Skip to main content
Erschienen in: Current Rheumatology Reports 11/2014

01.11.2014 | Osteoarthritis (MB Goldring, Section Editor)

Imaging Strategies for Assessing Cartilage Composition in Osteoarthritis

verfasst von: Stephen J. Matzat, Feliks Kogan, Grant W. Fong, Garry E. Gold

Erschienen in: Current Rheumatology Reports | Ausgabe 11/2014

Einloggen, um Zugang zu erhalten

Abstract

Efforts to reduce the ever-increasing rates of osteoarthritis (OA) in the developed world require the ability to non-invasively detect the degradation of joint tissues before advanced damage has occurred. This is particularly relevant for damage to articular cartilage because this soft tissue lacks the capacity to repair itself following major damage and is essential to proper joint function. While conventional magnetic resonance imaging (MRI) provides sufficient contrast to visualize articular cartilage morphology, more advanced imaging strategies are necessary for understanding the underlying biochemical composition of cartilage that begins to break down in the earliest stages of OA. This review discusses the biochemical basis and the advantages and disadvantages associated with each of these techniques. Recent implementations for these techniques are touched upon, and future considerations for improving the research and clinical power of these imaging technologies are also discussed.
Literatur
1.
Zurück zum Zitat Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.PubMedPubMedCentralCrossRef Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Kotlarz H, Gunnarsson CL, Fang H, et al. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arthritis Rheum. 2009;60(12):3546–53.PubMedCrossRef Kotlarz H, Gunnarsson CL, Fang H, et al. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arthritis Rheum. 2009;60(12):3546–53.PubMedCrossRef
3.
Zurück zum Zitat Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999;4:D662–70.PubMedCrossRef Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999;4:D662–70.PubMedCrossRef
4.
Zurück zum Zitat Boegard T, Rudling O, Petersson IF, et al. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis. 1998;57(7):401–7.PubMedPubMedCentralCrossRef Boegard T, Rudling O, Petersson IF, et al. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis. 1998;57(7):401–7.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Kijowski R, Blankenbaker DG, Stanton PT, et al. Radiographic findings of osteoarthritis versus arthroscopic findings of articular cartilage degeneration in the tibiofemoral joint. Radiology. 2006;239(3):818–24.PubMedCrossRef Kijowski R, Blankenbaker DG, Stanton PT, et al. Radiographic findings of osteoarthritis versus arthroscopic findings of articular cartilage degeneration in the tibiofemoral joint. Radiology. 2006;239(3):818–24.PubMedCrossRef
6.
Zurück zum Zitat Hodler J, Resnick D. Current status of imaging of articular cartilage. Skelet Radiol. 1996;25(8):703–9.CrossRef Hodler J, Resnick D. Current status of imaging of articular cartilage. Skelet Radiol. 1996;25(8):703–9.CrossRef
7.
Zurück zum Zitat Kaab MJ, Gwynn IA, Notzli HP. Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species. J Anat. 1998;193(Pt 1):23–34.PubMedPubMedCentralCrossRef Kaab MJ, Gwynn IA, Notzli HP. Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species. J Anat. 1998;193(Pt 1):23–34.PubMedPubMedCentralCrossRef
8.
9.
Zurück zum Zitat Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977;36(2):121–9.PubMedPubMedCentralCrossRef Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977;36(2):121–9.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.PubMed Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.PubMed
11.
Zurück zum Zitat Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.PubMedCrossRef Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.PubMedCrossRef
12.
Zurück zum Zitat Bashir A, Gray ML, Hartke J, et al. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41(5):857–65.PubMedCrossRef Bashir A, Gray ML, Hartke J, et al. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41(5):857–65.PubMedCrossRef
13.
Zurück zum Zitat Watanabe A, Wada Y, Obata T, et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology. 2006;239(1):201–8.PubMedCrossRef Watanabe A, Wada Y, Obata T, et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology. 2006;239(1):201–8.PubMedCrossRef
14.
Zurück zum Zitat Wiener E, Settles M, Weirich G, et al. The influence of collagen network integrity on the accumulation of gadolinium-based MR contrast agents in articular cartilage. Röfo. 2011;183(3):226–32.PubMed Wiener E, Settles M, Weirich G, et al. The influence of collagen network integrity on the accumulation of gadolinium-based MR contrast agents in articular cartilage. Röfo. 2011;183(3):226–32.PubMed
