Skip to main content
Erschienen in: Current Osteoporosis Reports 2/2012

01.06.2012 | Skeletal Biology (D Burr, Section Editor)

Trabecular Architecture and Vertebral Fragility in Osteoporosis

verfasst von: Aaron J. Fields, Tony M. Keaveny

Erschienen in: Current Osteoporosis Reports | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Osteoporosis heightens vertebral fragility owing to the biomechanical effects of diminished bone structure and composition. These biomechanical effects are only partially explained by loss in bone mass, so additional factors that are independent of bone mass are also thought to play an important role in vertebral fragility. Recent advances in imaging equipment, imaging-processing methods, and computational capacity allow researchers to quantify trabecular architecture in the vertebra at the level of the individual trabecular elements and to derive biomechanics-based measures of architecture that are independent of bone mass and density. These advances have shed light on the role of architecture in vertebral fragility. In addition to the adverse biomechanical consequences associated with trabecular thinning and loss of connectivity, a reduction in the number of vertical trabecular plates appears to be particularly harmful to vertebral strength. In the clinic, detailed architecture analysis is primarily applied to peripheral sites such as the distal radius and tibia. Analysis of trabecular architecture at these peripheral sites has shown mixed results for discriminating between patients with and without a vertebral fracture independent of bone mass, but has the potential to provide unique insight into the effects of therapeutic treatments. Overall, it does appear that trabecular architecture has an independent role on vertebral strength. Additional research is required to determine how and where architecture should be measured in vivo and whether assessment of trabecular architecture in a clinical setting improves prospective fracture risk assessment for the vertebra.
Literatur
1.
Zurück zum Zitat Ebbesen EN, Thomsen JS, Beck-Nielsen H, et al. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone. 1999;25(6):713–24.PubMedCrossRef Ebbesen EN, Thomsen JS, Beck-Nielsen H, et al. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone. 1999;25(6):713–24.PubMedCrossRef
2.
Zurück zum Zitat Hansson T, Roos B, Nachemson A. The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine. 1980;5(1):46–55.PubMedCrossRef Hansson T, Roos B, Nachemson A. The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine. 1980;5(1):46–55.PubMedCrossRef
3.
Zurück zum Zitat Singer K, Edmondston S, Day R, et al. Prediction of thoracic and lumbar vertebral body compressive strength - correlations with bone-mineral density and vertebral region. Bone. 1995;17(2):167–74.PubMedCrossRef Singer K, Edmondston S, Day R, et al. Prediction of thoracic and lumbar vertebral body compressive strength - correlations with bone-mineral density and vertebral region. Bone. 1995;17(2):167–74.PubMedCrossRef
4.
Zurück zum Zitat Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.PubMedCrossRef Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.PubMedCrossRef
5.
Zurück zum Zitat Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.PubMedCrossRef Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.PubMedCrossRef
6.
Zurück zum Zitat Lems WF, Raterman HG, van den Bergh JP, et al. Osteopenia: a diagnostic and therapeutic challenge. Curr Osteoporos Rep. 2011;9(3):167–72.PubMedCrossRef Lems WF, Raterman HG, van den Bergh JP, et al. Osteopenia: a diagnostic and therapeutic challenge. Curr Osteoporos Rep. 2011;9(3):167–72.PubMedCrossRef
8.
Zurück zum Zitat Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39(6):1173–81.PubMedCrossRef Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39(6):1173–81.PubMedCrossRef
9.
Zurück zum Zitat Keaveny TM. Mechanistic approaches to analysis of trabecular bone. Forma. 1997;12:267–75. Keaveny TM. Mechanistic approaches to analysis of trabecular bone. Forma. 1997;12:267–75.
10.
Zurück zum Zitat Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.PubMedCrossRef Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.PubMedCrossRef
11.
Zurück zum Zitat Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am. 2010;48(3):601–21.PubMedCrossRef Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am. 2010;48(3):601–21.PubMedCrossRef
12.
Zurück zum Zitat Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep. 2010;8(4):198–204.PubMedCrossRef Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep. 2010;8(4):198–204.PubMedCrossRef
13.
