Skip to main content
Erschienen in: Current Diabetes Reports 11/2016

01.11.2016 | Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)

Restoring Regulatory T Cells in Type 1 Diabetes

verfasst von: Allyson Spence, Qizhi Tang

Erschienen in: Current Diabetes Reports | Ausgabe 11/2016

Einloggen, um Zugang zu erhalten

Abstract

Genetic and cellular studies of type 1 diabetes in patients and in the nonobese diabetic mouse model of type 1 diabetes point to an imbalance between effector T cells and regulatory T cells (Tregs) as a driver of the disease. The imbalance may arise as a consequence of genetically encoded defects in thymic deletion of islet antigen-specific T cells, induction of islet antigen-specific thymic Tregs, unfavorable tissue environment for peripheral Treg induction, and failure of islet antigen-specific Tregs to survive in the inflamed islets secondary to insufficient IL-2 signals. These understandings are the foundation for rationalized design of new therapeutic interventions to restore the balance by selectively targeting effector T cells and boosting Tregs.
Literatur
1.
Zurück zum Zitat Redondo MJ et al. Concordance for islet autoimmunity among monozygotic twins. N Engl J Med. 2008;359(26):2849–50.PubMedCrossRef Redondo MJ et al. Concordance for islet autoimmunity among monozygotic twins. N Engl J Med. 2008;359(26):2849–50.PubMedCrossRef
2.
Zurück zum Zitat Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.PubMedCrossRef Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.PubMedCrossRef
3.
Zurück zum Zitat Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.PubMedCrossRef Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.PubMedCrossRef
4.
Zurück zum Zitat Hori S, Nomura T, Sakaguchi S. Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science. 2003;299(5609):1057–61.PubMedCrossRef Hori S, Nomura T, Sakaguchi S. Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science. 2003;299(5609):1057–61.PubMedCrossRef
5.
Zurück zum Zitat Khattri R et al. An essential role for Scurfin in CD4 + CD25+ T regulatory cells. Nat Immunol. 2003;4(4):337–42.PubMedCrossRef Khattri R et al. An essential role for Scurfin in CD4 + CD25+ T regulatory cells. Nat Immunol. 2003;4(4):337–42.PubMedCrossRef
6.
Zurück zum Zitat Brunkow ME et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27(1):68–73.PubMedCrossRef Brunkow ME et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27(1):68–73.PubMedCrossRef
7.
8.
Zurück zum Zitat Jordan MS et al. Thymic selection of CD4 + CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001;2(4):301–6.PubMedCrossRef Jordan MS et al. Thymic selection of CD4 + CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001;2(4):301–6.PubMedCrossRef
9.
Zurück zum Zitat Kawahata K et al. Generation of CD4(+)CD25(+) regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J Immunol. 2002;168(9):4399–405.PubMedCrossRef Kawahata K et al. Generation of CD4(+)CD25(+) regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J Immunol. 2002;168(9):4399–405.PubMedCrossRef
10.
Zurück zum Zitat van Santen HM, Benoist C, Mathis D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med. 2004;200(10):1221–30.PubMedPubMedCentralCrossRef van Santen HM, Benoist C, Mathis D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med. 2004;200(10):1221–30.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Cozzo Picca C et al. CD4(+)CD25(+)Foxp3(+) regulatory T cell formation requires more specific recognition of a self-peptide than thymocyte deletion. Proc Natl Acad Sci U S A. 2011;108(36):14890–5.PubMedPubMedCentralCrossRef Cozzo Picca C et al. CD4(+)CD25(+)Foxp3(+) regulatory T cell formation requires more specific recognition of a self-peptide than thymocyte deletion. Proc Natl Acad Sci U S A. 2011;108(36):14890–5.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Aschenbrenner K et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire + medullary thymic epithelial cells. Nat Immunol. 2007;8(4):351–8.PubMedCrossRef Aschenbrenner K et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire + medullary thymic epithelial cells. Nat Immunol. 2007;8(4):351–8.PubMedCrossRef
14.
Zurück zum Zitat Gavin MA et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(7129):771–5.PubMedCrossRef Gavin MA et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(7129):771–5.PubMedCrossRef
15.
Zurück zum Zitat Lin W et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol. 2007;8(4):359–68.PubMedCrossRef Lin W et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol. 2007;8(4):359–68.PubMedCrossRef
16.
