Skip to main content
Erschienen in: Current Neurology and Neuroscience Reports 5/2015

01.05.2015 | Movement Disorders (M Okun, Section Editor)

The Prion Hypothesis of Parkinson’s Disease

verfasst von: Yaping Chu, Jeffrey H. Kordower

Erschienen in: Current Neurology and Neuroscience Reports | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Abstract

The discovery of alpha-synuclein’s prion-like behaviors in mammals, as well as a non-Mendelian type of inheritance, has led to a new concept in biology, the “prion hypothesis” of Parkinson’s disease. The misfolding and aggregation of alpha-synuclein (α-syn) within the nervous system occur in many neurodegenerative diseases including Parkinson’s disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). The molecular basis of synucleinopathies appears to be tightly coupled to α-syn’s conformational conversion and fibril formation. The pathological form of α-syn consists of oligomers and fibrils with rich in β-sheets. The conversion of its α-helical structure to the β-sheet rich fibril is a defining pathologic feature of α-syn. These kinds of disorders have been classified as protein misfolding diseases or proteopathies which share key biophysical and biochemical characteristics with prion diseases. In this review, we highlight α-syn’s prion-like activities in PD and PD models, describe the idea of a prion-like mechanism contributing to PD pathology, and discuss several key molecules that can modulate the α-syn accumulation and propagation.
Literatur
1.
Zurück zum Zitat Boassa D, Berlanga ML, Yang MA, et al. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson’s disease pathogenesis. J Neurosci. 2013;6:2605–15. Boassa D, Berlanga ML, Yang MA, et al. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson’s disease pathogenesis. J Neurosci. 2013;6:2605–15.
2.
Zurück zum Zitat Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006;15:3012–23.PubMed Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006;15:3012–23.PubMed
3.
Zurück zum Zitat Raghavan R, Kruijff L, Sterrenburg MD, et al. Alpha-synuclein expression in the developing human brain. Pediatr Dev Pathol. 2004;7:506–16.PubMed Raghavan R, Kruijff L, Sterrenburg MD, et al. Alpha-synuclein expression in the developing human brain. Pediatr Dev Pathol. 2004;7:506–16.PubMed
4.
Zurück zum Zitat Solano SM, Miller DW, Augood SJ, et al. Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol. 2000;47:201–10.PubMed Solano SM, Miller DW, Augood SJ, et al. Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol. 2000;47:201–10.PubMed
5.
Zurück zum Zitat Kahle P, Neumann M, Ozmen L, et al. Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci. 2000;20:6365–73.PubMed Kahle P, Neumann M, Ozmen L, et al. Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci. 2000;20:6365–73.PubMed
6.
Zurück zum Zitat Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287:1265–9.PubMed Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287:1265–9.PubMed
7.
Zurück zum Zitat van der Putten H, Wiederhold KH, Probst A, et al. Neuropathology in mice expressing human alpha-synuclein. J Neurosci. 2000;20:6021–9.PubMed van der Putten H, Wiederhold KH, Probst A, et al. Neuropathology in mice expressing human alpha-synuclein. J Neurosci. 2000;20:6021–9.PubMed
8.
Zurück zum Zitat Stefanova N, Klimaschewski L, Poewe W, et al. Glial cell death induced by overexpression of alpha-synuclein. J Neurosci Res. 2001;65:432–8.PubMed Stefanova N, Klimaschewski L, Poewe W, et al. Glial cell death induced by overexpression of alpha-synuclein. J Neurosci Res. 2001;65:432–8.PubMed
9.
Zurück zum Zitat Miller DW, Johnson JM, Solano SM, et al. Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm. 2005;112:1613–24.PubMed Miller DW, Johnson JM, Solano SM, et al. Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm. 2005;112:1613–24.PubMed
10.
Zurück zum Zitat Reyes JF, Rey NL, Bousset L, et al. Alpha-synuclein transfers from neurons to oligodendrocytes. Glia. 2014;62:387–98.PubMed Reyes JF, Rey NL, Bousset L, et al. Alpha-synuclein transfers from neurons to oligodendrocytes. Glia. 2014;62:387–98.PubMed
11.
Zurück zum Zitat Tu PH, Galvin JE, Baba M, et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol. 1998;44:415–22.PubMed Tu PH, Galvin JE, Baba M, et al. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol. 1998;44:415–22.PubMed
12.
Zurück zum Zitat Arai T, Uéda K, Ikeda K, et al. Argyrophilic glial inclusions in the midbrain of patients with Parkinson’s disease and diffuse Lewy body disease are immunopositive for NACP/alpha-synuclein. Neurosci Lett. 1999;259:83–6.PubMed Arai T, Uéda K, Ikeda K, et al. Argyrophilic glial inclusions in the midbrain of patients with Parkinson’s disease and diffuse Lewy body disease are immunopositive for NACP/alpha-synuclein. Neurosci Lett. 1999;259:83–6.PubMed
13.
Zurück zum Zitat Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 2000;99:14–20.PubMed Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 2000;99:14–20.PubMed
14.
Zurück zum Zitat Kordower JH, Chu Y, Hauser RA, et al. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14(5):504–6.PubMed Kordower JH, Chu Y, Hauser RA, et al. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med. 2008;14(5):504–6.PubMed
15.
Zurück zum Zitat Li JY, Englund E, Holton JL. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14:501–3.PubMed Li JY, Englund E, Holton JL. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med. 2008;14:501–3.PubMed
16.
Zurück zum Zitat Chu Y, Kordower JH. Lewy body pathology in fetal grafts. Ann N Y Acad Sci. 2010;1184:55–67.PubMed Chu Y, Kordower JH. Lewy body pathology in fetal grafts. Ann N Y Acad Sci. 2010;1184:55–67.PubMed