15.
Zurück zum Zitat Salo EN, Nissi MJ, Kulmala KA, et al. Diffusion of Gd-DTPA(2)(-) into articular cartilage. Osteoarthr Cartil. 2012;20(2):117–26.PubMedCrossRef Salo EN, Nissi MJ, Kulmala KA, et al. Diffusion of Gd-DTPA(2)(-) into articular cartilage. Osteoarthr Cartil. 2012;20(2):117–26.PubMedCrossRef
16.
Zurück zum Zitat Tiderius CJ, Olsson LE, de Verdier H, et al. Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med. 2001;46(6):1067–71.PubMedCrossRef Tiderius CJ, Olsson LE, de Verdier H, et al. Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med. 2001;46(6):1067–71.PubMedCrossRef
17.
Zurück zum Zitat Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.PubMedCrossRef Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.PubMedCrossRef
18.
Zurück zum Zitat Bittersohl B, Hosalkar HS, Werlen S, et al. Intravenous versus intra-articular delayed gadolinium-enhanced magnetic resonance imaging in the hip joint: a comparative analysis. Investig Radiol. 2010;45(9):538–42.CrossRef Bittersohl B, Hosalkar HS, Werlen S, et al. Intravenous versus intra-articular delayed gadolinium-enhanced magnetic resonance imaging in the hip joint: a comparative analysis. Investig Radiol. 2010;45(9):538–42.CrossRef
19.
Zurück zum Zitat Sigurdsson U, Siversson C, Lammentausta E, et al. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). BMC Musculoskelet Disord. 2014;15(1):226.PubMedPubMedCentralCrossRef Sigurdsson U, Siversson C, Lammentausta E, et al. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). BMC Musculoskelet Disord. 2014;15(1):226.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Trattnig S, Marlovits S, Gebetsroither S, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: Preliminary results. J Magn Reson Imaging. 2007;26(4):974–82.PubMedCrossRef Trattnig S, Marlovits S, Gebetsroither S, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: Preliminary results. J Magn Reson Imaging. 2007;26(4):974–82.PubMedCrossRef
21.
Zurück zum Zitat McKenzie CA, Williams A, Prasad PV, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 T and 3.0 T. J Magn Reson Imaging. 2006;24(4):928–33.PubMedCrossRef McKenzie CA, Williams A, Prasad PV, et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 T and 3.0 T. J Magn Reson Imaging. 2006;24(4):928–33.PubMedCrossRef
22.
Zurück zum Zitat Siversson C, Tiderius CJ, Neuman P, et al. Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle. J Magn Reson Imaging. 2010;31(5):1203–9.PubMedCrossRef Siversson C, Tiderius CJ, Neuman P, et al. Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle. J Magn Reson Imaging. 2010;31(5):1203–9.PubMedCrossRef
23.
Zurück zum Zitat Bron EE, van Tiel J, Smit H, et al. Image registration improves human knee cartilage T1 mapping with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Eur Radiol. 2013;23(1):246–52.PubMedPubMedCentralCrossRef Bron EE, van Tiel J, Smit H, et al. Image registration improves human knee cartilage T1 mapping with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Eur Radiol. 2013;23(1):246–52.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat van Tiel J, Bron EE, Tiderius CJ, et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0 T in patients with early stage osteoarthritis. Eur Radiol. 2013;23(2):496–504.PubMedCrossRef van Tiel J, Bron EE, Tiderius CJ, et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0 T in patients with early stage osteoarthritis. Eur Radiol. 2013;23(2):496–504.PubMedCrossRef
25.
Zurück zum Zitat Mamisch TC, Kain MS, Bittersohl B, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in Femoacetabular impingement. J Orthop Res. 2011;29(9):1305–11.PubMedCrossRef Mamisch TC, Kain MS, Bittersohl B, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in Femoacetabular impingement. J Orthop Res. 2011;29(9):1305–11.PubMedCrossRef
26.
Zurück zum Zitat Stelzeneder D, Mamisch TC, Kress I, et al. Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthr Cartil. 2012;20(7):661–9.PubMedCrossRef Stelzeneder D, Mamisch TC, Kress I, et al. Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthr Cartil. 2012;20(7):661–9.PubMedCrossRef
27.