Zurück zum Zitat Leventhal DS et al. Dendritic Cells Coordinate the Development and Homeostasis of Organ-Specific Regulatory T Cells. Immunity. 2016;44(4):847–59.PubMedCrossRef Leventhal DS et al. Dendritic Cells Coordinate the Development and Homeostasis of Organ-Specific Regulatory T Cells. Immunity. 2016;44(4):847–59.PubMedCrossRef
17.
Zurück zum Zitat Liu G et al. Dendritic cell SIRT1-HIF1alpha axis programs the differentiation of CD4+ T cells through IL-12 and TGF-beta1. Proc Natl Acad Sci U S A. 2015;112(9):E957–65.PubMedPubMedCentralCrossRef Liu G et al. Dendritic cell SIRT1-HIF1alpha axis programs the differentiation of CD4+ T cells through IL-12 and TGF-beta1. Proc Natl Acad Sci U S A. 2015;112(9):E957–65.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Kretschmer K et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol. 2005;6(12):1219–27.PubMedCrossRef Kretschmer K et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol. 2005;6(12):1219–27.PubMedCrossRef
20.
Zurück zum Zitat Paiva RS et al. Recent thymic emigrants are the preferential precursors of regulatory T cells differentiated in the periphery. Proc Natl Acad Sci U S A. 2013;110(16):6494–9.PubMedPubMedCentralCrossRef Paiva RS et al. Recent thymic emigrants are the preferential precursors of regulatory T cells differentiated in the periphery. Proc Natl Acad Sci U S A. 2013;110(16):6494–9.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Malek TR et al. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity. 2002;17(2):167–78.PubMedCrossRef Malek TR et al. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity. 2002;17(2):167–78.PubMedCrossRef
24.
Zurück zum Zitat Wolf M, Schimpl A, Hunig T. Control of T cell hyperactivation in IL-2-deficient mice by CD4(+)CD25(-) and CD4(+)CD25(+) T cells: evidence for two distinct regulatory mechanisms. Eur J Immunol. 2001;31(6):1637–45.PubMedCrossRef Wolf M, Schimpl A, Hunig T. Control of T cell hyperactivation in IL-2-deficient mice by CD4(+)CD25(-) and CD4(+)CD25(+) T cells: evidence for two distinct regulatory mechanisms. Eur J Immunol. 2001;31(6):1637–45.PubMedCrossRef
25.
Zurück zum Zitat Lohr J, Knoechel B, Abbas AK. Regulatory T cells in the periphery. Immunol Rev. 2006;212:149–62.PubMedCrossRef Lohr J, Knoechel B, Abbas AK. Regulatory T cells in the periphery. Immunol Rev. 2006;212:149–62.PubMedCrossRef
28.
Zurück zum Zitat McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol. 1999;77(1):1–10.PubMedCrossRef McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol. 1999;77(1):1–10.PubMedCrossRef
29.
Zurück zum Zitat Qureshi OS et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3.PubMedPubMedCentralCrossRef Qureshi OS et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Serra P et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4 + CD25+ T cells. Immunity. 2003;19(6):877–89.PubMedCrossRef Serra P et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4 + CD25+ T cells. Immunity. 2003;19(6):877–89.PubMedCrossRef
31.
Zurück zum Zitat Gerold KD et al. The soluble CTLA-4 splice variant protects from type 1 diabetes and potentiates regulatory T-cell function. Diabetes. 2011;60(7):1955–63.PubMedPubMedCentralCrossRef Gerold KD et al. The soluble CTLA-4 splice variant protects from type 1 diabetes and potentiates regulatory T-cell function. Diabetes. 2011;60(7):1955–63.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Sage PT et al. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity. 2014;41(6):1026–39.PubMedPubMedCentralCrossRef Sage PT et al. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity. 2014;41(6):1026–39.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Wing JB et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity. 2014;41(6):1013–25.PubMedCrossRef Wing JB et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity. 2014;41(6):1013–25.PubMedCrossRef
34.
Zurück zum Zitat Wing K et al. CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science. 2008;322(5899):271–5.PubMedCrossRef Wing K et al. CTLA-4 Control over Foxp3+ Regulatory T Cell Function. Science. 2008;322(5899):271–5.PubMedCrossRef
35.
Zurück zum Zitat Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes (Basel). 2013;4(3):499–521. Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes (Basel). 2013;4(3):499–521.
36.
Zurück zum Zitat Nishimoto H et al. Prevention of autoimmune insulitis by expression of I-E molecules in NOD mice. Nature. 1987;328(6129):432–4.PubMedCrossRef Nishimoto H et al. Prevention of autoimmune insulitis by expression of I-E molecules in NOD mice. Nature. 1987;328(6129):432–4.PubMedCrossRef
37.