Zurück zum Zitat Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2(6):595–610.PubMedCrossRef Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2(6):595–610.PubMedCrossRef
14.
Zurück zum Zitat Snyder BD, Piazza S, Edwards WT, Hayes WC. Role of trabecular morphology in the etiology of age-related vertebral fractures. Calcif Tissue Int. 1993;53S(1):S14–22.CrossRef Snyder BD, Piazza S, Edwards WT, Hayes WC. Role of trabecular morphology in the etiology of age-related vertebral fractures. Calcif Tissue Int. 1993;53S(1):S14–22.CrossRef
15.
Zurück zum Zitat Thomsen JS, Ebbesen EN, Mosekilde L. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone. 1998;22(2):153–63.PubMedCrossRef Thomsen JS, Ebbesen EN, Mosekilde L. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone. 1998;22(2):153–63.PubMedCrossRef
16.
Zurück zum Zitat Thomsen JS, Ebbesen EN, Mosekilde L. Predicting human vertebral bone strength by vertebral static histomorphometry. Bone. 2002;30(3):502–8.PubMedCrossRef Thomsen JS, Ebbesen EN, Mosekilde L. Predicting human vertebral bone strength by vertebral static histomorphometry. Bone. 2002;30(3):502–8.PubMedCrossRef
17.
Zurück zum Zitat Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3–11.PubMedCrossRef Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3–11.PubMedCrossRef
18.
Zurück zum Zitat Kuhn JL, Goldstein SA, Feldkamp LA, et al. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990;8(6):833–42.PubMedCrossRef Kuhn JL, Goldstein SA, Feldkamp LA, et al. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990;8(6):833–42.PubMedCrossRef
19.
Zurück zum Zitat Rüegsegger P, Koller B, Müller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int. 1996;58(1):24–9.PubMedCrossRef Rüegsegger P, Koller B, Müller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int. 1996;58(1):24–9.PubMedCrossRef
20.
Zurück zum Zitat Beck JD, Canfield BL, Haddock SM, et al. Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique. Bone. 1997;21(3):281–7.PubMedCrossRef Beck JD, Canfield BL, Haddock SM, et al. Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique. Bone. 1997;21(3):281–7.PubMedCrossRef
21.
Zurück zum Zitat Odgaard A, Andersen K, Melsen F, Gundersen HJ. A direct method for fast three-dimensional serial reconstruction. J Microsc. 1990;159:335–42.PubMedCrossRef Odgaard A, Andersen K, Melsen F, Gundersen HJ. A direct method for fast three-dimensional serial reconstruction. J Microsc. 1990;159:335–42.PubMedCrossRef
22.
Zurück zum Zitat Slyfield Jr CR, Niemeyer KE, Tkachenko EV, et al. Three-dimensional surface texture visualization of bone tissue through epifluorescence-based serial block face imaging. J Microsc. 2009;236(1):52–9.PubMedCrossRef Slyfield Jr CR, Niemeyer KE, Tkachenko EV, et al. Three-dimensional surface texture visualization of bone tissue through epifluorescence-based serial block face imaging. J Microsc. 2009;236(1):52–9.PubMedCrossRef
23.
Zurück zum Zitat Cruz-Orive L, Karlsson L, Larsen S, Wainschtein F. Characterizing structural anisotropy: A new concept. Micron Microscopica Acta. 1992;23:75–6.CrossRef Cruz-Orive L, Karlsson L, Larsen S, Wainschtein F. Characterizing structural anisotropy: A new concept. Micron Microscopica Acta. 1992;23:75–6.CrossRef
24.
Zurück zum Zitat Hildebrand T, Laib A, Müller R, et al. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res. 1999;14(7):1167–74.PubMedCrossRef Hildebrand T, Laib A, Müller R, et al. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res. 1999;14(7):1167–74.PubMedCrossRef
25.
Zurück zum Zitat Odgaard A, Gundersen HJ. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14(2):173–82.PubMedCrossRef Odgaard A, Gundersen HJ. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14(2):173–82.PubMedCrossRef
26.