17.
Zurück zum Zitat Kordower JH, Brundin P. Propagation of host disease to grafted neurons: accumulating evidence. Exp Neurol. 2009;220:224–5.PubMed Kordower JH, Brundin P. Propagation of host disease to grafted neurons: accumulating evidence. Exp Neurol. 2009;220:224–5.PubMed
18.
Zurück zum Zitat Angot E, Brundin P. Dissecting the potential molecular mechanisms underlying alpha-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat Disord. 2009;3:S143–7. Angot E, Brundin P. Dissecting the potential molecular mechanisms underlying alpha-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat Disord. 2009;3:S143–7.
19.
20.
21.
Zurück zum Zitat Angot E, Steiner JA, Hansen C, et al. Are synucleinopathies prion-like disorders? Lancet Neurol. 2010;9:1128–38.PubMed Angot E, Steiner JA, Hansen C, et al. Are synucleinopathies prion-like disorders? Lancet Neurol. 2010;9:1128–38.PubMed
22.••
Zurück zum Zitat Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–53. This paper first revealed that intrastriatal inoculation of synthetic alpha-synuclein fibrils led to the cell-to-cell transmission of pathologic alpha-synuclein in non-transgenic mice. (1) Synthetic alpha-synuclein fibrils can promote fibrillization of monomeric alpha-synuclein that likes the feature of prion protein (PrP SC ). (2) Misfolded form of alpha-synuclein can spread from one neuron to another like prion protein (PrP SC ), acting as “seeds” that eventually affect most of the interconnected cells. (3) Lewy pathology accumulation resulted in progressive loss of dopamine neurons and motor deficits. This study explains the neurodegenerative mechanism of Parkinson’s disease. Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–53. This paper first revealed that intrastriatal inoculation of synthetic alpha-synuclein fibrils led to the cell-to-cell transmission of pathologic alpha-synuclein in non-transgenic mice. (1) Synthetic alpha-synuclein fibrils can promote fibrillization of monomeric alpha-synuclein that likes the feature of prion protein (PrP SC ). (2) Misfolded form of alpha-synuclein can spread from one neuron to another like prion protein (PrP SC ), acting as “seeds” that eventually affect most of the interconnected cells. (3) Lewy pathology accumulation resulted in progressive loss of dopamine neurons and motor deficits. This study explains the neurodegenerative mechanism of Parkinson’s disease.
23.•
Zurück zum Zitat Recasens A, Dehay B, Bové J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75(3):351–62. This paper demonstrated that intranigral or intrastriatal inoculations of PD-derived LB extracts resulted in progressive nigrostriatal neurodegeneration starting at striatal dopaminergic terminals. This study further indicated that the Lewy body is pathogen and dopaminergic neurodegeneration starts from terminals.PubMed Recasens A, Dehay B, Bové J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75(3):351–62. This paper demonstrated that intranigral or intrastriatal inoculations of PD-derived LB extracts resulted in progressive nigrostriatal neurodegeneration starting at striatal dopaminergic terminals. This study further indicated that the Lewy body is pathogen and dopaminergic neurodegeneration starts from terminals.PubMed
24.
Zurück zum Zitat Wu KP, Weinstock DS, Narayanan C, et al. Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations. J Mol Biol. 2009;391:784–96.PubMedCentralPubMed Wu KP, Weinstock DS, Narayanan C, et al. Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations. J Mol Biol. 2009;391:784–96.PubMedCentralPubMed
25.
Zurück zum Zitat Vekrellis K, Rideout HJ, Stefanis L. Neurobiology of alpha-synuclein. Mol Neurobiol. 2004;30:1–21.PubMed Vekrellis K, Rideout HJ, Stefanis L. Neurobiology of alpha-synuclein. Mol Neurobiol. 2004;30:1–21.PubMed
26.
Zurück zum Zitat Chu Y, Kordower JH. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis. 2007;25(1):134–49.PubMed Chu Y, Kordower JH. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis. 2007;25(1):134–49.PubMed
27.
Zurück zum Zitat Pan KM, Baldwin M, Nguyen J, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993;90:10962–6.PubMedCentralPubMed Pan KM, Baldwin M, Nguyen J, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993;90:10962–6.PubMedCentralPubMed
28.
Zurück zum Zitat Wood SJ, Wypych J, Steavenson S, et al. Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem. 1999;274(28):19509–12.PubMed Wood SJ, Wypych J, Steavenson S, et al. Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem. 1999;274(28):19509–12.PubMed
29.
Zurück zum Zitat Yonetani M, Nonaka T, Masuda M, et al. Conversion of wild-type alpha-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem. 2009;284:7940–50.PubMedCentralPubMed Yonetani M, Nonaka T, Masuda M, et al. Conversion of wild-type alpha-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem. 2009;284:7940–50.PubMedCentralPubMed
30.
Zurück zum Zitat Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem. 2001;276:10737–44.PubMed Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem. 2001;276:10737–44.PubMed
31.
Zurück zum Zitat Takahashi T, Yamashita H, Nakamura T, et al. Tyrosine 125 of alpha-synuclein plays a critical role for dimerization following nitrative stress. Brain Res. 2002;938:73–80.PubMed Takahashi T, Yamashita H, Nakamura T, et al. Tyrosine 125 of alpha-synuclein plays a critical role for dimerization following nitrative stress. Brain Res. 2002;938:73–80.PubMed
32.