Zurück zum Zitat Bohme J et al. MHC-linked protection from diabetes dissociated from clonal deletion of T cells. Science. 1990;249(4966):293–5.PubMedCrossRef Bohme J et al. MHC-linked protection from diabetes dissociated from clonal deletion of T cells. Science. 1990;249(4966):293–5.PubMedCrossRef
38.
Zurück zum Zitat Suri A et al. Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. J Clin Invest. 2005;115(8):2268–76.PubMedPubMedCentralCrossRef Suri A et al. Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. J Clin Invest. 2005;115(8):2268–76.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Stadinski BD et al. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci U S A. 2010;107(24):10978–83.PubMedPubMedCentralCrossRef Stadinski BD et al. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci U S A. 2010;107(24):10978–83.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Mohan JF, Petzold SJ, Unanue ER. Register shifting of an insulin peptide-MHC complex allows diabetogenic T cells to escape thymic deletion. J Exp Med. 2011;208(12):2375–83.PubMedPubMedCentralCrossRef Mohan JF, Petzold SJ, Unanue ER. Register shifting of an insulin peptide-MHC complex allows diabetogenic T cells to escape thymic deletion. J Exp Med. 2011;208(12):2375–83.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Pugliese A et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15(3):293–7.PubMedCrossRef Pugliese A et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15(3):293–7.PubMedCrossRef
43.
Zurück zum Zitat Vafiadis P et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15(3):289–92.PubMedCrossRef Vafiadis P et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15(3):289–92.PubMedCrossRef
44.
45.
Zurück zum Zitat Cooper JD et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40(12):1399–401.PubMedPubMedCentralCrossRef Cooper JD et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40(12):1399–401.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Hakonarson H et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 2007;448(7153):591–4.PubMedCrossRef Hakonarson H et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 2007;448(7153):591–4.PubMedCrossRef
47.
Zurück zum Zitat Brownlie RJ et al. Lack of the phosphatase PTPN22 increases adhesion of murine regulatory T cells to improve their immunosuppressive function. Sci Signal. 2012;5(252):ra87.PubMedCrossRef Brownlie RJ et al. Lack of the phosphatase PTPN22 increases adhesion of murine regulatory T cells to improve their immunosuppressive function. Sci Signal. 2012;5(252):ra87.PubMedCrossRef
48.
49.
Zurück zum Zitat Yeh LT et al. Different modulation of Ptpn22 in effector and regulatory T cells leads to attenuation of autoimmune diabetes in transgenic nonobese diabetic mice. J Immunol. 2013;191(2):594–607.PubMedCrossRef Yeh LT et al. Different modulation of Ptpn22 in effector and regulatory T cells leads to attenuation of autoimmune diabetes in transgenic nonobese diabetic mice. J Immunol. 2013;191(2):594–607.PubMedCrossRef
51.
Zurück zum Zitat Hoffmann P et al. Loss of FOXP3 expression in natural human CD4 + CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol. 2009;39(4):1088–97.PubMedCrossRef Hoffmann P et al. Loss of FOXP3 expression in natural human CD4 + CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol. 2009;39(4):1088–97.PubMedCrossRef
52.
Zurück zum Zitat Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRef Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRef
53.
Zurück zum Zitat Dendrou CA et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet. 2009;41(9):1011–5.PubMedPubMedCentralCrossRef Dendrou CA et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet. 2009;41(9):1011–5.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Wuest SC et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med. 2011;17(5):604–9.PubMedPubMedCentralCrossRef Wuest SC et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med. 2011;17(5):604–9.PubMedPubMedCentralCrossRef
55.
56.
Zurück zum Zitat Ghosh S et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet. 1993;4(4):404–9.PubMedCrossRef Ghosh S et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet. 1993;4(4):404–9.PubMedCrossRef
57.
Zurück zum Zitat Long SA et al. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun. 2011;12(2):116–25.PubMedCrossRef Long SA et al. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4(+) T cells. Genes Immun. 2011;12(2):116–25.PubMedCrossRef
58.
