Skip to main content
Erschienen in: Cardiovascular Toxicology 1/2013

01.03.2013

The Dual-Targeted HER1/HER2 Tyrosine Kinase Inhibitor Lapatinib Strongly Potentiates the Cardiac Myocyte-Damaging Effects of Doxorubicin

verfasst von: Brian B. Hasinoff, Daywin Patel, Xing Wu

Erschienen in: Cardiovascular Toxicology | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

The anticancer drug lapatinib (Tykerb) is a dual tyrosine kinase inhibitor targeting the HER2 (ERBB2) and EGFR (ERBB1, HER1) pathways that have been shown in clinical trials to display some cardiotoxicity. Because trastuzumab also targets HER2 receptors, the lapatinib/doxorubicin combination provides a good model to probe the mechanism of the increased cardiotoxicity caused by the concurrent use of trastuzumab and doxorubicin. Using a neonatal rat cardiac myocyte model, we have investigated the ability of lapatinib alone and in combination with doxorubicin to damage myocytes. Lapatinib treatment alone only slightly induced myocyte damage. However, doxorubicin-induced myocyte damage was greatly potentiated by the addition of nanomolar lapatinib concentrations. Lapatinib alone treatment decreased phosphorylated ERK (MAPK), which may have, in part, contributed to the increased myocyte damage. As measured by flow cytometry, lapatinib-treated myocytes displayed an increased accumulation of doxorubicin. As lapatinib is a strong inhibitor of several ATP-dependent ABC-type efflux transporters, this likely occurred because lapatinib blocked doxorubicin efflux, thereby increasing intracellular doxorubicin concentrations and, thus, increasing myocyte damage. These results suggest that the clinical use of concurrent doxorubicin and lapatinib should be approached with care due to the possibility of lapatinib increasing doxorubicin cardiotoxicity.
Literatur
1.
Zurück zum Zitat Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344, 783–792.PubMedCrossRef Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344, 783–792.PubMedCrossRef
2.
Zurück zum Zitat Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMedCrossRef Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMedCrossRef
3.
Zurück zum Zitat Gennari, A., & Pronzato, P. (2008). New understanding of the role of anthracyclines in early-stage breast cancer: Patient selection considerations. Clinical Breast Cancer, 8(Suppl 4), S179–S183.PubMedCrossRef Gennari, A., & Pronzato, P. (2008). New understanding of the role of anthracyclines in early-stage breast cancer: Patient selection considerations. Clinical Breast Cancer, 8(Suppl 4), S179–S183.PubMedCrossRef
4.
Zurück zum Zitat Di Leo, A., Biganzoli, L., Claudino, W., Licitra, S., Pestrin, M., & Larsimont, D. (2008). Topoisomerase II alpha as a marker predicting anthracyclines’ activity in early breast cancer patients: Ready for the primetime? European Journal of Cancer, 44, 2791–2798.PubMedCrossRef Di Leo, A., Biganzoli, L., Claudino, W., Licitra, S., Pestrin, M., & Larsimont, D. (2008). Topoisomerase II alpha as a marker predicting anthracyclines’ activity in early breast cancer patients: Ready for the primetime? European Journal of Cancer, 44, 2791–2798.PubMedCrossRef
5.
Zurück zum Zitat Jarvinen, T. A., Tanner, M., Rantanen, V., Barlund, M., Borg, A., Grenman, S., et al. (2000). Amplification and deletion of topoisomerase IIα associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. American Journal of Pathology, 156, 839–847.PubMedCrossRef Jarvinen, T. A., Tanner, M., Rantanen, V., Barlund, M., Borg, A., Grenman, S., et al. (2000). Amplification and deletion of topoisomerase IIα associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. American Journal of Pathology, 156, 839–847.PubMedCrossRef
6.
Zurück zum Zitat Pal, S. K., Childs, B. H., & Pegram, M. (2010). Emergence of nonanthracycline regimens in the adjuvant treatment of breast cancer. Breast Cancer Research and Treatment, 119, 25–32.PubMedCrossRef Pal, S. K., Childs, B. H., & Pegram, M. (2010). Emergence of nonanthracycline regimens in the adjuvant treatment of breast cancer. Breast Cancer Research and Treatment, 119, 25–32.PubMedCrossRef
7.
Zurück zum Zitat Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research and Molecular Biology, 64, 221–253.PubMedCrossRef Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research and Molecular Biology, 64, 221–253.PubMedCrossRef
8.
Zurück zum Zitat Cheng, H., & Force, T. (2010). Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circulation Research, 106, 21–34.PubMedCrossRef Cheng, H., & Force, T. (2010). Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circulation Research, 106, 21–34.PubMedCrossRef
9.