Zurück zum Zitat Williams A, Shetty SK, Burstein D, et al. Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the first carpometacarpal (1CMC) joint: a feasibility study. Osteoarthr Cartil. 2008;16(4):530–2.PubMedPubMedCentralCrossRef Williams A, Shetty SK, Burstein D, et al. Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the first carpometacarpal (1CMC) joint: a feasibility study. Osteoarthr Cartil. 2008;16(4):530–2.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Neuman P, Tjornstrand J, Svensson J, et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury–comparison with asymptomatic volunteers. Osteoarthr Cartil. 2011;19(8):977–83.PubMedCrossRef Neuman P, Tjornstrand J, Svensson J, et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury–comparison with asymptomatic volunteers. Osteoarthr Cartil. 2011;19(8):977–83.PubMedCrossRef
29.
Zurück zum Zitat Rutgers M, Bartels LW, Tsuchida AI, et al. dGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study. Osteoarthr Cartil. 2012;20(10):1134–41.PubMedCrossRef Rutgers M, Bartels LW, Tsuchida AI, et al. dGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study. Osteoarthr Cartil. 2012;20(10):1134–41.PubMedCrossRef
30.
Zurück zum Zitat Domayer SE, Trattnig S, Stelzeneder D, et al. Delayed gadolinium-enhanced MRI of cartilage in the ankle at 3 T: feasibility and preliminary results after matrix-associated autologous chondrocyte implantation. J Magn Reson Imaging. 2010;31(3):732–9.PubMedCrossRef Domayer SE, Trattnig S, Stelzeneder D, et al. Delayed gadolinium-enhanced MRI of cartilage in the ankle at 3 T: feasibility and preliminary results after matrix-associated autologous chondrocyte implantation. J Magn Reson Imaging. 2010;31(3):732–9.PubMedCrossRef
31.
Zurück zum Zitat Vasiliadis HS, Danielson B, Ljungberg M, et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med. 2010;38(5):943–9.PubMedCrossRef Vasiliadis HS, Danielson B, Ljungberg M, et al. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med. 2010;38(5):943–9.PubMedCrossRef
32.
Zurück zum Zitat Owman H, Ericsson YB, Englund M, et al. Association between delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and joint space narrowing and osteophytes: a cohort study in patients with partial meniscectomy with 11 years of follow-up. Osteoarthritis Cartilage 2014. Owman H, Ericsson YB, Englund M, et al. Association between delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and joint space narrowing and osteophytes: a cohort study in patients with partial meniscectomy with 11 years of follow-up. Osteoarthritis Cartilage 2014.
33.
Zurück zum Zitat Heverhagen JT, Krombach GA, Gizewski E. Application of extracellular gadolinium-based MRI contrast agents and the risk of nephrogenic systemic fibrosis. Röfo. 2014;186(7):661–9.PubMed Heverhagen JT, Krombach GA, Gizewski E. Application of extracellular gadolinium-based MRI contrast agents and the risk of nephrogenic systemic fibrosis. Röfo. 2014;186(7):661–9.PubMed
34.
Zurück zum Zitat Dunn TC, Lu Y, Jin H, et al. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.PubMedCrossRef Dunn TC, Lu Y, Jin H, et al. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.PubMedCrossRef
35.
Zurück zum Zitat Smith HE, Mosher TJ, Dardzinski BJ, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.PubMedCrossRef Smith HE, Mosher TJ, Dardzinski BJ, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.PubMedCrossRef
36.
Zurück zum Zitat Keenan KE, Besier TF, Pauly JM, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9.PubMedPubMedCentralCrossRef Keenan KE, Besier TF, Pauly JM, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Wong CS, Yan CH, Gong NJ, et al. Imaging biomarker with T1rho and T2 mappings in osteoarthritis - In vivo human articular cartilage study. Eur J Radiol. 2013;82(4):647–50.PubMedCrossRef Wong CS, Yan CH, Gong NJ, et al. Imaging biomarker with T1rho and T2 mappings in osteoarthritis - In vivo human articular cartilage study. Eur J Radiol. 2013;82(4):647–50.PubMedCrossRef
38.
Zurück zum Zitat Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.PubMedCrossRef Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol. 2004;8(4):355–68.PubMedCrossRef
39.
Zurück zum Zitat Li X, Han ET, Busse RF, et al. In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008;59(2):298–307.PubMedPubMedCentralCrossRef Li X, Han ET, Busse RF, et al. In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008;59(2):298–307.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Chen W, Takahashi A, Han ET. 3D Quantitative Imaging of T1rho and T2. In: 19th, editor. International Society for Magnetic Resonance in Medicine: Annual Meeting & Exhibition; Montréal 2011. Chen W, Takahashi A, Han ET. 3D Quantitative Imaging of T1rho and T2. In: 19th, editor. International Society for Magnetic Resonance in Medicine: Annual Meeting & Exhibition; Montréal 2011.
41.••
