Skip to main content
Erschienen in: Current Treatment Options in Cardiovascular Medicine 3/2020

01.03.2020 | State-of-the-Arts Informatics (C Stultz, Section Editor)

Clinical Inference From Cardiovascular Imaging: Paradigm Shift Towards Machine-Based Intelligent Platform

verfasst von: Karthik Seetharam, MD, Nobuyuki Kagiyama, MD, PhD, Sirish Shrestha, MSc, Partho P Sengupta, MD, DM

Erschienen in: Current Treatment Options in Cardiovascular Medicine | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose of review

Diagnostic imaging plays an indispensable role in the modern management of cardiovascular diseases. Despite significant advances in imaging modalities, the workflow in clinical imaging requires a great deal of human input. With increasing demands in patient care, current workflows in cardiovascular imaging face a number of challenges which include insufficient number of specialists, time constraints, learning curves, and inter-observer variability.

Recent findings

Automated techniques using revolutionary approaches with machine learning can fundamentally alter our interpretation process and produce smarter, faster, and efficient results. With the emergence of big data and deep learning techniques which enable direct inference of image data without intensive feature engineering or can process raw images directly. Machine learning has been rapidly adopted in the field of medicine and has shown its fast and reproducible automatic inference in various cardiovascular imaging modalities, including echocardiography, nuclear imaging, cardiac computed tomography, and cardiac magnetic resonance.

