. Diabetes Care. 2012;35:404–8.PubMedCrossRef
83.
Zurück zum Zitat Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(κ)B kinase-beta. Nature. 1998;396:77–80.PubMedCrossRef Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(κ)B kinase-beta. Nature. 1998;396:77–80.PubMedCrossRef
84.
Zurück zum Zitat Kopp E, Ghosh S. Inhibition of NF-κB by sodium salicylate and Aspirin. Science. 1994;265:956–9.PubMedCrossRef Kopp E, Ghosh S. Inhibition of NF-κB by sodium salicylate and Aspirin. Science. 1994;265:956–9.PubMedCrossRef
85.
Zurück zum Zitat Kanda H, Yokota K, Kohno C, Sawada T, Sato K, et al. Effects of low-dosage simvastatin on rheumatoid arthritis through reduction of Th1/Th2 and CD4/CD8 ratios. Mod Rheumatol. 2007;17:364–8.PubMedCrossRef Kanda H, Yokota K, Kohno C, Sawada T, Sato K, et al. Effects of low-dosage simvastatin on rheumatoid arthritis through reduction of Th1/Th2 and CD4/CD8 ratios. Mod Rheumatol. 2007;17:364–8.PubMedCrossRef
86.
Zurück zum Zitat McCarey DW, McInnes IB, Madhok R, Hampson R, Scherbakov O, et al. Trial of Atorvastatin in Rheumatoid Arthritis (TARA): double-blind, randomized placebo-controlled trial. Lancet. 2004;363:2015–21.PubMedCrossRef McCarey DW, McInnes IB, Madhok R, Hampson R, Scherbakov O, et al. Trial of Atorvastatin in Rheumatoid Arthritis (TARA): double-blind, randomized placebo-controlled trial. Lancet. 2004;363:2015–21.PubMedCrossRef
87.
Zurück zum Zitat Tang TT, Song Y, Ding YJ, Liao YH, Yu X, et al. Atorvastatin up-regulates regulatory T cells and reduces clinical disease activity in patients with rheumatoid arthritis. J Lipid Res. 2011;52:1023–32.PubMedCrossRef Tang TT, Song Y, Ding YJ, Liao YH, Yu X, et al. Atorvastatin up-regulates regulatory T cells and reduces clinical disease activity in patients with rheumatoid arthritis. J Lipid Res. 2011;52:1023–32.PubMedCrossRef
88.
Zurück zum Zitat Martin S, Herder C, Schloot NC, Koenig W, Heise T, et al. Residual beta-cell function in newly diagnosed type 1 diabetes after treatment with atorvastatin: the Randomized DIATOR Trial. PLoS One. 2011;6:e17554.PubMedCrossRef Martin S, Herder C, Schloot NC, Koenig W, Heise T, et al. Residual beta-cell function in newly diagnosed type 1 diabetes after treatment with atorvastatin: the Randomized DIATOR Trial. PLoS One. 2011;6:e17554.PubMedCrossRef
89.
Zurück zum Zitat Strom A, Kolb H, Martin S, Herder C, Simon MC, et al. Improved preservation of residual beta-cell function by atorvastatin in patients with recent onset type 1 diabetes and high CRP levels (DIATOR trial). PLoS One. 2012;7:e33108.PubMedCrossRef Strom A, Kolb H, Martin S, Herder C, Simon MC, et al. Improved preservation of residual beta-cell function by atorvastatin in patients with recent onset type 1 diabetes and high CRP levels (DIATOR trial). PLoS One. 2012;7:e33108.PubMedCrossRef
90.
Zurück zum Zitat Beyan H, Riese H, Hawa MI, Beretta G, Davidson HW, et al. Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study. Diabetes. 2012;61:1192–8.PubMedCrossRef Beyan H, Riese H, Hawa MI, Beretta G, Davidson HW, et al. Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study. Diabetes. 2012;61:1192–8.PubMedCrossRef
91.
Zurück zum Zitat Fleming TH, Humpert PM, Nawroth PP, Bierhaus A. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology. 2011;57:435–43.PubMed Fleming TH, Humpert PM, Nawroth PP, Bierhaus A. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology. 2011;57:435–43.PubMed
92.
Zurück zum Zitat Clynes R, Moser B, Yan SF, Ramasamy R, Herold K, et al. Receptor for AGE (RAGE): weaving tangled webs within the inflammatory response. Curr Mol Med. 2007;7:743–51.PubMedCrossRef Clynes R, Moser B, Yan SF, Ramasamy R, Herold K, et al. Receptor for AGE (RAGE): weaving tangled webs within the inflammatory response. Curr Mol Med. 2007;7:743–51.PubMedCrossRef