Zurück zum Zitat Staroswiecki E, Granlund KL, Alley MT, et al. Simultaneous estimation of T(2) and apparent diffusion coefficient in human articular cartilage in vivo with a modified three-dimensional double echo steady state (DESS) sequence at 3 T. Magn Reson Med. 2012;67(4):1086–96. This work is of major importance because it shows that parametric information from articular cartilage (T2 and diffusion) can be obtained using a standard MR imaging method that is commonly used for cartilage thickness. Hence, one acquisition can show early changes of matrix degeneration and later cartilage loss.PubMedPubMedCentralCrossRef Staroswiecki E, Granlund KL, Alley MT, et al. Simultaneous estimation of T(2) and apparent diffusion coefficient in human articular cartilage in vivo with a modified three-dimensional double echo steady state (DESS) sequence at 3 T. Magn Reson Med. 2012;67(4):1086–96. This work is of major importance because it shows that parametric information from articular cartilage (T2 and diffusion) can be obtained using a standard MR imaging method that is commonly used for cartilage thickness. Hence, one acquisition can show early changes of matrix degeneration and later cartilage loss.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Baum T, Stehling C, Joseph GB, et al. Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the osteoarthritis initiative. J Magn Reson Imaging. 2012;35(2):370–8.PubMedPubMedCentralCrossRef Baum T, Stehling C, Joseph GB, et al. Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the osteoarthritis initiative. J Magn Reson Imaging. 2012;35(2):370–8.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Pan J, Pialat JB, Joseph T, et al. Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative. Radiology. 2011;261(2):507–15.PubMedPubMedCentralCrossRef Pan J, Pialat JB, Joseph T, et al. Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative. Radiology. 2011;261(2):507–15.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Friedrich KM, Shepard T, de Oliveira VS, et al. T2 measurements of cartilage in osteoarthritis patients with meniscal tears. AJR Am J Roentgenol. 2009;193(5):W411–5.PubMedPubMedCentralCrossRef Friedrich KM, Shepard T, de Oliveira VS, et al. T2 measurements of cartilage in osteoarthritis patients with meniscal tears. AJR Am J Roentgenol. 2009;193(5):W411–5.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Golditz T, Steib S, Pfeifer K, et al. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes. Osteoarthritis Cartilage 2014. Golditz T, Steib S, Pfeifer K, et al. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes. Osteoarthritis Cartilage 2014.
46.
Zurück zum Zitat Marik W, Apprich S, Welsch GH, et al. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3 T MRI: a feasibility study. Eur J Radiol. 2012;81(5):923–7.PubMedCrossRef Marik W, Apprich S, Welsch GH, et al. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3 T MRI: a feasibility study. Eur J Radiol. 2012;81(5):923–7.PubMedCrossRef
47.
Zurück zum Zitat Miese FR, Zilkens C, Holstein A, et al. Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2* mapping. Acta Radiol. 2011;52(1):106–10.PubMed Miese FR, Zilkens C, Holstein A, et al. Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2* mapping. Acta Radiol. 2011;52(1):106–10.PubMed
48.
Zurück zum Zitat Dardzinski BJ, Mosher TJ, Li S, et al. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.PubMedCrossRef Dardzinski BJ, Mosher TJ, Li S, et al. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.PubMedCrossRef
49.
Zurück zum Zitat Carballido-Gamio J, Blumenkrantz G, Lynch JA, et al. Longitudinal analysis of MRI T(2) knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative. Magn Reson Med. 2010;63(2):465–72.PubMedCrossRef Carballido-Gamio J, Blumenkrantz G, Lynch JA, et al. Longitudinal analysis of MRI T(2) knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative. Magn Reson Med. 2010;63(2):465–72.PubMedCrossRef
50.
Zurück zum Zitat Joseph GB, Baum T, Alizai H, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2012;20(7):727–35.PubMedPubMedCentralCrossRef Joseph GB, Baum T, Alizai H, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2012;20(7):727–35.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Shiomi T, Nishii T, Nakata K, et al. Three-dimensional topographical variation of femoral cartilage T2 in healthy volunteer knees. Skelet Radiol. 2013;42(3):363–70.CrossRef Shiomi T, Nishii T, Nakata K, et al. Three-dimensional topographical variation of femoral cartilage T2 in healthy volunteer knees. Skelet Radiol. 2013;42(3):363–70.CrossRef
52.