Summary

While deep domain knowledge of cardiovascular disease remains the cornerstone throughout the process, physicians may be relieved from mundane tasks using automation and be able to spend more time on decision-making and communication with patients and other medical staff in the new paradigm brought by machine learning. In this review article, we explore the role of machine in the clinical inference from cardiac imaging data recently.
Literatur
1.
Zurück zum Zitat Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.
2.
Zurück zum Zitat Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492.
3.
Zurück zum Zitat Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract. 2019. Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract. 2019.
4.
Zurück zum Zitat Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95.CrossRef Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68(21):2287–95.CrossRef
5.
Zurück zum Zitat Shrestha S, Sengupta PP. Machine learning for nuclear cardiology: the way forward. J Nucl Cardiol. 2018. Shrestha S, Sengupta PP. Machine learning for nuclear cardiology: the way forward. J Nucl Cardiol. 2018.
6.
Zurück zum Zitat Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6). Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6).
7.
Zurück zum Zitat Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–79.
8.
Zurück zum Zitat Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.CrossRef Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.CrossRef
9.
Zurück zum Zitat Sengupta PP, Adjeroh DA. Will artificial intelligence replace the human echocardiographer? Circulation. 2018;138(16):1639–42.CrossRef Sengupta PP, Adjeroh DA. Will artificial intelligence replace the human echocardiographer? Circulation. 2018;138(16):1639–42.CrossRef
10.
Zurück zum Zitat Sengupta PP, Shrestha S. Machine learning for data-driven discovery: the rise and relevance. JACC Cardiovasc Imaging. 2019;12(4):690–2.CrossRef Sengupta PP, Shrestha S. Machine learning for data-driven discovery: the rise and relevance. JACC Cardiovasc Imaging. 2019;12(4):690–2.CrossRef
11.
Zurück zum Zitat Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation. 2018;138(16):1623–35. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation. 2018;138(16):1623–35.
12.
Zurück zum Zitat •• Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(11):1317–35. Dey et al. highlight the advantages, cost, barriers, and potential of machine learning and artificial intelligence in cardiovascular imaging. The insight provided in the manuscript is extremely useful for cardiologists and practitioners in clinical care.CrossRef •• Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(11):1317–35. Dey et al. highlight the advantages, cost, barriers, and potential of machine learning and artificial intelligence in cardiovascular imaging. The insight provided in the manuscript is extremely useful for cardiologists and practitioners in clinical care.CrossRef
13.
Zurück zum Zitat • Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial intelligence: practical primer for clinical research in cardiovascular disease. J Am Heart Assoc. 2019;8(17):e012788. Kagiyama et al. describe the fundamentals of artificial intelligence for clinicians and researchers in cardiology. They also show the principles needed to apply aritificial intelligence in a clinically meaningful manner for cardiovascular research.CrossRef • Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial intelligence: practical primer for clinical research in cardiovascular disease. J Am Heart Assoc. 2019;8(17):e012788. Kagiyama et al. describe the fundamentals of artificial intelligence for clinicians and researchers in cardiology. They also show the principles needed to apply aritificial intelligence in a clinically meaningful manner for cardiovascular research.CrossRef
14.
Zurück zum Zitat Seetharam K, Shresthra S, Mills JD, Sengupta PP. Artificial intelligence in nuclear cardiology: adding value to prognostication. Curr Cardiovasc Imaging Rep. 2019;12(5):14.CrossRef Seetharam K, Shresthra S, Mills JD, Sengupta PP. Artificial intelligence in nuclear cardiology: adding value to prognostication. Curr Cardiovasc Imaging Rep. 2019;12(5):14.CrossRef
15.
Zurück zum Zitat Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence in cardiovascular medicine. Curr Treat Options Cardiovasc Med. 2019;21(6):25.CrossRef Seetharam K, Shrestha S, Sengupta PP. Artificial intelligence in cardiovascular medicine. Curr Treat Options Cardiovasc Med. 2019;21(6):25.CrossRef
16.
Zurück zum Zitat Bizopoulos P, Koutsouris D. Deep learning in cardiology. IEEE Rev Biomed Eng. 2019;12:168–93.CrossRef Bizopoulos P, Koutsouris D. Deep learning in cardiology. IEEE Rev Biomed Eng. 2019;12:168–93.CrossRef
17.
Zurück zum Zitat Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2(5):359–66.CrossRef Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2(5):359–66.CrossRef
18.
Zurück zum Zitat Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–54.CrossRef Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527–54.CrossRef
19.
Zurück zum Zitat Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010;11(Dec):3371–408. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010;11(Dec):3371–408.
20.
Zurück zum Zitat Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit Med. 2018;1:59.CrossRef Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit Med. 2018;1:59.CrossRef
21.
Zurück zum Zitat Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018;1. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med. 2018;1.
22.