Zurück zum Zitat Zhou W, Freed CR. Tyrosine-to-cysteine modification of human alpha-synuclein enhances protein aggregation and cellular toxicity. J Biol Chem. 2004;279:10128–35.PubMed Zhou W, Freed CR. Tyrosine-to-cysteine modification of human alpha-synuclein enhances protein aggregation and cellular toxicity. J Biol Chem. 2004;279:10128–35.PubMed
33.
Zurück zum Zitat Krishnan S, Chi EY, Wood SJ, et al. Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease alpha-synuclein fibrillogenesis. Biochemistry. 2003;42:829–37.PubMed Krishnan S, Chi EY, Wood SJ, et al. Oxidative dimer formation is the critical rate-limiting step for Parkinson’s disease alpha-synuclein fibrillogenesis. Biochemistry. 2003;42:829–37.PubMed
34.
Zurück zum Zitat Pivato M, De Franceschi G, Tosatto L, et al. Covalent α-synuclein dimers: chemico-physical and aggregation properties. PLoS One. 2012;7:e50027.PubMedCentralPubMed Pivato M, De Franceschi G, Tosatto L, et al. Covalent α-synuclein dimers: chemico-physical and aggregation properties. PLoS One. 2012;7:e50027.PubMedCentralPubMed
35.
Zurück zum Zitat Serpell LC, Berriman J, Jakes R, et al. Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci U S A. 2000;97:4897–902.PubMedCentralPubMed Serpell LC, Berriman J, Jakes R, et al. Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci U S A. 2000;97:4897–902.PubMedCentralPubMed
36.
Zurück zum Zitat Crowther RA, Daniel SE, Goedert M. Characterisation of isolated alpha-synuclein filaments from substantia nigra of Parkinson’s disease brain. Neurosci Lett. 2000;292:128–30.PubMed Crowther RA, Daniel SE, Goedert M. Characterisation of isolated alpha-synuclein filaments from substantia nigra of Parkinson’s disease brain. Neurosci Lett. 2000;292:128–30.PubMed
37.
Zurück zum Zitat Sacino AN, Thomas MA, Ceballos-Diaz C, et al. Conformational templating of α-synuclein aggregates in neuronal-glial cultures. Mol Neurodegener. 2013;8:1–17. Sacino AN, Thomas MA, Ceballos-Diaz C, et al. Conformational templating of α-synuclein aggregates in neuronal-glial cultures. Mol Neurodegener. 2013;8:1–17.
38.
Zurück zum Zitat Luk KC, Song C, O’Brien P. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A. 2009;106:20051–6.PubMedCentralPubMed Luk KC, Song C, O’Brien P. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A. 2009;106:20051–6.PubMedCentralPubMed
39.•
Zurück zum Zitat Sacino AN, Brooks M, McKinney AB, et al. Brain injection of α-synuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker. J Neurosci. 2014;34:12368–78. This paper demonstrates that intracerebral injection of recombinant amyloidogenic or soluble alpha-synuclein induces extensive alpha-synuclein intracellular inclusion pathology. The pathology includes a broader disruption of proteostasis and glial activation. This study suggests that exogenous amyloidogenic or soluble alpha-synuclein seeding intrigued multiple interdependent mechanisms of synucleinopathy.PubMed Sacino AN, Brooks M, McKinney AB, et al. Brain injection of α-synuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker. J Neurosci. 2014;34:12368–78. This paper demonstrates that intracerebral injection of recombinant amyloidogenic or soluble alpha-synuclein induces extensive alpha-synuclein intracellular inclusion pathology. The pathology includes a broader disruption of proteostasis and glial activation. This study suggests that exogenous amyloidogenic or soluble alpha-synuclein seeding intrigued multiple interdependent mechanisms of synucleinopathy.PubMed
40.
Zurück zum Zitat Lee HJ, Suk JE, Bae EJ, et al. Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol. 2008;40:1835–49.PubMed Lee HJ, Suk JE, Bae EJ, et al. Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol. 2008;40:1835–49.PubMed
41.
Zurück zum Zitat Freundt EC, Maynard N, Clancy EK, et al. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol. 2012;72:517–24.PubMedCentralPubMed Freundt EC, Maynard N, Clancy EK, et al. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol. 2012;72:517–24.PubMedCentralPubMed
42.
Zurück zum Zitat Lee HJ, Patel S, Lee SJ. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. Neuroscience. 2005;25:6016–24.PubMed Lee HJ, Patel S, Lee SJ. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. Neuroscience. 2005;25:6016–24.PubMed
43.
Zurück zum Zitat Nishioka K, Hayashi S, Farrer MJ, et al. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol. 2006;59:298–309.PubMed Nishioka K, Hayashi S, Farrer MJ, et al. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol. 2006;59:298–309.PubMed
44.
Zurück zum Zitat Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841.PubMed Singleton AB, Farrer M, Johnson J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841.PubMed
45.
Zurück zum Zitat Kirik D, Björklund A. Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. Trends Neurosci. 2003;26:386–92.PubMed Kirik D, Björklund A. Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. Trends Neurosci. 2003;26:386–92.PubMed
46.
Zurück zum Zitat Chu Y, Goldman JG, Kelly L, et al. Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease. Neurobiol Dis. 2014;69:1–14.PubMed Chu Y, Goldman JG, Kelly L, et al. Abnormal alpha-synuclein reduces nigral voltage-dependent anion channel 1 in sporadic and experimental Parkinson’s disease. Neurobiol Dis. 2014;69:1–14.PubMed
47.
Zurück zum Zitat Gründemann J, Schlaudraff F, Haeckel O, Liss B. Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease. Nucleic Acids Res. 2008;36(7):e38.PubMedCentralPubMed Gründemann J, Schlaudraff F, Haeckel O, Liss B. Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease. Nucleic Acids Res. 2008;36(7):e38.PubMedCentralPubMed
48.