Zurück zum Zitat Eckstein F, Kwoh CK, Link TM, et al. Imaging research results from the Osteoarthritis Initiative (OAI): a review and lessons learned 10 years after start of enrolment. Ann Rheum Dis. 2014;73(7):1289–300.PubMedCrossRef Eckstein F, Kwoh CK, Link TM, et al. Imaging research results from the Osteoarthritis Initiative (OAI): a review and lessons learned 10 years after start of enrolment. Ann Rheum Dis. 2014;73(7):1289–300.PubMedCrossRef
53.
Zurück zum Zitat Hovis KK, Alizai H, Tham SC, et al. Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI). Skelet Radiol. 2012;41(11):1435–43.CrossRef Hovis KK, Alizai H, Tham SC, et al. Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI). Skelet Radiol. 2012;41(11):1435–43.CrossRef
54.
Zurück zum Zitat Baum T, Joseph GB, Arulanandan A, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2012;64(2):248–55.CrossRef Baum T, Joseph GB, Arulanandan A, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2012;64(2):248–55.CrossRef
55.
Zurück zum Zitat Xia Y, Moody JB, Alhadlaq H. Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn Reson Med. 2002;48(3):460–9.PubMedCrossRef Xia Y, Moody JB, Alhadlaq H. Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn Reson Med. 2002;48(3):460–9.PubMedCrossRef
56.
Zurück zum Zitat Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005;24(1):1–12.PubMedCrossRef Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005;24(1):1–12.PubMedCrossRef
57.
Zurück zum Zitat Duvvuri U, Reddy R, Patel SD, et al. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.PubMedCrossRef Duvvuri U, Reddy R, Patel SD, et al. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.PubMedCrossRef
58.
Zurück zum Zitat Duvvuri U, Kudchodkar S, Reddy R, et al. T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil. 2002;10(11):838–44.PubMedCrossRef Duvvuri U, Kudchodkar S, Reddy R, et al. T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil. 2002;10(11):838–44.PubMedCrossRef
59.
Zurück zum Zitat Regatte RR, Akella SV, Borthakur A, et al. Proton spin-lock ratio imaging for quantitation of glycosaminoglycans in articular cartilage. J Magn Reson Imaging. 2003;17(1):114–21.PubMedCrossRef Regatte RR, Akella SV, Borthakur A, et al. Proton spin-lock ratio imaging for quantitation of glycosaminoglycans in articular cartilage. J Magn Reson Imaging. 2003;17(1):114–21.PubMedCrossRef
60.
Zurück zum Zitat Li X, Cheng J, Lin K, et al. Quantitative MRI using T1rho and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29(3):324–34.PubMedPubMedCentralCrossRef Li X, Cheng J, Lin K, et al. Quantitative MRI using T1rho and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29(3):324–34.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Witschey 2nd WR, Borthakur A, Elliott MA, et al. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186(1):75–85.PubMedPubMedCentralCrossRef Witschey 2nd WR, Borthakur A, Elliott MA, et al. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections. J Magn Reson. 2007;186(1):75–85.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Duvvuri U, Charagundla SR, Kudchodkar SB, et al. Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T–preliminary experience. Radiology. 2001;220(3):822–6.PubMedCrossRef Duvvuri U, Charagundla SR, Kudchodkar SB, et al. Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T–preliminary experience. Radiology. 2001;220(3):822–6.PubMedCrossRef
63.
Zurück zum Zitat Regatte RR, Akella SV, Wheaton AJ, et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004;11(7):741–9.PubMed Regatte RR, Akella SV, Wheaton AJ, et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004;11(7):741–9.PubMed
64.
Zurück zum Zitat Witschey WR, Borthakur A, Elliott MA, et al. T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI. J Magn Reson Imaging. 2008;28(3):744–54.PubMedPubMedCentralCrossRef Witschey WR, Borthakur A, Elliott MA, et al. T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI. J Magn Reson Imaging. 2008;28(3):744–54.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Theologis AA, Haughom B, Liang F, et al. Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surg Sports Traumatol Arthrosc. 2013. Theologis AA, Haughom B, Liang F, et al. Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surg Sports Traumatol Arthrosc. 2013.
66.
Zurück zum Zitat Tsushima H, Okazaki K, Takayama Y, et al. Evaluation of cartilage degradation in arthritis using T1rho magnetic resonance imaging mapping. Rheumatol Int. 2012;32(9):2867–75.PubMedCrossRef Tsushima H, Okazaki K, Takayama Y, et al. Evaluation of cartilage degradation in arthritis using T1rho magnetic resonance imaging mapping. Rheumatol Int. 2012;32(9):2867–75.PubMedCrossRef