Zurück zum Zitat Perez, E. A., Koehler, M., Byrne, J., Preston, A. J., Rappold, E., & Ewer, M. S. (2008). Cardiac safety of lapatinib: Pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clinic Proceedings, 83, 679–686.PubMed Perez, E. A., Koehler, M., Byrne, J., Preston, A. J., Rappold, E., & Ewer, M. S. (2008). Cardiac safety of lapatinib: Pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clinic Proceedings, 83, 679–686.PubMed
10.
Zurück zum Zitat Dang, C., Lin, N., Moy, B., Come, S., Sugarman, S., Morris, P., et al. (2010). Dose-dense doxorubicin and cyclophosphamide followed by weekly paclitaxel with trastuzumab and lapatinib in HER2/neu-overexpressed/amplified breast cancer is not feasible because of excessive diarrhea. Journal of Clinical Oncology, 28, 2982–2988.PubMedCrossRef Dang, C., Lin, N., Moy, B., Come, S., Sugarman, S., Morris, P., et al. (2010). Dose-dense doxorubicin and cyclophosphamide followed by weekly paclitaxel with trastuzumab and lapatinib in HER2/neu-overexpressed/amplified breast cancer is not feasible because of excessive diarrhea. Journal of Clinical Oncology, 28, 2982–2988.PubMedCrossRef
11.
Zurück zum Zitat Wonders, K. Y., Hydock, D. S., Greufe, S., Schneider, C. M., & Hayward, R. (2009). Endurance exercise training preserves cardiac function in rats receiving doxorubicin and the HER-2 inhibitor GW2974. Cancer Chemotherapy and Pharmacology, 64, 1105–1113.PubMedCrossRef Wonders, K. Y., Hydock, D. S., Greufe, S., Schneider, C. M., & Hayward, R. (2009). Endurance exercise training preserves cardiac function in rats receiving doxorubicin and the HER-2 inhibitor GW2974. Cancer Chemotherapy and Pharmacology, 64, 1105–1113.PubMedCrossRef
12.
Zurück zum Zitat Goukassian, D., Sasi, S., Lee, J., Budiu, D., Lawson, C., Maysky, et al. (2011). Concurrent administration of doxorubicin and lapatinib worsens doxorubicin-induced cardiac dysfunction in mice. In Proceedings of the American Association for Cancer Research, Abstract number 1209. Goukassian, D., Sasi, S., Lee, J., Budiu, D., Lawson, C., Maysky, et al. (2011). Concurrent administration of doxorubicin and lapatinib worsens doxorubicin-induced cardiac dysfunction in mice. In Proceedings of the American Association for Cancer Research, Abstract number 1209.
13.
Zurück zum Zitat Fedele, C., Riccio, G., Coppola, C., Barbieri, A., Monti, M. G., Arra, C., et al. (2012). Comparison of preclinical cardiotoxic effects of different ErbB2 inhibitors. Breast Cancer Research and Treatment, 133, 511–521.PubMedCrossRef Fedele, C., Riccio, G., Coppola, C., Barbieri, A., Monti, M. G., Arra, C., et al. (2012). Comparison of preclinical cardiotoxic effects of different ErbB2 inhibitors. Breast Cancer Research and Treatment, 133, 511–521.PubMedCrossRef
14.
Zurück zum Zitat Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.PubMedCrossRef Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.PubMedCrossRef
15.
Zurück zum Zitat Wiig, H., Gyenge, C. C., & Tenstad, O. (2005). The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components. Journal of Physiology, 567, 557–567.PubMedCrossRef Wiig, H., Gyenge, C. C., & Tenstad, O. (2005). The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components. Journal of Physiology, 567, 557–567.PubMedCrossRef
16.
Zurück zum Zitat Brozik, A., Hegedus, C., Erdei, Z., Hegedus, T., Ozvegy-Laczka, C., Szakacs, G., et al. (2011). Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opinion on Drug Metabolism and Toxicology, 7, 623–642.PubMedCrossRef Brozik, A., Hegedus, C., Erdei, Z., Hegedus, T., Ozvegy-Laczka, C., Szakacs, G., et al. (2011). Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opinion on Drug Metabolism and Toxicology, 7, 623–642.PubMedCrossRef
17.
Zurück zum Zitat Kuang, Y. H., Shen, T., Chen, X., Sodani, K., Hopper-Borge, E., Tiwari, A. K., et al. (2010). Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochemical Pharmacology, 79, 154–161.PubMedCrossRef Kuang, Y. H., Shen, T., Chen, X., Sodani, K., Hopper-Borge, E., Tiwari, A. K., et al. (2010). Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochemical Pharmacology, 79, 154–161.PubMedCrossRef
18.