Zurück zum Zitat Winkler S, Hagenah J, Lincoln S, et al. Alpha-synuclein and Parkinson disease susceptibility. Neurology. 2007;69:1745–50.PubMed Winkler S, Hagenah J, Lincoln S, et al. Alpha-synuclein and Parkinson disease susceptibility. Neurology. 2007;69:1745–50.PubMed
49.
Zurück zum Zitat Fuchs J, Tichopad A, Golub Y, et al. Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain. FASEB J. 2008;22:1327–34.PubMed Fuchs J, Tichopad A, Golub Y, et al. Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain. FASEB J. 2008;22:1327–34.PubMed
50.
Zurück zum Zitat Mata IF, Shi M, Agarwal P, et al. SNCA variant associated with Parkinson disease and plasma alpha-synuclein level. Arch Neurol. 2010;67:1350–6.PubMedCentralPubMed Mata IF, Shi M, Agarwal P, et al. SNCA variant associated with Parkinson disease and plasma alpha-synuclein level. Arch Neurol. 2010;67:1350–6.PubMedCentralPubMed
51.
Zurück zum Zitat Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7.PubMed Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7.PubMed
52.
Zurück zum Zitat Simon-Sanches J. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. 2009. Simon-Sanches J. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. 2009.
53.
Zurück zum Zitat Simón-Sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12.PubMedCentralPubMed Simón-Sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41:1308–12.PubMedCentralPubMed
54.
Zurück zum Zitat Matsumoto L, Takuma H, Tamaoka A, et al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One. 2010;5(11):e15522.PubMedCentralPubMed Matsumoto L, Takuma H, Tamaoka A, et al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One. 2010;5(11):e15522.PubMedCentralPubMed
55.
Zurück zum Zitat Desplats P, Spencer B, Coffee E, et al. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem. 2011;286:9031–7.PubMedCentralPubMed Desplats P, Spencer B, Coffee E, et al. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem. 2011;286:9031–7.PubMedCentralPubMed
56.
Zurück zum Zitat Angeles DC, Gan BH, Onstead L, et al. Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Hum Mutat. 2011;32:1390–7.PubMed Angeles DC, Gan BH, Onstead L, et al. Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Hum Mutat. 2011;32:1390–7.PubMed
57.
Zurück zum Zitat Angeles DC, Ho P, Chua LL, et al. Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Hum Mol Genet. 2014;23:3157–65.PubMed Angeles DC, Ho P, Chua LL, et al. Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Hum Mol Genet. 2014;23:3157–65.PubMed
58.
Zurück zum Zitat Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60.PubMed Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60.PubMed
59.
Zurück zum Zitat Winklhofer KF, Tatzelt J, Haass C. Observing fibrillar assemblies on scrapie-infected cells. EMBO J. 2008;27(2):336–49.PubMedCentralPubMed Winklhofer KF, Tatzelt J, Haass C. Observing fibrillar assemblies on scrapie-infected cells. EMBO J. 2008;27(2):336–49.PubMedCentralPubMed
60.
Zurück zum Zitat Volles MJ, Lansbury Jr PT. Relationships between the sequence of alpha-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol. 2007;366:1510–22.PubMedCentralPubMed Volles MJ, Lansbury Jr PT. Relationships between the sequence of alpha-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol. 2007;366:1510–22.PubMedCentralPubMed
61.
Zurück zum Zitat Gorbatyuk OS, Li S, Sullivan LF, et al. The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci U S A. 2008;105:763–8.PubMedCentralPubMed Gorbatyuk OS, Li S, Sullivan LF, et al. The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci U S A. 2008;105:763–8.PubMedCentralPubMed
62.
Zurück zum Zitat Anderson JP, Walker DE, Goldstein JM, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Clin Epidemiol. 2007;60:300–8.PubMed Anderson JP, Walker DE, Goldstein JM, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Clin Epidemiol. 2007;60:300–8.PubMed
63.
Zurück zum Zitat Wang Y, Shi M, Chung KA, et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci Transl Med. 2012;4(121):121ra20.PubMedCentralPubMed Wang Y, Shi M, Chung KA, et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci Transl Med. 2012;4(121):121ra20.PubMedCentralPubMed
64.
Zurück zum Zitat Shults CW, Rockenstein E, Crews L, et al. Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci. 2005;25:10689–99.PubMed Shults CW, Rockenstein E, Crews L, et al. Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci. 2005;25:10689–99.PubMed
65.
Zurück zum Zitat Sato H, Kato T, Arawaka S. The role of Ser129 phosphorylation of α-synuclein in neurodegeneration of Parkinson’s disease: a review of in vivo models. Rev Neurosci. 2013;24:115–23.PubMed Sato H, Kato T, Arawaka S. The role of Ser129 phosphorylation of α-synuclein in neurodegeneration of Parkinson’s disease: a review of in vivo models. Rev Neurosci. 2013;24:115–23.PubMed
66.
Zurück zum Zitat Lee KW, Chen W, Junn E, et al. Enhanced phosphatase activity attenuates α-synucleinopathy in a mouse model. J Neurosci. 2011;31:6963–71.PubMed Lee KW, Chen W, Junn E, et al. Enhanced phosphatase activity attenuates α-synucleinopathy in a mouse model. J Neurosci. 2011;31:6963–71.PubMed
67.
Zurück zum Zitat Chu Y, Le W, Kompoliti K, et al. Nurr1 in Parkinson’s disease and related disorders. J Comp Neurol. 2006;494:495–514.PubMedCentralPubMed Chu Y, Le W, Kompoliti K, et al. Nurr1 in Parkinson’s disease and related disorders. J Comp Neurol. 2006;494:495–514.PubMedCentralPubMed
68.
Zurück zum Zitat Chu Y, Mickiewicz AL, Kordower JH. α-synuclein aggregation reduces nigral myocyte enhancer factor-2D in idiopathic and experimental Parkinson’s disease. Neurobiol Dis. 2011;41:71–82.PubMed Chu Y, Mickiewicz AL, Kordower JH. α-synuclein aggregation reduces nigral myocyte enhancer factor-2D in idiopathic and experimental Parkinson’s disease. Neurobiol Dis. 2011;41:71–82.PubMed