67.
Zurück zum Zitat Bolbos RI, Ma CB, Link TM, et al. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 Tesla magnetic resonance imaging. Investig Radiol. 2008;43(11):782–8.CrossRef Bolbos RI, Ma CB, Link TM, et al. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 Tesla magnetic resonance imaging. Investig Radiol. 2008;43(11):782–8.CrossRef
68.
Zurück zum Zitat Rakhra KS, Lattanzio PJ, Cardenas-Blanco A, et al. Can T1-rho MRI detect acetabular cartilage degeneration in femoroacetabular impingement?: a pilot study. J Bone Joint Surg (Br). 2012;94(9):1187–92.CrossRef Rakhra KS, Lattanzio PJ, Cardenas-Blanco A, et al. Can T1-rho MRI detect acetabular cartilage degeneration in femoroacetabular impingement?: a pilot study. J Bone Joint Surg (Br). 2012;94(9):1187–92.CrossRef
69.
Zurück zum Zitat Li X, Ma BC, Bolbos RI, et al. Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. J Magn Reson Imaging. 2008;28(2):453–61.PubMedPubMedCentralCrossRef Li X, Ma BC, Bolbos RI, et al. Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. J Magn Reson Imaging. 2008;28(2):453–61.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Souza RB, Kumar D, Calixto N, et al. Response of knee cartilage T and T relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthr Cartil. 2014. Souza RB, Kumar D, Calixto N, et al. Response of knee cartilage T and T relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthr Cartil. 2014.
71.
Zurück zum Zitat Nishioka H, Hirose J, Nakamura E, et al. T1rho and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging. 2012;35(1):147–55.PubMedCrossRef Nishioka H, Hirose J, Nakamura E, et al. T1rho and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging. 2012;35(1):147–55.PubMedCrossRef
73.
Zurück zum Zitat Pedersen DR, Klocke NF, Thedens DR, et al. Integrating carthage-specific T1rho MRI into knee clinic diagnostic imaging. Iowa Orthop J. 2011;31:99–109.PubMedPubMedCentral Pedersen DR, Klocke NF, Thedens DR, et al. Integrating carthage-specific T1rho MRI into knee clinic diagnostic imaging. Iowa Orthop J. 2011;31:99–109.PubMedPubMedCentral
74.
Zurück zum Zitat Granot J. Sodium imaging of human body organs and extremities in vivo. Radiology. 1988;167(2):547–50.PubMedCrossRef Granot J. Sodium imaging of human body organs and extremities in vivo. Radiology. 1988;167(2):547–50.PubMedCrossRef
75.
Zurück zum Zitat Insko EK, Kaufman JH, Leigh JS, et al. Sodium NMR evaluation of articular cartilage degradation. Magn Reson Med. 1999;41(1):30–4.PubMedCrossRef Insko EK, Kaufman JH, Leigh JS, et al. Sodium NMR evaluation of articular cartilage degradation. Magn Reson Med. 1999;41(1):30–4.PubMedCrossRef
76.
Zurück zum Zitat Borthakur A, Shapiro EM, Beers J, et al. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr Cartil. 2000;8(4):288–93.PubMedCrossRef Borthakur A, Shapiro EM, Beers J, et al. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr Cartil. 2000;8(4):288–93.PubMedCrossRef
77.
Zurück zum Zitat Madelin G, Babb J, Xia D, et al. Articular Cartilage: Evaluation with Fluid-suppressed 7.0-T Sodium MR Imaging in Subjects with and Subjects without Osteoarthritis. Radiology 2013. Madelin G, Babb J, Xia D, et al. Articular Cartilage: Evaluation with Fluid-suppressed 7.0-T Sodium MR Imaging in Subjects with and Subjects without Osteoarthritis. Radiology 2013.
78.
Zurück zum Zitat Chang G, Madelin G, Sherman OH, et al. Improved assessment of cartilage repair tissue using fluid-suppressed (2)(3)Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol. 2012;22(6):1341–9.PubMedPubMedCentralCrossRef Chang G, Madelin G, Sherman OH, et al. Improved assessment of cartilage repair tissue using fluid-suppressed (2)(3)Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol. 2012;22(6):1341–9.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Gold GE, Hargreaves BA, Stevens KJ, et al. Advanced magnetic resonance imaging of articular cartilage. Orthop Clin N Am. 2006;37(3):331–47. vi.CrossRef Gold GE, Hargreaves BA, Stevens KJ, et al. Advanced magnetic resonance imaging of articular cartilage. Orthop Clin N Am. 2006;37(3):331–47. vi.CrossRef
80.
Zurück zum Zitat Du J, Takahashi AM, Chung CB. Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system. J Magn Reson Imaging. 2009;29(2):412–21.PubMedCrossRef Du J, Takahashi AM, Chung CB. Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system. J Magn Reson Imaging. 2009;29(2):412–21.PubMedCrossRef
81.