Zurück zum Zitat Hegedus, C., Szakacs, G., Homolya, L., Orban, T. I., Telbisz, A., Jani, M., et al. (2009). Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Advanced Drug Delivery Reviews, 61, 47–56.PubMedCrossRef Hegedus, C., Szakacs, G., Homolya, L., Orban, T. I., Telbisz, A., Jani, M., et al. (2009). Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Advanced Drug Delivery Reviews, 61, 47–56.PubMedCrossRef
19.
Zurück zum Zitat Hasinoff, B. B., & Patel, D. (2010). The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicology and Applied Pharmacology, 249, 132–139.PubMedCrossRef Hasinoff, B. B., & Patel, D. (2010). The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicology and Applied Pharmacology, 249, 132–139.PubMedCrossRef
20.
Zurück zum Zitat Hasinoff, B. B. (2010). The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicology and Applied Pharmacology, 244, 190–195.PubMedCrossRef Hasinoff, B. B. (2010). The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicology and Applied Pharmacology, 244, 190–195.PubMedCrossRef
21.
Zurück zum Zitat Burris, H. A., 3rd, Taylor, C. W., Jones, S. F., Koch, K. M., Versola, M. J., Arya, N., et al. (2009). A phase I and pharmacokinetic study of oral lapatinib administered once or twice daily in patients with solid malignancies. Clinical Cancer Research, 15, 6702–6708.PubMedCrossRef Burris, H. A., 3rd, Taylor, C. W., Jones, S. F., Koch, K. M., Versola, M. J., Arya, N., et al. (2009). A phase I and pharmacokinetic study of oral lapatinib administered once or twice daily in patients with solid malignancies. Clinical Cancer Research, 15, 6702–6708.PubMedCrossRef
22.
Zurück zum Zitat Schroeder, P. E., Patel, D., & Hasinoff, B. B. (2008). The dihydroorotase inhibitor 5-aminoorotic acid inhibits the metabolism in the rat of the cardioprotective drug dexrazoxane and its one-ring open metabolites. Drug Metabolism and Disposition, 36, 1780–1785.PubMedCrossRef Schroeder, P. E., Patel, D., & Hasinoff, B. B. (2008). The dihydroorotase inhibitor 5-aminoorotic acid inhibits the metabolism in the rat of the cardioprotective drug dexrazoxane and its one-ring open metabolites. Drug Metabolism and Disposition, 36, 1780–1785.PubMedCrossRef
23.
Zurück zum Zitat Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 7, 19–27.PubMedCrossRef Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 7, 19–27.PubMedCrossRef
24.
Zurück zum Zitat Hasinoff, B. B., Patel, D., & O’Hara, K. A. (2008). Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Molecular Pharmacology, 74, 1722–1728.PubMedCrossRef Hasinoff, B. B., Patel, D., & O’Hara, K. A. (2008). Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Molecular Pharmacology, 74, 1722–1728.PubMedCrossRef
25.
Zurück zum Zitat Hasinoff, B. B., & Patel, D. (2010). Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovascular Toxicology, 10, 1–8.PubMedCrossRef Hasinoff, B. B., & Patel, D. (2010). Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovascular Toxicology, 10, 1–8.PubMedCrossRef
26.
Zurück zum Zitat Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods in Enzymology, 260, 406–417.PubMedCrossRef Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods in Enzymology, 260, 406–417.PubMedCrossRef
27.
Zurück zum Zitat Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxicology, 3, 89–99.PubMedCrossRef Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxicology, 3, 89–99.PubMedCrossRef
28.
Zurück zum Zitat Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.PubMedCrossRef Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.PubMedCrossRef
29.
Zurück zum Zitat Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.PubMedCrossRef Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.PubMedCrossRef
30.
Zurück zum Zitat Hasinoff, B. B., & Patel, D. (2009). The iron chelator Dp44mT does not protect myocytes against doxorubicin. Journal of Inorganic Biochemistry, 103, 1093–1101.PubMedCrossRef Hasinoff, B. B., & Patel, D. (2009). The iron chelator Dp44mT does not protect myocytes against doxorubicin. Journal of Inorganic Biochemistry, 103, 1093–1101.PubMedCrossRef
31.