69.
Zurück zum Zitat Chu Y, Dodiya H, Aebischer P, et al. Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis. 2009;35:385–98.PubMed Chu Y, Dodiya H, Aebischer P, et al. Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis. 2009;35:385–98.PubMed
70.
Zurück zum Zitat Chu Y, Morfini GA, Langhamer LB, et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135:2058–73.PubMed Chu Y, Morfini GA, Langhamer LB, et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012;135:2058–73.PubMed
71.
Zurück zum Zitat Lindersson EK, Højrup P, Gai WP, et al. Alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport. 2004;15:2735–9.PubMed Lindersson EK, Højrup P, Gai WP, et al. Alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport. 2004;15:2735–9.PubMed
72.
Zurück zum Zitat Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev. 2005;15:496–506.PubMed Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev. 2005;15:496–506.PubMed
73.
74.
Zurück zum Zitat Jeffrey M, Martin S, González L, et al. Immunohistochemical features of PrP(d) accumulation in natural and experimental goat transmissible spongiform encephalopathies. J Comp Pathol. 2006;134:171–81.PubMed Jeffrey M, Martin S, González L, et al. Immunohistochemical features of PrP(d) accumulation in natural and experimental goat transmissible spongiform encephalopathies. J Comp Pathol. 2006;134:171–81.PubMed
75.
Zurück zum Zitat Press CM, Heggebø R, Espenes A. Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Adv Drug Deliv Rev. 2004;56(6):885–99.PubMed Press CM, Heggebø R, Espenes A. Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Adv Drug Deliv Rev. 2004;56(6):885–99.PubMed
76.
Zurück zum Zitat Race R, Oldstone M, Chesebro B. Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: role of prion protein expression in peripheral nerves and spleen. J Virol. 2000;74:828–33.PubMedCentralPubMed Race R, Oldstone M, Chesebro B. Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: role of prion protein expression in peripheral nerves and spleen. J Virol. 2000;74:828–33.PubMedCentralPubMed
77.
Zurück zum Zitat McBride PA, Schulz-Schaeffer WJ, Donaldson M, et al. Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol. 2001;75:9320–7.PubMedCentralPubMed McBride PA, Schulz-Schaeffer WJ, Donaldson M, et al. Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol. 2001;75:9320–7.PubMedCentralPubMed
78.
Zurück zum Zitat Mabbott NA, MacPherson GG. Prions and their lethal journey to the brain. Nat Rev Microbiol. 2006;4:201–11.PubMed Mabbott NA, MacPherson GG. Prions and their lethal journey to the brain. Nat Rev Microbiol. 2006;4:201–11.PubMed
79.
Zurück zum Zitat Rodolfo K, Hässig R, Moya KL, et al. A novel cellular prion protein isoform present in rapid anterograde axonal transport. Neuroreport. 1999;10:3639–44.PubMed Rodolfo K, Hässig R, Moya KL, et al. A novel cellular prion protein isoform present in rapid anterograde axonal transport. Neuroreport. 1999;10:3639–44.PubMed
80.
Zurück zum Zitat Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.PubMed Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.PubMed
81.
Zurück zum Zitat Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol. 2009;201:1–119.PubMed Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol. 2009;201:1–119.PubMed
82.
Zurück zum Zitat Del Tredici K, Braak H. A not entirely benign procedure: progression of Parkinson’s disease. Acta Neuropathol. 2008;115:379–84.PubMed Del Tredici K, Braak H. A not entirely benign procedure: progression of Parkinson’s disease. Acta Neuropathol. 2008;115:379–84.PubMed
83.
Zurück zum Zitat Shannon KM, Keshavarzian A, Dodiya HB, et al. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord. 2012;27:716–9.PubMed Shannon KM, Keshavarzian A, Dodiya HB, et al. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord. 2012;27:716–9.PubMed
84.
Zurück zum Zitat Bloch A, Probst A, Bissig H, et al. Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol. 2006;32:284–95.PubMed Bloch A, Probst A, Bissig H, et al. Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol. 2006;32:284–95.PubMed
85.
Zurück zum Zitat Braak H, Sastre M, Bohl JR, et al. Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 2007;113:421–9.PubMed Braak H, Sastre M, Bohl JR, et al. Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 2007;113:421–9.PubMed
86.
Zurück zum Zitat Minguez-Castellanos A, Chamorro CE, Escamilla-Sevilla F, et al. Do alpha-synuclein aggregates in autonomic plexuses predate Lewy body disorders?: a cohort study. Neurology. 2007;68:2012–8.PubMed Minguez-Castellanos A, Chamorro CE, Escamilla-Sevilla F, et al. Do alpha-synuclein aggregates in autonomic plexuses predate Lewy body disorders?: a cohort study. Neurology. 2007;68:2012–8.PubMed
87.
Zurück zum Zitat Cersosimo MG, Benarroch EE. Autonomic involvement in Parkinson’s disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci. 2012;313:57–63.PubMed Cersosimo MG, Benarroch EE. Autonomic involvement in Parkinson’s disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci. 2012;313:57–63.PubMed
88.
Zurück zum Zitat Ulusoy A, Rusconi R, Pérez-Revuelta BI, et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol Med. 2013;5:1051–9.PubMedCentralPubMed Ulusoy A, Rusconi R, Pérez-Revuelta BI, et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol Med. 2013;5:1051–9.PubMedCentralPubMed
89.
Zurück zum Zitat Beach TG, Adler CH, Sue LI. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.PubMedCentralPubMed Beach TG, Adler CH, Sue LI. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.PubMedCentralPubMed