Zurück zum Zitat Du J, Carl M, Bae WC, et al. Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthr Cartil. 2013;21(1):77–85.PubMedPubMedCentralCrossRef Du J, Carl M, Bae WC, et al. Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthr Cartil. 2013;21(1):77–85.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Williams A, Qian Y, Chu CR. UTE-T2 * mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthr Cartil. 2011;19(1):84–8.PubMedPubMedCentralCrossRef Williams A, Qian Y, Chu CR. UTE-T2 * mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthr Cartil. 2011;19(1):84–8.PubMedPubMedCentralCrossRef
83.•
Zurück zum Zitat Chu CR, Williams AA, West RV, et al. Quantitative Magnetic Resonance Imaging UTE-T2* Mapping of Cartilage and Meniscus Healing After Anatomic Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2014. This work shows that compositional MRI can detect important changes in cartilage and meniscus after joint injury. Chu CR, Williams AA, West RV, et al. Quantitative Magnetic Resonance Imaging UTE-T2* Mapping of Cartilage and Meniscus Healing After Anatomic Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2014. This work shows that compositional MRI can detect important changes in cartilage and meniscus after joint injury.
84.
Zurück zum Zitat Tyler DJ, Robson MD, Henkelman RM, et al. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging. 2007;25(2):279–89.PubMedCrossRef Tyler DJ, Robson MD, Henkelman RM, et al. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging. 2007;25(2):279–89.PubMedCrossRef
85.
Zurück zum Zitat Ling W, Regatte RR, Navon G, et al. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.PubMedPubMedCentralCrossRef Ling W, Regatte RR, Navon G, et al. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Schmitt B, Zbyn S, Stelzeneder D, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology. 2011;260(1):257–64.PubMedCrossRef Schmitt B, Zbyn S, Stelzeneder D, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology. 2011;260(1):257–64.PubMedCrossRef
87.
Zurück zum Zitat Krusche-Mandl I, Schmitt B, Zak L, et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthr Cartil. 2012;20(5):357–63.PubMedCrossRef Krusche-Mandl I, Schmitt B, Zak L, et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthr Cartil. 2012;20(5):357–63.PubMedCrossRef
88.
Zurück zum Zitat Singh A, Haris M, Cai K, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012;68(2):588–94.PubMedPubMedCentralCrossRef Singh A, Haris M, Cai K, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012;68(2):588–94.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Mlynarik V, Sulzbacher I, Bittsansky M, et al. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging. 2003;17(4):440–4.PubMedCrossRef Mlynarik V, Sulzbacher I, Bittsansky M, et al. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage. J Magn Reson Imaging. 2003;17(4):440–4.PubMedCrossRef
90.
Zurück zum Zitat Xia Y, Farquhar T, Burton-Wurster N, et al. Self-diffusion monitors degraded cartilage. Arch Biochem Biophys. 1995;323(2):323–8.PubMedCrossRef Xia Y, Farquhar T, Burton-Wurster N, et al. Self-diffusion monitors degraded cartilage. Arch Biochem Biophys. 1995;323(2):323–8.PubMedCrossRef
91.
Zurück zum Zitat Welsch GH, Trattnig S, Domayer S, et al. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthr Cartil. 2009;17(9):1219–27.PubMedCrossRef Welsch GH, Trattnig S, Domayer S, et al. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthr Cartil. 2009;17(9):1219–27.PubMedCrossRef
92.
Zurück zum Zitat Friedrich KM, Mamisch TC, Plank C, et al. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation. Eur J Radiol. 2010;73(3):622–8.PubMedCrossRef Friedrich KM, Mamisch TC, Plank C, et al. Diffusion-weighted imaging for the follow-up of patients after matrix-associated autologous chondrocyte transplantation. Eur J Radiol. 2010;73(3):622–8.PubMedCrossRef
93.
Zurück zum Zitat Zhu SC, Shi DP, Xuan A. Human patellar cartilage: echo planar diffusion-weighted MR imaging findings at 3.0 T. Clin Imaging. 2012;36(3):199–202.PubMedCrossRef Zhu SC, Shi DP, Xuan A. Human patellar cartilage: echo planar diffusion-weighted MR imaging findings at 3.0 T. Clin Imaging. 2012;36(3):199–202.PubMedCrossRef
94.
Zurück zum Zitat Siebelt M, van Tiel J, Waarsing JH, et al. Clinically applied CT arthrography to measure the sulphated glycosaminoglycan content of cartilage. Osteoarthr Cartil. 2011;19(10):1183–9.PubMedCrossRef Siebelt M, van Tiel J, Waarsing JH, et al. Clinically applied CT arthrography to measure the sulphated glycosaminoglycan content of cartilage. Osteoarthr Cartil. 2011;19(10):1183–9.PubMedCrossRef
95.