93.
Zurück zum Zitat Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009;52:2251–63.PubMedCrossRef Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009;52:2251–63.PubMedCrossRef
94.
Zurück zum Zitat Vlassara H, Striker G. Glycotoxins in the diet promote diabetes and diabetic complications. Curr Diab Rep. 2007;7:235–41.PubMedCrossRef Vlassara H, Striker G. Glycotoxins in the diet promote diabetes and diabetic complications. Curr Diab Rep. 2007;7:235–41.PubMedCrossRef
95.
Zurück zum Zitat Peppa M, He C, Hattori M, McEvoy R, Zheng F, et al. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52:1441–8.PubMedCrossRef Peppa M, He C, Hattori M, McEvoy R, Zheng F, et al. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52:1441–8.PubMedCrossRef
96.
Zurück zum Zitat Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007;62:427–33.PubMedCrossRef Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007;62:427–33.PubMedCrossRef
97.
Zurück zum Zitat Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, et al. The role of oxidative stress and NF-κB activation in late diabetic complications. Biofactors. 1999;10:157–67.PubMedCrossRef Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, et al. The role of oxidative stress and NF-κB activation in late diabetic complications. Biofactors. 1999;10:157–67.PubMedCrossRef
98.
Zurück zum Zitat Goraca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, et al. Lipoic acid - biological activity and therapeutic potential. Pharmacol Rep. 2011;63:849–58.PubMed Goraca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, et al. Lipoic acid - biological activity and therapeutic potential. Pharmacol Rep. 2011;63:849–58.PubMed
99.
Zurück zum Zitat Forbes JM, Soderlund J, Yap FY, Knip M, Andrikopoulos S, et al. Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes. Diabetologia. 2012;54:1032–42.CrossRef Forbes JM, Soderlund J, Yap FY, Knip M, Andrikopoulos S, et al. Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes. Diabetologia. 2012;54:1032–42.CrossRef
100.
Zurück zum Zitat •• Mandrup-Poulsen T, Pickersgill L, Donath MY. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol. 2010;6:158–66. This review extensively analyses and discusses the distinct functions of IL-1 in T1D development and highlights the rationales for blocking IL-1 action in T1D patients.PubMedCrossRef •• Mandrup-Poulsen T, Pickersgill L, Donath MY. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol. 2010;6:158–66. This review extensively analyses and discusses the distinct functions of IL-1 in T1D development and highlights the rationales for blocking IL-1 action in T1D patients.PubMedCrossRef
Metadaten
Titel
Anti-Inflammatory Therapy in Type 1 Diabetes
verfasst von
Bernd Baumann
Heba H. Salem
Bernhard O. Boehm
Publikationsdatum
01.10.2012
Verlag
Current Science Inc.
Erschienen in
Current Diabetes Reports / Ausgabe 5/2012
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-012-0299-y

Weitere Artikel der Ausgabe 5/2012

Current Diabetes Reports 5/2012 Zur Ausgabe

Treatment of Type 1 Diabetes (D Dabelea, Section Editor)

Stem Cell Educator Therapy and Induction of Immune Balance

Pathogenesis of Type 1 Diabetes (AG Ziegler, Section Editor)

Understanding Pancreas Development for β-Cell Repair and Replacement Therapies

Treatment of Type 1 Diabetes (D Dabelea, Section Editor)

Continuous Glucose Monitoring in Children and Adolescents

Pathogenesis of Type 1 Diabetes (AG Ziegler, Section Editor)

Guts, Germs, and Meals: The Origin of Type 1 Diabetes

Pathogenesis of Type 1 Diabetes (AG Ziegler, Section Editor)

Treg Vaccination with a Strong-Agonistic Insulin Mimetope

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.