90.
Zurück zum Zitat Ansari KA, Johnson A. Olfactory function in patients with Parkinson’s disease. J Chronic Dis. 1975;28:493–7.PubMed Ansari KA, Johnson A. Olfactory function in patients with Parkinson’s disease. J Chronic Dis. 1975;28:493–7.PubMed
91.
Zurück zum Zitat Constantinidis J, de Ajuriaguerra J. Familial syndrome with parkinsonian tremor and anosmia and its therapy with L-dopa associated with a decarboxylase inhibitor. Therapeutique. 1970;46:263–9.PubMed Constantinidis J, de Ajuriaguerra J. Familial syndrome with parkinsonian tremor and anosmia and its therapy with L-dopa associated with a decarboxylase inhibitor. Therapeutique. 1970;46:263–9.PubMed
92.
Zurück zum Zitat Kissel P, Andre JM. Parkinson’s disease and anosmia in monozygotic twin sisters. J Genet Hum. 1976;24(2):113–7.PubMed Kissel P, Andre JM. Parkinson’s disease and anosmia in monozygotic twin sisters. J Genet Hum. 1976;24(2):113–7.PubMed
93.
Zurück zum Zitat Doty RL, Deems DA, Frye RE, et al. Olfactory sensitivity, nasal resistance, and autonomic function in patients with multiple chemical sensitivities. Arch Otolaryngol Head Neck Surg. 1988;114:1422–7.PubMed Doty RL, Deems DA, Frye RE, et al. Olfactory sensitivity, nasal resistance, and autonomic function in patients with multiple chemical sensitivities. Arch Otolaryngol Head Neck Surg. 1988;114:1422–7.PubMed
94.
Zurück zum Zitat Braak H, Müller CM, Rüb U, et al. Pathology associated with sporadic Parkinson’s disease–where does it end? J Neural Transm Suppl. 2006;70:89–97.PubMed Braak H, Müller CM, Rüb U, et al. Pathology associated with sporadic Parkinson’s disease–where does it end? J Neural Transm Suppl. 2006;70:89–97.PubMed
95.
Zurück zum Zitat Del Tredici K, Braak H. Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord. 2012;27:597–607.PubMed Del Tredici K, Braak H. Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord. 2012;27:597–607.PubMed
96.
Zurück zum Zitat Tolosa E, Pont-Sunyer C. Progress in defining the premotor phase of Parkinson’s disease. J Neurol Sci. 2011;310:4–8.PubMed Tolosa E, Pont-Sunyer C. Progress in defining the premotor phase of Parkinson’s disease. J Neurol Sci. 2011;310:4–8.PubMed
97.
Zurück zum Zitat Kordower HJ, Chu Y, Muller S, et al. Intrastriatal alpha synuclein preformed fibrils in macaque monkeys: neuronal transport, long-term imaging and neuropathologic changes. Soc Neurosci 2014; abstract 409. 07/I11. Kordower HJ, Chu Y, Muller S, et al. Intrastriatal alpha synuclein preformed fibrils in macaque monkeys: neuronal transport, long-term imaging and neuropathologic changes. Soc Neurosci 2014; abstract 409. 07/I11.
98.
Zurück zum Zitat Rosenbluth J, Wissig SL. The distribution of exogenous ferritin in toda spinal ganglia and the mechanism of its uptake by neurons. J Cell Biol. 1964;23:307–25.PubMedCentralPubMed Rosenbluth J, Wissig SL. The distribution of exogenous ferritin in toda spinal ganglia and the mechanism of its uptake by neurons. J Cell Biol. 1964;23:307–25.PubMedCentralPubMed
99.
Zurück zum Zitat Schmid SL, Fuchs R, Male P, Mellman I. Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes. Cell. 1988;52:73–83.PubMed Schmid SL, Fuchs R, Male P, Mellman I. Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes. Cell. 1988;52:73–83.PubMed
100.
Zurück zum Zitat Neutra MR, Ciechanover A, Owen LS, Lodish HF. Intracellular transport of transferrin- and asialoorosomucoid-colloidal gold conjugates to lysosomes after receptor-mediated endocytosis. Histochem Cytochem. 1985;33:1134–44. Neutra MR, Ciechanover A, Owen LS, Lodish HF. Intracellular transport of transferrin- and asialoorosomucoid-colloidal gold conjugates to lysosomes after receptor-mediated endocytosis. Histochem Cytochem. 1985;33:1134–44.
101.
Zurück zum Zitat Auluck PK, Caraveo G, Lindquist S. α-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol. 2010;26:211–33.PubMed Auluck PK, Caraveo G, Lindquist S. α-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol. 2010;26:211–33.PubMed
102.
Zurück zum Zitat Kawamata H, McLean PJ, Sharma N, Hyman BT. Interaction of alpha-synuclein and synphilin-1: effect of Parkinson’s disease-associated mutations. J Neurochem. 2001;77:929–34.PubMed Kawamata H, McLean PJ, Sharma N, Hyman BT. Interaction of alpha-synuclein and synphilin-1: effect of Parkinson’s disease-associated mutations. J Neurochem. 2001;77:929–34.PubMed
103.
Zurück zum Zitat Ribeiro CS, Carneiro K, Ross CA, et al. Synphilin-1 is developmentally localized to synaptic terminals, and its association with synaptic vesicles is modulated by alpha-synuclein. J Biol Chem. 2002;277:23927–33.PubMed Ribeiro CS, Carneiro K, Ross CA, et al. Synphilin-1 is developmentally localized to synaptic terminals, and its association with synaptic vesicles is modulated by alpha-synuclein. J Biol Chem. 2002;277:23927–33.PubMed
104.
Zurück zum Zitat Wakabayashi K, Engelender S, Tanaka Y, et al. Immunocytochemical localization of synphilin-1, an alpha-synuclein-associated protein, in neurodegenerative disorders. Acta Neuropathol. 2002;103:209–14.PubMed Wakabayashi K, Engelender S, Tanaka Y, et al. Immunocytochemical localization of synphilin-1, an alpha-synuclein-associated protein, in neurodegenerative disorders. Acta Neuropathol. 2002;103:209–14.PubMed
105.
Zurück zum Zitat Engelender S, Kaminsky Z, Guo X, et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet. 1999;22:110–4.PubMed Engelender S, Kaminsky Z, Guo X, et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet. 1999;22:110–4.PubMed
106.