Zurück zum Zitat Carbonetto P, Stephens M. Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central role for IL-2 signaling genes in type 1 diabetes, and cytokine signaling genes in Crohn’s disease. PLoS Genet. 2013;9(10):e1003770.PubMedPubMedCentralCrossRef Carbonetto P, Stephens M. Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central role for IL-2 signaling genes in type 1 diabetes, and cytokine signaling genes in Crohn’s disease. PLoS Genet. 2013;9(10):e1003770.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.PubMedPubMedCentralCrossRef Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Araki M et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol. 2009;183(8):5146–57.PubMedPubMedCentralCrossRef Araki M et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol. 2009;183(8):5146–57.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Ueda H et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506–11.PubMedCrossRef Ueda H et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506–11.PubMedCrossRef
63.
Zurück zum Zitat Lindley S et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92–9.PubMedCrossRef Lindley S et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92–9.PubMedCrossRef
64.
65.
Zurück zum Zitat Brusko T et al. No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes. 2007;56(3):604–12.PubMedCrossRef Brusko T et al. No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes. 2007;56(3):604–12.PubMedCrossRef
66.
Zurück zum Zitat Brusko TM et al. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes. 2005;54(5):1407–14.PubMedCrossRef Brusko TM et al. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes. 2005;54(5):1407–14.PubMedCrossRef
67.
Zurück zum Zitat Putnam AL et al. CD4 + CD25high regulatory T cells in human autoimmune diabetes. J Autoimmun. 2005;24(1):55–62.PubMedCrossRef Putnam AL et al. CD4 + CD25high regulatory T cells in human autoimmune diabetes. J Autoimmun. 2005;24(1):55–62.PubMedCrossRef
68.
Zurück zum Zitat Battaglia M et al. Rapamycin promotes expansion of functional CD4 + CD25 + FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 2006;177(12):8338–47.PubMedCrossRef Battaglia M et al. Rapamycin promotes expansion of functional CD4 + CD25 + FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol. 2006;177(12):8338–47.PubMedCrossRef
69.
Zurück zum Zitat Miyara M et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911.PubMedCrossRef Miyara M et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911.PubMedCrossRef
70.
Zurück zum Zitat Liu W et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11.PubMedPubMedCentralCrossRef Liu W et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Seddiki N et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203(7):1693–700.PubMedPubMedCentralCrossRef Seddiki N et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. 2006;203(7):1693–700.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat McClymont SA et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol. 2011;186(7):3918–26.PubMedPubMedCentralCrossRef McClymont SA et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol. 2011;186(7):3918–26.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Glisic S et al. Genetic association of HLA DQB1 with CD4 + CD25 + (high) T-cell apoptosis in type 1 diabetes. Genes Immun. 2009;10(4):334–40.PubMedCrossRef Glisic S et al. Genetic association of HLA DQB1 with CD4 + CD25 + (high) T-cell apoptosis in type 1 diabetes. Genes Immun. 2009;10(4):334–40.PubMedCrossRef
74.
Zurück zum Zitat Glisic-Milosavljevic S et al. At-risk and recent-onset type 1 diabetic subjects have increased apoptosis in the CD4 + CD25+ T-cell fraction. PLoS One. 2007;2(1):e146.PubMedPubMedCentralCrossRef Glisic-Milosavljevic S et al. At-risk and recent-onset type 1 diabetic subjects have increased apoptosis in the CD4 + CD25+ T-cell fraction. PLoS One. 2007;2(1):e146.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Jailwala P et al. Apoptosis of CD4+ CD25(high) T cells in type 1 diabetes may be partially mediated by IL-2 deprivation. PLoS One. 2009;4(8):e6527.PubMedPubMedCentralCrossRef Jailwala P et al. Apoptosis of CD4+ CD25(high) T cells in type 1 diabetes may be partially mediated by IL-2 deprivation. PLoS One. 2009;4(8):e6527.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Long SA et al. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects. Diabetes. 2010;59(2):407–15.PubMedCrossRef Long SA et al. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects. Diabetes. 2010;59(2):407–15.PubMedCrossRef
77.
Zurück zum Zitat Salomon B et al. B7/CD28 Costimulation Is Essential for the Homeostasis of the CD4 + CD25+ Immunoregulatory T Cells that Control Autoimmune Diabetes. Immunity. 2000;12(4):431–40.PubMedCrossRef Salomon B et al. B7/CD28 Costimulation Is Essential for the Homeostasis of the CD4 + CD25+ Immunoregulatory T Cells that Control Autoimmune Diabetes. Immunity. 2000;12(4):431–40.PubMedCrossRef
78.