Zurück zum Zitat Odgaard A, Jensen EB, Gundersen HJ. Estimation of structural anisotropy based on volume orientation. A new concept. J Microsc. 1990;157:149–62.PubMedCrossRef Odgaard A, Jensen EB, Gundersen HJ. Estimation of structural anisotropy based on volume orientation. A new concept. J Microsc. 1990;157:149–62.PubMedCrossRef
27.
Zurück zum Zitat Goldstein SA, Goulet R, McCubbrey D. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int. 1993;53S(1):S127–33.CrossRef Goldstein SA, Goulet R, McCubbrey D. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int. 1993;53S(1):S127–33.CrossRef
28.
Zurück zum Zitat Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008;23(2):223–35.PubMedCrossRef Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008;23(2):223–35.PubMedCrossRef
29.
Zurück zum Zitat Peyrin F, Attali D, Chappard C, Benhamou CL. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis. Medical physics. 2010;37(8):4364–76.PubMedCrossRef Peyrin F, Attali D, Chappard C, Benhamou CL. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis. Medical physics. 2010;37(8):4364–76.PubMedCrossRef
30.
Zurück zum Zitat Stauber M, Müller R. Volumetric spatial decomposition of trabecular bone into rods and plates–a new method for local bone morphometry. Bone. 2006;38(4):475–84.PubMedCrossRef Stauber M, Müller R. Volumetric spatial decomposition of trabecular bone into rods and plates–a new method for local bone morphometry. Bone. 2006;38(4):475–84.PubMedCrossRef
31.
Zurück zum Zitat Goulet RW, Goldstein SA, Ciarelli MJ, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27(4):375–89.PubMedCrossRef Goulet RW, Goldstein SA, Ciarelli MJ, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27(4):375–89.PubMedCrossRef
32.
Zurück zum Zitat Hou FJ, Lang SM, Hoshaw SJ, et al. Human vertebral body apparent and hard tissue stiffness. J Biomech. 1998;31(11):1009–15.PubMedCrossRef Hou FJ, Lang SM, Hoshaw SJ, et al. Human vertebral body apparent and hard tissue stiffness. J Biomech. 1998;31(11):1009–15.PubMedCrossRef
33.
Zurück zum Zitat Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55–60.PubMedCrossRef Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55–60.PubMedCrossRef
34.
Zurück zum Zitat Burr DB. Bone material properties and mineral matrix contributions to fracture risk or age in women and men. J Musculoskelet Neuronal Interact. 2002;2(3):201–4.PubMed Burr DB. Bone material properties and mineral matrix contributions to fracture risk or age in women and men. J Musculoskelet Neuronal Interact. 2002;2(3):201–4.PubMed
35.
Zurück zum Zitat Gross T, Pahr DH, Peyrin F, Zysset PK. Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: a SRmuCT-based finite element study. Comput Methods Biomech Biomed Engin. 2012. Gross T, Pahr DH, Peyrin F, Zysset PK. Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: a SRmuCT-based finite element study. Comput Methods Biomech Biomed Engin. 2012.
36.
Zurück zum Zitat Atkinson PJ. Variation in trabecular structure of vertebrae with age. Calcif Tissue Res. 1967;1(1):24–32.PubMedCrossRef Atkinson PJ. Variation in trabecular structure of vertebrae with age. Calcif Tissue Res. 1967;1(1):24–32.PubMedCrossRef
37.
Zurück zum Zitat Bergot C, Laval JAM, Preteux F, Meunier A. Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif Tissue Int. 1988;43(3):143–9.PubMedCrossRef Bergot C, Laval JAM, Preteux F, Meunier A. Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif Tissue Int. 1988;43(3):143–9.PubMedCrossRef
38.
Zurück zum Zitat Thomsen JS, Ebbesen EN, Mosekilde L. Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone. 2002;31(1):136–42.PubMedCrossRef Thomsen JS, Ebbesen EN, Mosekilde L. Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone. 2002;31(1):136–42.PubMedCrossRef
39.
Zurück zum Zitat Bevill G, Eswaran SK, Gupta A, et al. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone. 2006;39(6):1218–25.PubMedCrossRef Bevill G, Eswaran SK, Gupta A, et al. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone. 2006;39(6):1218–25.PubMedCrossRef
40.