Zurück zum Zitat Spencer KT, Arling B, Sevenster M, DeCara JM, Lang RM, Ward RP, et al. Identifying errors and inconsistencies in real time while using facilitated echocardiographic reporting. J Am Soc Echocardiogr. 2015;28(1):88–92e1. Spencer KT, Arling B, Sevenster M, DeCara JM, Lang RM, Ward RP, et al. Identifying errors and inconsistencies in real time while using facilitated echocardiographic reporting. J Am Soc Echocardiogr. 2015;28(1):88–92e1.
23.
Zurück zum Zitat Einstein AJ. Effects of radiation exposure from cardiac imaging: how good are the data? J Am Coll Cardiol. 2012;59(6):553–65.CrossRef Einstein AJ. Effects of radiation exposure from cardiac imaging: how good are the data? J Am Coll Cardiol. 2012;59(6):553–65.CrossRef
24.
Zurück zum Zitat Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging. 2018;11(11):1654–63.CrossRef Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging. 2018;11(11):1654–63.CrossRef
25.
Zurück zum Zitat Betancur J, Hu LH, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med. 2019;60(5):664–70. Betancur J, Hu LH, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med. 2019;60(5):664–70.
26.
Zurück zum Zitat Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A, Nakanishi R, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20(4):553–62. Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A, Nakanishi R, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20(4):553–62.
27.
Zurück zum Zitat Karlo CA, Leschka S, Stolzmann P, Glaser-Gallion N, Wildermuth S, Alkadhi H. A systematic approach for analysis, interpretation, and reporting of coronary CTA studies. Insights Imaging. 2012;3(3):215–28.CrossRef Karlo CA, Leschka S, Stolzmann P, Glaser-Gallion N, Wildermuth S, Alkadhi H. A systematic approach for analysis, interpretation, and reporting of coronary CTA studies. Insights Imaging. 2012;3(3):215–28.CrossRef
28.
Zurück zum Zitat van Rosendael AR, Maliakal G, Kolli KK, Beecy A, Al'Aref SJ, Dwivedi A, et al. Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr. 2018;12(3):204–9.CrossRef van Rosendael AR, Maliakal G, Kolli KK, Beecy A, Al'Aref SJ, Dwivedi A, et al. Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. J Cardiovasc Comput Tomogr. 2018;12(3):204–9.CrossRef
29.
Zurück zum Zitat Dietterich TG, editor Ensemble methods in machine learning. International workshop on multiple classifier systems; 2000: Springer. Dietterich TG, editor Ensemble methods in machine learning. International workshop on multiple classifier systems; 2000: Springer.
30.
Zurück zum Zitat Cano-Espinosa C, Gonzalez G, Washko GR, Cazorla M, Estepar RSJ. Automated Agatston score computation in non-ECG gated CT scans using deep learning. Proc SPIE Int Soc Opt Eng. 2018;10574. Cano-Espinosa C, Gonzalez G, Washko GR, Cazorla M, Estepar RSJ. Automated Agatston score computation in non-ECG gated CT scans using deep learning. Proc SPIE Int Soc Opt Eng. 2018;10574.
31.
Zurück zum Zitat Zreik M, Lessmann N, van Hamersvelt RW, Wolterink JM, Voskuil M, Viergever MA, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med Image Anal. 2018;44:72–85. Zreik M, Lessmann N, van Hamersvelt RW, Wolterink JM, Voskuil M, Viergever MA, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Med Image Anal. 2018;44:72–85.
32.•
Zurück zum Zitat Ruijsink B, Puyol-Anton E, Oksuz I, Sinclair M, Bai W, Schnabel JA, et al. Fully Automated, Quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC Cardiovasc Imaging. 2019; Ruijinsk et al. utilize a deep learning algorithm to evaluate cardiac function and erroneous output for cardiac magnetic resonance imaging. There are limited studies exploring the role of deep learning in cardiac magentic resonance imaging. Ruijsink B, Puyol-Anton E, Oksuz I, Sinclair M, Bai W, Schnabel JA, et al. Fully Automated, Quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC Cardiovasc Imaging. 2019; Ruijinsk et al. utilize a deep learning algorithm to evaluate cardiac function and erroneous output for cardiac magnetic resonance imaging. There are limited studies exploring the role of deep learning in cardiac magentic resonance imaging.
33.
Zurück zum Zitat Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20(1):65. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20(1):65.
34.
Zurück zum Zitat Leng S, Yang X, Zhao X, Zeng Z, Su Y, Koh AS, et al. Computational platform based on deep learning for segmenting ventricular endocardium in long-axis cardiac MR imaging. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:4500–3.PubMed Leng S, Yang X, Zhao X, Zeng Z, Su Y, Koh AS, et al. Computational platform based on deep learning for segmenting ventricular endocardium in long-axis cardiac MR imaging. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:4500–3.PubMed
Metadaten
Titel
Clinical Inference From Cardiovascular Imaging: Paradigm Shift Towards Machine-Based Intelligent Platform
verfasst von
Karthik Seetharam, MD
Nobuyuki Kagiyama, MD, PhD
Sirish Shrestha, MSc
Partho P Sengupta, MD, DM
Publikationsdatum
01.03.2020
Verlag
Springer US
Erschienen in
Current Treatment Options in Cardiovascular Medicine / Ausgabe 3/2020
Print ISSN: 1092-8464
Elektronische ISSN: 1534-3189
DOI
https://doi.org/10.1007/s11936-020-0805-5

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Dihydropyridin-Kalziumantagonisten können auf die Nieren gehen

30.04.2024 Hypertonie Nachrichten

Im Vergleich zu anderen Blutdrucksenkern sind Kalziumantagonisten vom Diyhdropyridin-Typ mit einem erhöhten Risiko für eine Mikroalbuminurie und in Abwesenheit eines RAS-Blockers auch für ein terminales Nierenversagen verbunden.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.