Zurück zum Zitat Neystat M, Rzhetskaya M, Kholodilov N, Burke RE. Analysis of synphilin-1 and synuclein interactions by yeast two-hybrid beta-galactosidase liquid assay. Neurosci Lett. 2002;325:119–23.PubMed Neystat M, Rzhetskaya M, Kholodilov N, Burke RE. Analysis of synphilin-1 and synuclein interactions by yeast two-hybrid beta-galactosidase liquid assay. Neurosci Lett. 2002;325:119–23.PubMed
107.
Zurück zum Zitat Alvarez-Erviti L, Seow Y, Schapira AH, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis. 2011;42(3):360–7.PubMedCentralPubMed Alvarez-Erviti L, Seow Y, Schapira AH, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis. 2011;42(3):360–7.PubMedCentralPubMed
108.
Zurück zum Zitat Lee HJ, Suk JE, Patrick C, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285:9262–72.PubMedCentralPubMed Lee HJ, Suk JE, Patrick C, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285:9262–72.PubMedCentralPubMed
109.
Zurück zum Zitat Block ML, Hong JS. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans. 2007;35:1127–32.PubMed Block ML, Hong JS. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans. 2007;35:1127–32.PubMed
110.
Zurück zum Zitat Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29(8):357–65.PubMed Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008;29(8):357–65.PubMed
111.
Zurück zum Zitat Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8:382–97.PubMed Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8:382–97.PubMed
112.
Zurück zum Zitat Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007;208:1–25.PubMedCentralPubMed Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007;208:1–25.PubMedCentralPubMed
113.
Zurück zum Zitat Béraud D, Twomey M, Bloom B, et al. α-Synuclein alters toll-like receptor expression. Front Neurosci. 2011;5:80.PubMedCentralPubMed Béraud D, Twomey M, Bloom B, et al. α-Synuclein alters toll-like receptor expression. Front Neurosci. 2011;5:80.PubMedCentralPubMed
114.
Zurück zum Zitat Roodveldt C, Christodoulou J, Dobson CM. Immunological features of alpha-synuclein in Parkinson’s disease. J Cell Mol Med. 2008;12:1820–9.PubMed Roodveldt C, Christodoulou J, Dobson CM. Immunological features of alpha-synuclein in Parkinson’s disease. J Cell Mol Med. 2008;12:1820–9.PubMed
115.
Zurück zum Zitat Zhang W, Wang T, Pei Z, et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 2005;19:533–42.PubMed Zhang W, Wang T, Pei Z, et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 2005;19:533–42.PubMed
116.
Zurück zum Zitat Reynolds AD, Glanzer JG, Kadiu I, et al. Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem. 2008;104:1504–25.PubMed Reynolds AD, Glanzer JG, Kadiu I, et al. Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem. 2008;104:1504–25.PubMed
117.
Zurück zum Zitat Theodore S, Cao S, McLean PJ, Standaert DG. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol. 2008;67(12):1149–58.PubMedCentralPubMed Theodore S, Cao S, McLean PJ, Standaert DG. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol. 2008;67(12):1149–58.PubMedCentralPubMed
118.
Zurück zum Zitat Federico A, Cardaioli E, Da Pozzo P, et al. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322:254–62.PubMed Federico A, Cardaioli E, Da Pozzo P, et al. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322:254–62.PubMed
119.
Zurück zum Zitat Su X, Federoff HJ, Maguire-Zeiss KA. Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res. 2009;16:238–54.PubMedCentralPubMed Su X, Federoff HJ, Maguire-Zeiss KA. Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res. 2009;16:238–54.PubMedCentralPubMed
120.
Zurück zum Zitat Alvarez-Erviti L, Couch Y, Richardson J, et al. Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neurosci Res. 2011;69:337–42.PubMed Alvarez-Erviti L, Couch Y, Richardson J, et al. Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neurosci Res. 2011;69:337–42.PubMed
121.
Zurück zum Zitat Ferrari CC, Pott Godoy MC, Tarelli R, et al. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 2006;24:183–93.PubMed Ferrari CC, Pott Godoy MC, Tarelli R, et al. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 2006;24:183–93.PubMed
122.
Zurück zum Zitat Couch Y, Alvarez-Erviti L, Sibson NR, et al. The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation. 2011;8:166.PubMedCentralPubMed Couch Y, Alvarez-Erviti L, Sibson NR, et al. The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation. 2011;8:166.PubMedCentralPubMed
123.
Zurück zum Zitat Danielson SR, Held JM, Schilling B, et al. Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal Chem. 2009;81:7823–8.PubMedCentralPubMed Danielson SR, Held JM, Schilling B, et al. Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal Chem. 2009;81:7823–8.PubMedCentralPubMed
124.
Zurück zum Zitat Gao HM, Kotzbauer PT, Uryu K, et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci. 2008;28:7687–98.PubMedCentralPubMed Gao HM, Kotzbauer PT, Uryu K, et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci. 2008;28:7687–98.PubMedCentralPubMed
125.
Zurück zum Zitat Benner EJ, Banerjee R, Reynolds AD, et al. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One. 2008;3:e1376.PubMedCentralPubMed Benner EJ, Banerjee R, Reynolds AD, et al. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One. 2008;3:e1376.PubMedCentralPubMed
126.
Zurück zum Zitat Tanaka S, Ishii A, Ohtaki H, et al. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflammation. 2013;10:143.PubMedCentralPubMed Tanaka S, Ishii A, Ohtaki H, et al. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflammation. 2013;10:143.PubMedCentralPubMed
127.