Zurück zum Zitat Biswas D, Bible JE, Bohan M, et al. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91(8):1882–9.PubMedCrossRef Biswas D, Bible JE, Bohan M, et al. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91(8):1882–9.PubMedCrossRef
96.
Zurück zum Zitat Mosher TJ, Zhang Z, Reddy R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258(3):832–42.PubMedPubMedCentralCrossRef Mosher TJ, Zhang Z, Reddy R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258(3):832–42.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Monu UD, McWalter EJ, Jordan CD, et al. 3D Visualization of Quantitative T2 Relaxation Times in the Femoral Condylar Cartilage in Healthy and ACL-injured Individuals. International Society for Magnetic Resonance In Medicine: Annual Meeting & Exhibition; Milan, Italy2014. Monu UD, McWalter EJ, Jordan CD, et al. 3D Visualization of Quantitative T2 Relaxation Times in the Femoral Condylar Cartilage in Healthy and ACL-injured Individuals. International Society for Magnetic Resonance In Medicine: Annual Meeting & Exhibition; Milan, Italy2014.
98.
Zurück zum Zitat Nishioka H, Hirose J, Nakamura E, et al. Detecting ICRS grade 1 cartilage lesions in anterior cruciate ligament injury using T1rho and T2 mapping. Eur J Radiol. 2013. Nishioka H, Hirose J, Nakamura E, et al. Detecting ICRS grade 1 cartilage lesions in anterior cruciate ligament injury using T1rho and T2 mapping. Eur J Radiol. 2013.
99.•
Zurück zum Zitat Prasad AP, Nardo L, Schooler J, et al. T(1)rho and T(2) relaxation times predict progression of knee osteoarthritis. Osteoarthr Cartil. 2013;21(1):69–76. This work shows that compositional mapping in articular cartilage predicts disease progression in osteoarthritis. These methods may be useful to the selection of subjects who are likely to show rapid disease progression for future studies of OA drugs.PubMedPubMedCentralCrossRef Prasad AP, Nardo L, Schooler J, et al. T(1)rho and T(2) relaxation times predict progression of knee osteoarthritis. Osteoarthr Cartil. 2013;21(1):69–76. This work shows that compositional mapping in articular cartilage predicts disease progression in osteoarthritis. These methods may be useful to the selection of subjects who are likely to show rapid disease progression for future studies of OA drugs.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Goto H, Iwama Y, Fujii M, et al. A preliminary study of the T1rho values of normal knee cartilage using 3 T-MRI. Eur J Radiol. 2012;81(7):e796–803.PubMedCrossRef Goto H, Iwama Y, Fujii M, et al. A preliminary study of the T1rho values of normal knee cartilage using 3 T-MRI. Eur J Radiol. 2012;81(7):e796–803.PubMedCrossRef
101.
Zurück zum Zitat McAlindon TE, Nuite M, Krishnan N, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthr Cartil. 2011;19(4):399–405.PubMedCrossRef McAlindon TE, Nuite M, Krishnan N, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthr Cartil. 2011;19(4):399–405.PubMedCrossRef
102.
Zurück zum Zitat Wang L, Regatte RR. Quantitative mapping of human cartilage at 3.0 T: parallel changes in T(2), T(1)rho, and dGEMRIC. Acad Radiol. 2014;21(4):463–71.PubMedCrossRef Wang L, Regatte RR. Quantitative mapping of human cartilage at 3.0 T: parallel changes in T(2), T(1)rho, and dGEMRIC. Acad Radiol. 2014;21(4):463–71.PubMedCrossRef
103.
Zurück zum Zitat Kurkijarvi JE, Mattila L, Ojala RO, et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthr Cartil. 2007;15(4):372–8.PubMedCrossRef Kurkijarvi JE, Mattila L, Ojala RO, et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthr Cartil. 2007;15(4):372–8.PubMedCrossRef
Metadaten
Titel
Imaging Strategies for Assessing Cartilage Composition in Osteoarthritis
verfasst von
Stephen J. Matzat
Feliks Kogan
Grant W. Fong
Garry E. Gold
Publikationsdatum
01.11.2014
Verlag
Springer US
Erschienen in
Current Rheumatology Reports / Ausgabe 11/2014
Print ISSN: 1523-3774
Elektronische ISSN: 1534-6307
DOI
https://doi.org/10.1007/s11926-014-0462-3

Weitere Artikel der Ausgabe 11/2014

Current Rheumatology Reports 11/2014 Zur Ausgabe

Psoriatic Arthritis (O FitzGerald and P Helliwell, Section Editors)

Biomarkers in Psoriatic Arthritis: Recent Progress

Surgery and Perioperative Care (CR MacKenzie and SM Goodman, Section Editors)

Inpatient Gout: A Review

Health Economics and Quality of Life (M Harrison, Section Editor)

Economics of Non-Adherence to Biologic Therapies in Rheumatoid Arthritis

PEDIATRIC RHEUMATOLOGY (S OZEN, SECTION EDITOR)

Judicious Use of Biologicals in Juvenile Idiopathic Arthritis

Orphan Diseases (B Manger, Section Editor)

The Role of Nitisinone in Tyrosine Pathway Disorders

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.