Zurück zum Zitat Guo XE, Kim CH. Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone. 2002;30(2):404–11.PubMedCrossRef Guo XE, Kim CH. Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone. 2002;30(2):404–11.PubMedCrossRef
41.
Zurück zum Zitat Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure. Bone. 1997;21(2):191–9.PubMedCrossRef Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure. Bone. 1997;21(2):191–9.PubMedCrossRef
42.
Zurück zum Zitat Stölken JS, Kinney JH. On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone. 2003;33(4):494–504.PubMedCrossRef Stölken JS, Kinney JH. On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone. 2003;33(4):494–504.PubMedCrossRef
43.
Zurück zum Zitat Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1992;7:221–7.PubMedCrossRef Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1992;7:221–7.PubMedCrossRef
44.
Zurück zum Zitat Myers ER, Wilson SE, Greenspan SL. Vertebral fractures in the elderly occur with falling and bending. J Bone Miner Res. 1996;11(Suppl):S355. Myers ER, Wilson SE, Greenspan SL. Vertebral fractures in the elderly occur with falling and bending. J Bone Miner Res. 1996;11(Suppl):S355.
45.
Zurück zum Zitat Shi X, Liu XS, Wang X, et al. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone. 2010;46(5):1260–6.PubMedCrossRef Shi X, Liu XS, Wang X, et al. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone. 2010;46(5):1260–6.PubMedCrossRef
46.
Zurück zum Zitat Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. 1999;17:346–53.PubMedCrossRef Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. 1999;17:346–53.PubMedCrossRef
47.
Zurück zum Zitat Haddock SM, Yeh OC, Mummaneni PV, et al. Similarity in the fatigue behavior of trabecular bone across site and species. J Biomech. 2004;37(2):181–7.PubMedCrossRef Haddock SM, Yeh OC, Mummaneni PV, et al. Similarity in the fatigue behavior of trabecular bone across site and species. J Biomech. 2004;37(2):181–7.PubMedCrossRef
48.
Zurück zum Zitat Green JO, Wang J, Diab T, et al. Age-related differences in the morphology of microdamage propagation in trabecular bone. J Biomech. 2011;44(15):2659–66.PubMedCrossRef Green JO, Wang J, Diab T, et al. Age-related differences in the morphology of microdamage propagation in trabecular bone. J Biomech. 2011;44(15):2659–66.PubMedCrossRef
49.
Zurück zum Zitat Shi X, Wang X, Niebur GL. Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone. Ann Biomed Eng. 2009;37(2):354–62.PubMedCrossRef Shi X, Wang X, Niebur GL. Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone. Ann Biomed Eng. 2009;37(2):354–62.PubMedCrossRef
50.
Zurück zum Zitat Yeni YN, Zinno MJ, Yerramshetty JS, et al. Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone. Bone. 2011;49(4):886–94.PubMedCrossRef Yeni YN, Zinno MJ, Yerramshetty JS, et al. Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone. Bone. 2011;49(4):886–94.PubMedCrossRef
51.
Zurück zum Zitat Yeh OC, Keaveny TM. Biomechanical effects of intraspecimen variations in trabecular architecture: A three-dimensional finite element study. Bone. 1999;25(2):223–8.PubMedCrossRef Yeh OC, Keaveny TM. Biomechanical effects of intraspecimen variations in trabecular architecture: A three-dimensional finite element study. Bone. 1999;25(2):223–8.PubMedCrossRef
52.
Zurück zum Zitat Parkinson IH, Badiei A, Stauber M et al. Vertebral body bone strength: the contribution of individual trabecular element morphology. Osteoporos Int. 2011. Parkinson IH, Badiei A, Stauber M et al. Vertebral body bone strength: the contribution of individual trabecular element morphology. Osteoporos Int. 2011.
53.
Zurück zum Zitat Stauber M, Rapillard L, van Lenthe GH, et al. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res. 2006;21(4):586–95.PubMedCrossRef Stauber M, Rapillard L, van Lenthe GH, et al. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res. 2006;21(4):586–95.PubMedCrossRef
54.