Zurück zum Zitat Tang Q et al. Cutting edge: CD28 controls peripheral homeostasis of CD4 + CD25+ regulatory T cells. J Immunol. 2003;171(7):3348–52.PubMedCrossRef Tang Q et al. Cutting edge: CD28 controls peripheral homeostasis of CD4 + CD25+ regulatory T cells. J Immunol. 2003;171(7):3348–52.PubMedCrossRef
79.
Zurück zum Zitat Chen Z, Benoist C, Mathis D. How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc Natl Acad Sci U S A. 2005;102(41):14735–40.PubMedPubMedCentralCrossRef Chen Z, Benoist C, Mathis D. How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc Natl Acad Sci U S A. 2005;102(41):14735–40.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Setoguchi R et al. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–35.PubMedPubMedCentralCrossRef Setoguchi R et al. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med. 2005;201(5):723–35.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Feuerer M et al. Enhanced thymic selection of FoxP3+ regulatory T cells in the NOD mouse model of autoimmune diabetes. Proc Natl Acad Sci U S A. 2007;104(46):18181–6.PubMedPubMedCentralCrossRef Feuerer M et al. Enhanced thymic selection of FoxP3+ regulatory T cells in the NOD mouse model of autoimmune diabetes. Proc Natl Acad Sci U S A. 2007;104(46):18181–6.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat You S et al. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes. 2005;54(5):1415–22.PubMedCrossRef You S et al. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes. 2005;54(5):1415–22.PubMedCrossRef
83.
Zurück zum Zitat Tang Q et al. Central Role of Defective Interleukin-2 Production in the Triggering of Islet Autoimmune Destruction. Immunity. 2008;28(5):687–97.PubMedPubMedCentralCrossRef Tang Q et al. Central Role of Defective Interleukin-2 Production in the Triggering of Islet Autoimmune Destruction. Immunity. 2008;28(5):687–97.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Unanue ER. Antigen presentation in the autoimmune diabetes of the NOD mouse. Annu Rev Immunol. 2014;32:579–608.PubMedCrossRef Unanue ER. Antigen presentation in the autoimmune diabetes of the NOD mouse. Annu Rev Immunol. 2014;32:579–608.PubMedCrossRef
87.
88.
Zurück zum Zitat Nakayama M. Insulin as a key autoantigen in the development of type 1 diabetes. Diabetes Metab Res Rev. 2011;27(8):773–7.PubMedCrossRef Nakayama M. Insulin as a key autoantigen in the development of type 1 diabetes. Diabetes Metab Res Rev. 2011;27(8):773–7.PubMedCrossRef
89.
Zurück zum Zitat Mohan JF et al. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol. 2010;11(4):350–4.PubMedPubMedCentralCrossRef Mohan JF et al. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol. 2010;11(4):350–4.PubMedPubMedCentralCrossRef
90.••
Zurück zum Zitat Delong T et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351(6274):711–4. This study found that β cells can produce proinsulin covalently cross-linked to other peptides in secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4+ T cells, including the BDC2.5 TCR.PubMedPubMedCentralCrossRef Delong T et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351(6274):711–4. This study found that β cells can produce proinsulin covalently cross-linked to other peptides in secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4+ T cells, including the BDC2.5 TCR.PubMedPubMedCentralCrossRef
91.••
Zurück zum Zitat Stadinski BD et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17(8):946–55. Hydrophobicity at amino acid positions 6 and 7 of the CDR3 TCRβ promotes self-reactive TCR development. NOD mouse Tregs were found to have an enrichment of these self-reactivity promoting P6-P7 doublets.PubMedCrossRef Stadinski BD et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17(8):946–55. Hydrophobicity at amino acid positions 6 and 7 of the CDR3 TCRβ promotes self-reactive TCR development. NOD mouse Tregs were found to have an enrichment of these self-reactivity promoting P6-P7 doublets.PubMedCrossRef
92.
Zurück zum Zitat Gottschalk RA, Corse E, Allison JP. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med. 2010;207(8):1701–11.PubMedPubMedCentralCrossRef Gottschalk RA, Corse E, Allison JP. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med. 2010;207(8):1701–11.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Fousteri G et al. Following the fate of one insulin-reactive CD4 T cell: conversion into Teffs and Tregs in the periphery controls diabetes in NOD mice. Diabetes. 2012;61(5):1169–79.PubMedPubMedCentralCrossRef Fousteri G et al. Following the fate of one insulin-reactive CD4 T cell: conversion into Teffs and Tregs in the periphery controls diabetes in NOD mice. Diabetes. 2012;61(5):1169–79.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Jasinski JM et al. Transgenic insulin (B:9-23) T-cell receptor mice develop autoimmune diabetes dependent upon RAG genotype, H-2g7 homozygosity, and insulin 2 gene knockout. Diabetes. 2006;55(7):1978–84.PubMedCrossRef Jasinski JM et al. Transgenic insulin (B:9-23) T-cell receptor mice develop autoimmune diabetes dependent upon RAG genotype, H-2g7 homozygosity, and insulin 2 gene knockout. Diabetes. 2006;55(7):1978–84.PubMedCrossRef