Zurück zum Zitat Kelly LP, Carvey PM, Keshavarzian A, et al. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord. 2014;29:999–1009.PubMed Kelly LP, Carvey PM, Keshavarzian A, et al. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord. 2014;29:999–1009.PubMed
128.
Zurück zum Zitat Gao HM, Jiang J, Wilson B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem. 2002;81:1285–97.PubMed Gao HM, Jiang J, Wilson B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem. 2002;81:1285–97.PubMed
129.
Zurück zum Zitat Ling Z, Zhu Y, Tong C, et al. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp Neurol. 2006;199:499–512.PubMed Ling Z, Zhu Y, Tong C, et al. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp Neurol. 2006;199:499–512.PubMed
130.
Zurück zum Zitat Qin J, Goswami R, Balabanov R, Dawson G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J Neurosci Res. 2007;85:977–84.PubMed Qin J, Goswami R, Balabanov R, Dawson G. Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain. J Neurosci Res. 2007;85:977–84.PubMed
131.
Zurück zum Zitat Zhou Y, Zhang Y, Li J, et al. A comprehensive study on long-term injury to nigral dopaminergic neurons following intracerebroventricular injection of lipopolysaccharide in rats. J Neurochem. 2012;123:771–80.PubMed Zhou Y, Zhang Y, Li J, et al. A comprehensive study on long-term injury to nigral dopaminergic neurons following intracerebroventricular injection of lipopolysaccharide in rats. J Neurochem. 2012;123:771–80.PubMed
132.
Zurück zum Zitat He Q, Yu W, Wu J, et al. Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS One. 2013;8:e78418.PubMedCentralPubMed He Q, Yu W, Wu J, et al. Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS One. 2013;8:e78418.PubMedCentralPubMed
133.
Zurück zum Zitat Tokuda T, Qureshi MM, Ardah MT, et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology. 2010;75:1766–72.PubMed Tokuda T, Qureshi MM, Ardah MT, et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology. 2010;75:1766–72.PubMed
134.
Zurück zum Zitat Park MJ, Cheon SM, Bae HR, et al. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J Clin Neurol. 2011;7(4):215–22.PubMedCentralPubMed Park MJ, Cheon SM, Bae HR, et al. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J Clin Neurol. 2011;7(4):215–22.PubMedCentralPubMed
135.
Zurück zum Zitat Compta Y, Valente T, Saura J, et al. Correlates of cerebrospinal fluid levels of oligomeric- and total-α-synuclein in premotor, motor and dementia stages of Parkinson’s disease. J Neurol. 2014 Nov 8. [Epub ahead of print]. Compta Y, Valente T, Saura J, et al. Correlates of cerebrospinal fluid levels of oligomeric- and total-α-synuclein in premotor, motor and dementia stages of Parkinson’s disease. J Neurol. 2014 Nov 8. [Epub ahead of print].
136.
Zurück zum Zitat Brown DR. Oligomeric alpha-synuclein and its role in neuronal death. IUBMB Life. 2010;62:334–9.PubMed Brown DR. Oligomeric alpha-synuclein and its role in neuronal death. IUBMB Life. 2010;62:334–9.PubMed
137.
Zurück zum Zitat Vekrellis K, Xilouri M, Emmanouilidou E, et al. Pathological roles of α-synuclein in neurological disorders. Lancet Neurol. 2011;10:1015–25.PubMed Vekrellis K, Xilouri M, Emmanouilidou E, et al. Pathological roles of α-synuclein in neurological disorders. Lancet Neurol. 2011;10:1015–25.PubMed
138.
Zurück zum Zitat Winner B, Jappelli R, Maji SK, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011;108:4194–9.PubMedCentralPubMed Winner B, Jappelli R, Maji SK, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011;108:4194–9.PubMedCentralPubMed
139.
Zurück zum Zitat Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010;30:6838–51.PubMedCentralPubMed Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci. 2010;30:6838–51.PubMedCentralPubMed
140.
Zurück zum Zitat Su X, Maguire-Zeiss KA, Giuliano R, et al. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging. 2008;29:1690–701.PubMedCentralPubMed Su X, Maguire-Zeiss KA, Giuliano R, et al. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging. 2008;29:1690–701.PubMedCentralPubMed
141.
Zurück zum Zitat Bartels AL, Willemsen AT, Kortekaas R, et al. Decreased blood–brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm. 2008;115:1001–9.PubMedCentralPubMed Bartels AL, Willemsen AT, Kortekaas R, et al. Decreased blood–brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm. 2008;115:1001–9.PubMedCentralPubMed
142.
Zurück zum Zitat Kortekaas R, Leenders KL, van Oostrom JC, et al. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57:176–9.PubMed Kortekaas R, Leenders KL, van Oostrom JC, et al. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57:176–9.PubMed
143.
Zurück zum Zitat Sierks MR, Chatterjee G, McGraw C, et al. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr Biol (Camb). 2011;3:1188–96. Sierks MR, Chatterjee G, McGraw C, et al. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr Biol (Camb). 2011;3:1188–96.
Metadaten
Titel
The Prion Hypothesis of Parkinson’s Disease
verfasst von
Yaping Chu
Jeffrey H. Kordower
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Current Neurology and Neuroscience Reports / Ausgabe 5/2015
Print ISSN: 1528-4042
Elektronische ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-015-0549-x

Weitere Artikel der Ausgabe 5/2015

Current Neurology and Neuroscience Reports 5/2015 Zur Ausgabe

Sleep (M Thorpy, M Billiard, Section Editors)

Sleep Disorders in Multiple Sclerosis. Review

Pediatric Neurology (P Pearl, Section Editor)

Glutamate and GABA Imbalance Following Traumatic Brain Injury

Stroke (HP Adams, Section Editor)

Development of Regional Stroke Programs

Headache (RB Halker, Section Editor)

Migraine Management in Children

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.