Zurück zum Zitat • Liu XS, Bevill G, Keaveny TM et al. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech. 2009;42(3):249–56. This study used local architecure analysis and micro-finite element modeling to evaluate the roles of trabecular type (rods vs plates) and orientation on the initiation and progression of failure in vertebral trabecular bone. Results showed that failure initiates at rods and rods fail disproportionally to their number; however, plates contribute significantly to the apparent yield strength because of their larger number and tissue volume. PubMedCrossRef • Liu XS, Bevill G, Keaveny TM et al. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech. 2009;42(3):249–56. This study used local architecure analysis and micro-finite element modeling to evaluate the roles of trabecular type (rods vs plates) and orientation on the initiation and progression of failure in vertebral trabecular bone. Results showed that failure initiates at rods and rods fail disproportionally to their number; however, plates contribute significantly to the apparent yield strength because of their larger number and tissue volume. PubMedCrossRef
55.
Zurück zum Zitat Morgan EF, Bayraktar HH, Yeh OC, et al. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 2004;37(9):1413–20.PubMedCrossRef Morgan EF, Bayraktar HH, Yeh OC, et al. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 2004;37(9):1413–20.PubMedCrossRef
56.
Zurück zum Zitat Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone. 2007;41(6):946–57.PubMedCrossRef Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone. 2007;41(6):946–57.PubMedCrossRef
57.
Zurück zum Zitat Wegrzyn J, Roux JP, Arlot ME et al. Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex-vivo human L3 vertebrae. J Bone Miner Res. 2010. Wegrzyn J, Roux JP, Arlot ME et al. Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex-vivo human L3 vertebrae. J Bone Miner Res. 2010.
58.
Zurück zum Zitat Banse X, Devogelaer JP, Munting E, et al. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone. 2001;28(5):563–71.PubMedCrossRef Banse X, Devogelaer JP, Munting E, et al. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone. 2001;28(5):563–71.PubMedCrossRef
59.
Zurück zum Zitat Thomsen JS, Ebbesen EN, Mosekilde L. Zone-dependent changes in human vertebral trabecular bone: Clinical implications. Bone. 2002;30(5):664–9.PubMedCrossRef Thomsen JS, Ebbesen EN, Mosekilde L. Zone-dependent changes in human vertebral trabecular bone: Clinical implications. Bone. 2002;30(5):664–9.PubMedCrossRef
60.
Zurück zum Zitat Fields AJ, Eswaran SK, Jekir MG, Keaveny TM. Role of trabecular microarchitecture in whole-verterbal body biomechanical behavior. J Bone Miner Res. 2009;29(9):1523–30.CrossRef Fields AJ, Eswaran SK, Jekir MG, Keaveny TM. Role of trabecular microarchitecture in whole-verterbal body biomechanical behavior. J Bone Miner Res. 2009;29(9):1523–30.CrossRef
61.
Zurück zum Zitat Roux J, Wegrzyn J, Arlot M, et al. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex-vivo study. J Bone Miner Res. 2009;25(2):356–61.CrossRef Roux J, Wegrzyn J, Arlot M, et al. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex-vivo study. J Bone Miner Res. 2009;25(2):356–61.CrossRef
62.
Zurück zum Zitat •• Fields AJ, Lee GL, Liu XS et al. Influence of vertical trabeculae on the compressive strength of the human vertebra. J Bone Miner Res. 2011;26(2):263–9. This study combined micro-finite element analysis, experimental testing, and local architecture analysis of cadaver vertebrae to derive a new, biomechanics-based architecture parameter for predicting vertebral strength: the vertical tissue fraction. PubMedCrossRef •• Fields AJ, Lee GL, Liu XS et al. Influence of vertical trabeculae on the compressive strength of the human vertebra. J Bone Miner Res. 2011;26(2):263–9. This study combined micro-finite element analysis, experimental testing, and local architecture analysis of cadaver vertebrae to derive a new, biomechanics-based architecture parameter for predicting vertebral strength: the vertical tissue fraction. PubMedCrossRef
63.