95.
Zurück zum Zitat Bonertz A et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest. 2009;119(11):3311–21.PubMedPubMedCentral Bonertz A et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest. 2009;119(11):3311–21.PubMedPubMedCentral
96.••
Zurück zum Zitat Serr I et al. Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice. Nat Commun. 2016;7:10991. This study demonstrates detectin of insulin-specific Tregs in children with long-term islet autoimmunity without progression to diabetes. These Tregs can be induced in vivo using insulin mimitope vaccines in humanized mice, demonstrating preclinical feasibility of induciton of islet antigen specific Tregs. Serr I et al. Type 1 diabetes vaccine candidates promote human Foxp3(+)Treg induction in humanized mice. Nat Commun. 2016;7:10991. This study demonstrates detectin of insulin-specific Tregs in children with long-term islet autoimmunity without progression to diabetes. These Tregs can be induced in vivo using insulin mimitope vaccines in humanized mice, demonstrating preclinical feasibility of induciton of islet antigen specific Tregs.
98.
Zurück zum Zitat Manirarora JN, Wei CH. Combination Therapy Using IL-2/IL-2 Monoclonal Antibody Complexes, Rapamycin, and Islet Autoantigen Peptides Increases Regulatory T Cell Frequency and Protects against Spontaneous and Induced Type 1 Diabetes in Nonobese Diabetic Mice. J Immunol. 2015;195(11):5203–14.PubMedCrossRef Manirarora JN, Wei CH. Combination Therapy Using IL-2/IL-2 Monoclonal Antibody Complexes, Rapamycin, and Islet Autoantigen Peptides Increases Regulatory T Cell Frequency and Protects against Spontaneous and Induced Type 1 Diabetes in Nonobese Diabetic Mice. J Immunol. 2015;195(11):5203–14.PubMedCrossRef
99.
Zurück zum Zitat Grinberg-Bleyer Y et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207(9):1871–8.PubMedPubMedCentralCrossRef Grinberg-Bleyer Y et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207(9):1871–8.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Matsuoka K-i et al. Low-Dose Interleukin-2 Therapy Restores Regulatory T Cell Homeostasis in Patients with Chronic Graft-Versus-Host Disease. Sci Transl Med. 2013;5(179):179ra43.PubMedPubMedCentralCrossRef Matsuoka K-i et al. Low-Dose Interleukin-2 Therapy Restores Regulatory T Cell Homeostasis in Patients with Chronic Graft-Versus-Host Disease. Sci Transl Med. 2013;5(179):179ra43.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Saadoun D et al. Regulatory T-Cell Responses to Low-Dose Interleukin-2 in HCV-Induced Vasculitis. N Engl J Med. 2011;365(22):2067–77.PubMedCrossRef Saadoun D et al. Regulatory T-Cell Responses to Low-Dose Interleukin-2 in HCV-Induced Vasculitis. N Engl J Med. 2011;365(22):2067–77.PubMedCrossRef
103.
Zurück zum Zitat Castela E et al. EFfects of low-dose recombinant interleukin 2 to promote t-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150(7):748–51.PubMedCrossRef Castela E et al. EFfects of low-dose recombinant interleukin 2 to promote t-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150(7):748–51.PubMedCrossRef
104.•
Zurück zum Zitat Yu A et al. Selective IL-2 Responsiveness of Regulatory T Cells Through Multiple Intrinsic Mechanisms Supports the Use of Low-Dose IL-2 Therapy in Type 1 Diabetes. Diabetes. 2015;64(6):2172–83. The study found that Tregs from T1D patients were responsive to IL-2 stimulation and Tregs were increased in patients undergoing low-dose IL-2 therapy.PubMedCrossRef Yu A et al. Selective IL-2 Responsiveness of Regulatory T Cells Through Multiple Intrinsic Mechanisms Supports the Use of Low-Dose IL-2 Therapy in Type 1 Diabetes. Diabetes. 2015;64(6):2172–83. The study found that Tregs from T1D patients were responsive to IL-2 stimulation and Tregs were increased in patients undergoing low-dose IL-2 therapy.PubMedCrossRef
105.