Zurück zum Zitat Hochster, H., Liebes, L., Wadler, S., Oratz, R., Wernz, J. C., Meyers, M., et al. (1992). Pharmacokinetics of the cardioprotector ADR-529 (ICRF-187) in escalating doses combined with fixed-dose doxorubicin. Journal of the National Cancer Institute, 84, 1725–1730.PubMedCrossRef Hochster, H., Liebes, L., Wadler, S., Oratz, R., Wernz, J. C., Meyers, M., et al. (1992). Pharmacokinetics of the cardioprotector ADR-529 (ICRF-187) in escalating doses combined with fixed-dose doxorubicin. Journal of the National Cancer Institute, 84, 1725–1730.PubMedCrossRef
32.
Zurück zum Zitat Hasinoff, B. B., Patel, D., & Wu, X. (2003). The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology & Medicine, 35, 1469–1479.CrossRef Hasinoff, B. B., Patel, D., & Wu, X. (2003). The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology & Medicine, 35, 1469–1479.CrossRef
33.
Zurück zum Zitat Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7, 140–144.PubMedCrossRef Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7, 140–144.PubMedCrossRef
34.
Zurück zum Zitat Wang, G. Q., Gong, Y., Burczynski, F. J., & Hasinoff, B. B. (2008). Cell lysis with dimethyl sulfoxide produces stable homogeneous solutions in the dichlorofluorescin oxidative stress assay. Free Radical Research, 42, 435–441.PubMedCrossRef Wang, G. Q., Gong, Y., Burczynski, F. J., & Hasinoff, B. B. (2008). Cell lysis with dimethyl sulfoxide produces stable homogeneous solutions in the dichlorofluorescin oxidative stress assay. Free Radical Research, 42, 435–441.PubMedCrossRef
35.
Zurück zum Zitat Carloni, S., Fabbri, F., Brigliadori, G., Ulivi, P., Silvestrini, R., Amadori, D., et al. (2010). Tyrosine kinase inhibitors gefitinib, lapatinib and sorafenib induce rapid functional alterations in breast cancer cells. Current Cancer Drug Targets, 10, 422–431.PubMedCrossRef Carloni, S., Fabbri, F., Brigliadori, G., Ulivi, P., Silvestrini, R., Amadori, D., et al. (2010). Tyrosine kinase inhibitors gefitinib, lapatinib and sorafenib induce rapid functional alterations in breast cancer cells. Current Cancer Drug Targets, 10, 422–431.PubMedCrossRef
36.
Zurück zum Zitat Spector, N. L., Yarden, Y., Smith, B., Lyass, L., Trusk, P., Pry, K., et al. (2007). Activation of AMP-activated protein kinase by human EGF receptor 2/EGF receptor tyrosine kinase inhibitor protects cardiac cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 10607–10612.PubMedCrossRef Spector, N. L., Yarden, Y., Smith, B., Lyass, L., Trusk, P., Pry, K., et al. (2007). Activation of AMP-activated protein kinase by human EGF receptor 2/EGF receptor tyrosine kinase inhibitor protects cardiac cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 10607–10612.PubMedCrossRef
37.
Zurück zum Zitat Shell, S. A., Lyass, L., Trusk, P. B., Pry, K. J., Wappel, R. L., & Bacus, S. S. (2008). Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells. Cell Cycle, 7, 1769–1775.PubMedCrossRef Shell, S. A., Lyass, L., Trusk, P. B., Pry, K. J., Wappel, R. L., & Bacus, S. S. (2008). Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells. Cell Cycle, 7, 1769–1775.PubMedCrossRef
38.
Zurück zum Zitat Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 10, 111–126.PubMedCrossRef Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 10, 111–126.PubMedCrossRef
39.
Zurück zum Zitat Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7, 332–344.PubMedCrossRef Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7, 332–344.PubMedCrossRef
40.
Zurück zum Zitat Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. (2004). BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research, 64, 7099–7109.PubMedCrossRef Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. (2004). BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research, 64, 7099–7109.PubMedCrossRef
41.
Zurück zum Zitat Xia, W., Husain, I., Liu, L., Bacus, S., Saini, S., Spohn, J., et al. (2007). Lapatinib antitumor activity is not dependent upon phosphatase and tensin homologue deleted on chromosome 10 in ErbB2-overexpressing breast cancers. Cancer Research, 67, 1170–1175.PubMedCrossRef Xia, W., Husain, I., Liu, L., Bacus, S., Saini, S., Spohn, J., et al. (2007). Lapatinib antitumor activity is not dependent upon phosphatase and tensin homologue deleted on chromosome 10 in ErbB2-overexpressing breast cancers. Cancer Research, 67, 1170–1175.PubMedCrossRef
42.