Zurück zum Zitat Mcbroom RJ, Hayes WC, Edwards WT, et al. Prediction of vertebral body compressive fracture using quantitative computed-tomography. J Bone Joint Surg Am. 1985;67A(8):1206–14. Mcbroom RJ, Hayes WC, Edwards WT, et al. Prediction of vertebral body compressive fracture using quantitative computed-tomography. J Bone Joint Surg Am. 1985;67A(8):1206–14.
64.
Zurück zum Zitat Rockoff SD, Sweet E, Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res. 1969;3:163–75.PubMedCrossRef Rockoff SD, Sweet E, Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res. 1969;3:163–75.PubMedCrossRef
65.
Zurück zum Zitat Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res. 2006;21(2):307–14.PubMedCrossRef Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res. 2006;21(2):307–14.PubMedCrossRef
66.
Zurück zum Zitat Homminga J, Van-Rietbergen B, Lochmüller EM, et al. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone. 2004;34(3):510–6.PubMedCrossRef Homminga J, Van-Rietbergen B, Lochmüller EM, et al. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone. 2004;34(3):510–6.PubMedCrossRef
67.
Zurück zum Zitat Eswaran SK, Bayraktar HH, Adams MF, et al. The micro-mechanics of cortical shell removal in the human vertebral body. Comput Method Appl Mech Eng. 2007;196(31):3025–32.CrossRef Eswaran SK, Bayraktar HH, Adams MF, et al. The micro-mechanics of cortical shell removal in the human vertebral body. Comput Method Appl Mech Eng. 2007;196(31):3025–32.CrossRef
68.
Zurück zum Zitat •• Melton LJ, 3rd, Riggs BL, Keaveny TM et al. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res. 2010;25(9):1922–30. This study reported that impaired bone density, structure, and strength distinguish women with mild vertebral deformities from controls. This suggests that mild vertebral deformities may represent early osteoporotic fractures. PubMedCrossRef •• Melton LJ, 3rd, Riggs BL, Keaveny TM et al. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res. 2010;25(9):1922–30. This study reported that impaired bone density, structure, and strength distinguish women with mild vertebral deformities from controls. This suggests that mild vertebral deformities may represent early osteoporotic fractures. PubMedCrossRef
69.
Zurück zum Zitat Delmas PD, Genant HK, Crans GG, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone. 2003;33(4):522–32.PubMedCrossRef Delmas PD, Genant HK, Crans GG, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone. 2003;33(4):522–32.PubMedCrossRef
70.
Zurück zum Zitat Ross PD, Genant HK, Davis JW, et al. Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int. 1993;3(3):120–6.PubMedCrossRef Ross PD, Genant HK, Davis JW, et al. Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int. 1993;3(3):120–6.PubMedCrossRef
71.
Zurück zum Zitat • Wegrzyn J, Roux JP, Arlot ME et al. Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture. J Bone Miner Res. 2011;26(4):739–46. This study reported that vertebrae with reduced trabecular number and increased trabecular separation had lower strength following an isolated overload, highlighting the important role of architecture in vertebral behavior following a simulated mild fracture. PubMedCrossRef • Wegrzyn J, Roux JP, Arlot ME et al. Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture. J Bone Miner Res. 2011;26(4):739–46. This study reported that vertebrae with reduced trabecular number and increased trabecular separation had lower strength following an isolated overload, highlighting the important role of architecture in vertebral behavior following a simulated mild fracture. PubMedCrossRef
72.
Zurück zum Zitat Borah B, Dufresne T, Nurre J, et al. Risedronate reduces intracortical porosity in women with osteoporosis. J Bone Miner Res. 2010;25(1):41–7.PubMedCrossRef Borah B, Dufresne T, Nurre J, et al. Risedronate reduces intracortical porosity in women with osteoporosis. J Bone Miner Res. 2010;25(1):41–7.PubMedCrossRef
73.
Zurück zum Zitat Borah B, Dufresne TE, Chmielewski PA, et al. Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone. 2004;34(4):736–46.PubMedCrossRef Borah B, Dufresne TE, Chmielewski PA, et al. Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone. 2004;34(4):736–46.PubMedCrossRef
74.