Zurück zum Zitat Long SA et al. Rapamycin/IL-2 Combination Therapy in Patients With Type 1 Diabetes Augments Tregs yet Transiently Impairs β-Cell Function. Diabetes. 2012;61(9):2340–8.PubMedPubMedCentralCrossRef Long SA et al. Rapamycin/IL-2 Combination Therapy in Patients With Type 1 Diabetes Augments Tregs yet Transiently Impairs β-Cell Function. Diabetes. 2012;61(9):2340–8.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Van Gool F et al. Interleukin-5–producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood. 2014;124(24):3572–6.PubMedPubMedCentralCrossRef Van Gool F et al. Interleukin-5–producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood. 2014;124(24):3572–6.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Truman LA et al. Protocol of the adaptive study of IL-2 dose frequency on regulatory T cells in type 1 diabetes (DILfrequency): a mechanistic, non-randomised, repeat dose, open-label, response-adaptive study. BMJ Open. 2015;5(12):e009799.PubMedPubMedCentralCrossRef Truman LA et al. Protocol of the adaptive study of IL-2 dose frequency on regulatory T cells in type 1 diabetes (DILfrequency): a mechanistic, non-randomised, repeat dose, open-label, response-adaptive study. BMJ Open. 2015;5(12):e009799.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Tang Q et al. Distinct roles of CTLA-4 and TGF-β in CD4 + CD25+ regulatory T cell function. Eur J Immunol. 2004;34(11):2996–3005.PubMedCrossRef Tang Q et al. Distinct roles of CTLA-4 and TGF-β in CD4 + CD25+ regulatory T cell function. Eur J Immunol. 2004;34(11):2996–3005.PubMedCrossRef
109.
Zurück zum Zitat Bluestone JA et al. The Effect of Costimulatory and Interleukin 2 Receptor Blockade on Regulatory T Cells in Renal Transplantation. Am J Transplant. 2008;8(10):2086–96.PubMedPubMedCentralCrossRef Bluestone JA et al. The Effect of Costimulatory and Interleukin 2 Receptor Blockade on Regulatory T Cells in Renal Transplantation. Am J Transplant. 2008;8(10):2086–96.PubMedPubMedCentralCrossRef
110.•
Zurück zum Zitat Orban T et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378(9789):412–9. The beneficial effects of abatacept including slowed deterioration of beta cell function and the HbA1c improvement lasted for at least 1 year after discontinuation of treatment.PubMedPubMedCentralCrossRef Orban T et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378(9789):412–9. The beneficial effects of abatacept including slowed deterioration of beta cell function and the HbA1c improvement lasted for at least 1 year after discontinuation of treatment.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Orban T et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37(4):1069–75.PubMedPubMedCentralCrossRef Orban T et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37(4):1069–75.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Langley RG et al. Safety profile of intravenous and subcutaneous siplizumab, an anti-CD2 monoclonal antibody, for the treatment of plaque psoriasis: results of two randomized, double-blind, placebo-controlled studies. Int J Dermatol. 2010;49(7):818–28.PubMedCrossRef Langley RG et al. Safety profile of intravenous and subcutaneous siplizumab, an anti-CD2 monoclonal antibody, for the treatment of plaque psoriasis: results of two randomized, double-blind, placebo-controlled studies. Int J Dermatol. 2010;49(7):818–28.PubMedCrossRef
113.
Zurück zum Zitat O’Mahony D et al. EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res. 2009;15(7):2514–22.PubMedCrossRef O’Mahony D et al. EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res. 2009;15(7):2514–22.PubMedCrossRef
114.
Zurück zum Zitat Miller GT et al. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J Exp Med. 1993;178(1):211–22.PubMedCrossRef Miller GT et al. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J Exp Med. 1993;178(1):211–22.PubMedCrossRef
115.•
Zurück zum Zitat Rigby MR et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):0–0. In an alefacept clinical trial, patients experienced a preservation of beta cell function, used less insulin, and had fewer hypoglycemic events after 24 months since cessation of treatment.CrossRef Rigby MR et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):0–0. In an alefacept clinical trial, patients experienced a preservation of beta cell function, used less insulin, and had fewer hypoglycemic events after 24 months since cessation of treatment.CrossRef
116.
Zurück zum Zitat Rigby MR et al. Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diab Endocrinol. 2013;1(4):284–94.CrossRef Rigby MR et al. Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diab Endocrinol. 2013;1(4):284–94.CrossRef
117.
Zurück zum Zitat Lee K et al. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am J Transplant. 2014;14(1):27–38.PubMedCrossRef Lee K et al. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am J Transplant. 2014;14(1):27–38.PubMedCrossRef
118.
Zurück zum Zitat Tarbell KV et al. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004;199(11):1467–77.PubMedPubMedCentralCrossRef Tarbell KV et al. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004;199(11):1467–77.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Marek-Trzonkowska N et al. Administration of CD4 + CD25highCD127- Regulatory T Cells Preserves beta-Cell Function in Type 1 Diabetes in Children. Diabetes Care. 2012;35(9):1817–20.PubMedPubMedCentralCrossRef Marek-Trzonkowska N et al. Administration of CD4 + CD25highCD127- Regulatory T Cells Preserves beta-Cell Function in Type 1 Diabetes in Children. Diabetes Care. 2012;35(9):1817–20.PubMedPubMedCentralCrossRef
121.•
Zurück zum Zitat Marek-Trzonkowska N et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol. 2014;153(1):23–30. One year after ex vivo expanded Treg cell therapy, no severe adverse effects were observed. Patients experienced an increase in C-peptide level and reduced insulin use. Two patients were completely insulin independent at this time point, demonstrating the safety and possible efficacy of Treg cell therapy in T1D.PubMedCrossRef Marek-Trzonkowska N et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol. 2014;153(1):23–30. One year after ex vivo expanded Treg cell therapy, no severe adverse effects were observed. Patients experienced an increase in C-peptide level and reduced insulin use. Two patients were completely insulin independent at this time point, demonstrating the safety and possible efficacy of Treg cell therapy in T1D.PubMedCrossRef
122.••
Zurück zum Zitat Bluestone JA et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189. Polyclonally ex vivo expanded Tregs were infused into recent onset T1D patients at different doses. There were no severe reactions and some improvement in C-peptide levels, supporting the development of this therapy in a phase 2 clinical trial.PubMedCrossRef Bluestone JA et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189. Polyclonally ex vivo expanded Tregs were infused into recent onset T1D patients at different doses. There were no severe reactions and some improvement in C-peptide levels, supporting the development of this therapy in a phase 2 clinical trial.PubMedCrossRef
123.
Zurück zum Zitat Serra P, Santamaria P. Nanoparticle-based autoimmune disease therapy. Clin Immunol. 2015;160(1):3–13.PubMedCrossRef Serra P, Santamaria P. Nanoparticle-based autoimmune disease therapy. Clin Immunol. 2015;160(1):3–13.PubMedCrossRef
124.
Zurück zum Zitat Todo S et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology. 2016;64(2):632–43.PubMedCrossRef Todo S et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology. 2016;64(2):632–43.PubMedCrossRef
125.
Zurück zum Zitat Desreumaux P et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology. 2012;143(5):1207–17 e1-2.PubMedCrossRef Desreumaux P et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology. 2012;143(5):1207–17 e1-2.PubMedCrossRef
Metadaten
Titel
Restoring Regulatory T Cells in Type 1 Diabetes
verfasst von
Allyson Spence
Qizhi Tang
Publikationsdatum
01.11.2016
Verlag
Springer US
Erschienen in
Current Diabetes Reports / Ausgabe 11/2016
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-016-0807-6

Weitere Artikel der Ausgabe 11/2016

Current Diabetes Reports 11/2016 Zur Ausgabe

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (C Shay and B Conway, Section Editors)

Self-Care Disparities Among Adults with Type 2 Diabetes in the USA

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (C Shay and B Conway, Section Editors)

Sleep Duration and Diabetes Risk: Population Trends and Potential Mechanisms

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (C Shay and B Conway, Section Editors)

Sitting Less and Moving More: Improved Glycaemic Control for Type 2 Diabetes Prevention and Management

Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)

Integrated Cardio-Respiratory Control: Insight in Diabetes

Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)

Update on Clinical Utility of Continuous Glucose Monitoring in Type 1 Diabetes

Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)

The Expanding Role of Natural Killer Cells in Type 1 Diabetes and Immunotherapy

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Dihydropyridin-Kalziumantagonisten können auf die Nieren gehen

30.04.2024 Hypertonie Nachrichten

Im Vergleich zu anderen Blutdrucksenkern sind Kalziumantagonisten vom Diyhdropyridin-Typ mit einem erhöhten Risiko für eine Mikroalbuminurie und in Abwesenheit eines RAS-Blockers auch für ein terminales Nierenversagen verbunden.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.