Zurück zum Zitat Burghardt AJ, Kazakia GJ, Sode M, et al. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010;25(12):2558–71.PubMedCrossRef Burghardt AJ, Kazakia GJ, Sode M, et al. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010;25(12):2558–71.PubMedCrossRef
75.
Zurück zum Zitat Graeff C, Timm W, Nickelsen TN, et al. Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res. 2007;22(9):1426–33.PubMedCrossRef Graeff C, Timm W, Nickelsen TN, et al. Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res. 2007;22(9):1426–33.PubMedCrossRef
76.
Zurück zum Zitat Macdonald HM, Nishiyama KK, Hanley DA, Boyd SK. Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int. 2011;22(1):357–62.PubMedCrossRef Macdonald HM, Nishiyama KK, Hanley DA, Boyd SK. Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int. 2011;22(1):357–62.PubMedCrossRef
77.
Zurück zum Zitat Rizzoli R, Laroche M, Krieg MA, et al. Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int. 2010;30(10):1341–8.PubMedCrossRef Rizzoli R, Laroche M, Krieg MA, et al. Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int. 2010;30(10):1341–8.PubMedCrossRef
78.
Zurück zum Zitat •• Seeman E, Delmas PD, Hanley DA et al. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010;25(8):1886–94. In this multicenter, longitudinal study using HR-pQCT to monitor treatment effects, these authors report that denosumab had greater antiresorptive efficacy than alendronate. Cortical thickness was preserved or improved at the radius and tibia with both treatments, while cortical bone loss progressed in the control group. PubMedCrossRef •• Seeman E, Delmas PD, Hanley DA et al. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010;25(8):1886–94. In this multicenter, longitudinal study using HR-pQCT to monitor treatment effects, these authors report that denosumab had greater antiresorptive efficacy than alendronate. Cortical thickness was preserved or improved at the radius and tibia with both treatments, while cortical bone loss progressed in the control group. PubMedCrossRef
79.
Zurück zum Zitat Aaron JE, Shore PA, Shore RC, et al. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone. 2000;27(2):277–82.PubMedCrossRef Aaron JE, Shore PA, Shore RC, et al. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone. 2000;27(2):277–82.PubMedCrossRef
80.
Zurück zum Zitat Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–9.PubMedCrossRef Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–9.PubMedCrossRef
81.
Zurück zum Zitat Dempster DW, Cosman F, Kurland ES, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16(10):1846–53.PubMedCrossRef Dempster DW, Cosman F, Kurland ES, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16(10):1846–53.PubMedCrossRef
82.
Zurück zum Zitat Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging. 2007;25(2):390–409.PubMedCrossRef Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging. 2007;25(2):390–409.PubMedCrossRef
83.
Zurück zum Zitat Burghardt AJ, Buie HR, Laib A, et al. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone. 2010;47(3):519–28.PubMedCrossRef Burghardt AJ, Buie HR, Laib A, et al. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone. 2010;47(3):519–28.PubMedCrossRef
84.
Zurück zum Zitat Ito M, Ikeda K, Nishiguchi M, et al. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res. 2005;20(10):1828–36.PubMedCrossRef Ito M, Ikeda K, Nishiguchi M, et al. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res. 2005;20(10):1828–36.PubMedCrossRef
85.
Zurück zum Zitat Liu XS, Zhang XH, Rajapakse CS, et al. Accuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010;25(9):2039–50.PubMedCrossRef Liu XS, Zhang XH, Rajapakse CS, et al. Accuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010;25(9):2039–50.PubMedCrossRef
86.
Zurück zum Zitat MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096–105.PubMedCrossRef MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096–105.PubMedCrossRef
87.
Zurück zum Zitat Banse X, Devogelaer JP, Grynpas M. Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone. 2002;30(6):829–35.PubMedCrossRef Banse X, Devogelaer JP, Grynpas M. Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone. 2002;30(6):829–35.PubMedCrossRef
88.
Zurück zum Zitat Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425–33.PubMedCrossRef Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425–33.PubMedCrossRef
89.
Zurück zum Zitat •• Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S et al. Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res. 2009;24(4):737–43. This study found that, among postmenopausal women with vertebral fractures, reduced cortical and trabecular thickness assessed at the tibia with HR-pQCT was associated with increasing severity and number of vertebral fractures, even after adjusting for age and spine aBMD. PubMedCrossRef •• Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S et al. Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res. 2009;24(4):737–43. This study found that, among postmenopausal women with vertebral fractures, reduced cortical and trabecular thickness assessed at the tibia with HR-pQCT was associated with increasing severity and number of vertebral fractures, even after adjusting for age and spine aBMD. PubMedCrossRef
90.
Zurück zum Zitat Ladinsky GA, Vasilic B, Popescu AM, et al. Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J Bone Miner Res. 2008;23(1):64–74.PubMedCrossRef Ladinsky GA, Vasilic B, Popescu AM, et al. Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J Bone Miner Res. 2008;23(1):64–74.PubMedCrossRef
91.
Zurück zum Zitat Melton 3rd LJ, Riggs BL, Keaveny TM, et al. Structural determinants of vertebral fracture risk. J Bone Miner Res. 2007;22(12):1885–92.PubMedCrossRef Melton 3rd LJ, Riggs BL, Keaveny TM, et al. Structural determinants of vertebral fracture risk. J Bone Miner Res. 2007;22(12):1885–92.PubMedCrossRef
92.
Zurück zum Zitat Eckstein F, Matsuura M, Kuhn V, et al. Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res. 2007;22(6):817–24.PubMedCrossRef Eckstein F, Matsuura M, Kuhn V, et al. Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res. 2007;22(6):817–24.PubMedCrossRef
93.
Zurück zum Zitat Link TM, Bauer J, Kollstedt A, et al. Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol. 2004;39(8):487–97.PubMedCrossRef Link TM, Bauer J, Kollstedt A, et al. Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol. 2004;39(8):487–97.PubMedCrossRef
94.
Zurück zum Zitat Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.PubMedCrossRef Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.PubMedCrossRef
95.
Zurück zum Zitat MacNeil JA, Boyd SK. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2008;30(6):792–9.PubMedCrossRef MacNeil JA, Boyd SK. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2008;30(6):792–9.PubMedCrossRef
96.
Zurück zum Zitat Lam SC, Wald MJ, Rajapakse CS, et al. Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone. 2011;49(4):895–903.PubMedCrossRef Lam SC, Wald MJ, Rajapakse CS, et al. Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone. 2011;49(4):895–903.PubMedCrossRef
97.
Zurück zum Zitat Nicks KM, Amin S, Atkinson EJ et al. Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res. 2011. Nicks KM, Amin S, Atkinson EJ et al. Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res. 2011.
98.
Zurück zum Zitat Szulc P, Boutroy S, Vilayphiou N, et al. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res. 2011;26(6):1358–67.PubMedCrossRef Szulc P, Boutroy S, Vilayphiou N, et al. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res. 2011;26(6):1358–67.PubMedCrossRef
99.
Zurück zum Zitat Fields AJ, Lee GL, Keaveny TM. Mechanisms of initial endplate failure in the human vertebral body. J Biomech. 2010;43:3126–31.PubMedCrossRef Fields AJ, Lee GL, Keaveny TM. Mechanisms of initial endplate failure in the human vertebral body. J Biomech. 2010;43:3126–31.PubMedCrossRef
Metadaten
Titel
Trabecular Architecture and Vertebral Fragility in Osteoporosis
verfasst von
Aaron J. Fields
Tony M. Keaveny
Publikationsdatum
01.06.2012
Verlag
Current Science Inc.
Erschienen in
Current Osteoporosis Reports / Ausgabe 2/2012
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-012-0097-0

Weitere Artikel der Ausgabe 2/2012

Current Osteoporosis Reports 2/2012 Zur Ausgabe

Skeletal Biology (D Burr, Section Editor)

Osteocyte Signaling in Bone

Skeletal Biology (D Burr, Section Editor)

Pathways for Bone Loss in Inflammatory Disease

Skeletal Regulations (D Gaddy, Section Editor)

The NPY System and its Neural and Neuroendocrine Regulation of Bone

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.