Zurück zum Zitat Lemmens, K., Doggen, K., & De Keulenaer, G. W. (2011). Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy. American Journal of Physiology Heart and Circulatory Physiology, 300, H931–H942.PubMedCrossRef Lemmens, K., Doggen, K., & De Keulenaer, G. W. (2011). Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy. American Journal of Physiology Heart and Circulatory Physiology, 300, H931–H942.PubMedCrossRef
43.
Zurück zum Zitat Polli, J. W., Olson, K. L., Chism, J. P., John-Williams, L. S., Yeager, R. L., Woodard, S. M., et al. (2009). An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metabolism and Disposition, 37, 439–442.PubMedCrossRef Polli, J. W., Olson, K. L., Chism, J. P., John-Williams, L. S., Yeager, R. L., Woodard, S. M., et al. (2009). An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metabolism and Disposition, 37, 439–442.PubMedCrossRef
44.
Zurück zum Zitat Polli, J. W., Humphreys, J. E., Harmon, K. A., Castellino, S., O’Mara, M. J., Olson, K. L., et al. (2008). The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metabolism and Disposition, 36, 695–701.PubMedCrossRef Polli, J. W., Humphreys, J. E., Harmon, K. A., Castellino, S., O’Mara, M. J., Olson, K. L., et al. (2008). The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metabolism and Disposition, 36, 695–701.PubMedCrossRef
45.
Zurück zum Zitat Dai, C. L., Tiwari, A. K., Wu, C. P., Su, X. D., Wang, S. R., Liu, D. G., et al. (2008). Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Research, 68, 7905–7914.PubMedCrossRef Dai, C. L., Tiwari, A. K., Wu, C. P., Su, X. D., Wang, S. R., Liu, D. G., et al. (2008). Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Research, 68, 7905–7914.PubMedCrossRef
46.
Zurück zum Zitat Akimoto, H., Bruno, N. A., Slate, D. L., Billingham, M. E., Torti, S. V., & Torti, F. M. (1993). Effect of verapamil on doxorubicin cardiotoxicity: altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Research, 53, 4658–4664.PubMed Akimoto, H., Bruno, N. A., Slate, D. L., Billingham, M. E., Torti, S. V., & Torti, F. M. (1993). Effect of verapamil on doxorubicin cardiotoxicity: altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Research, 53, 4658–4664.PubMed
47.
Zurück zum Zitat Kwatra, D., Vadlapatla, R. K., Vadlapudi, A. D., Pal, D., & Mitra, A. K. (2010). Interaction of gatifloxacin with efflux transporters: a possible mechanism for drug resistance. International Journal of Pharmaceutics, 395, 114–121.PubMedCrossRef Kwatra, D., Vadlapatla, R. K., Vadlapudi, A. D., Pal, D., & Mitra, A. K. (2010). Interaction of gatifloxacin with efflux transporters: a possible mechanism for drug resistance. International Journal of Pharmaceutics, 395, 114–121.PubMedCrossRef
48.
Zurück zum Zitat Weiss, J., Dormann, S. M., Martin-Facklam, M., Kerpen, C. J., Ketabi-Kiyanvash, N., & Haefeli, W. E. (2003). Inhibition of P-glycoprotein by newer antidepressants. Journal of Pharmacology and Experimental Therapeutics, 305, 197–204.PubMedCrossRef Weiss, J., Dormann, S. M., Martin-Facklam, M., Kerpen, C. J., Ketabi-Kiyanvash, N., & Haefeli, W. E. (2003). Inhibition of P-glycoprotein by newer antidepressants. Journal of Pharmacology and Experimental Therapeutics, 305, 197–204.PubMedCrossRef
49.
Zurück zum Zitat Crone, S. A., Zhao, Y. Y., Fan, L., Gu, Y., Minamisawa, S., Liu, Y., et al. (2002). ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 8, 459–465.PubMedCrossRef Crone, S. A., Zhao, Y. Y., Fan, L., Gu, Y., Minamisawa, S., Liu, Y., et al. (2002). ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 8, 459–465.PubMedCrossRef
50.
Zurück zum Zitat Pentassuglia, L., Graf, M., Lane, H., Kuramochi, Y., Cote, G., Timolati, F., et al. (2009). Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Experimental Cell Research, 315, 1302–1312.PubMedCrossRef Pentassuglia, L., Graf, M., Lane, H., Kuramochi, Y., Cote, G., Timolati, F., et al. (2009). Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Experimental Cell Research, 315, 1302–1312.PubMedCrossRef
51.
Zurück zum Zitat Cvetkovic, R. S., & Scott, L. J. (2005). Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs, 65, 1005–1024.PubMedCrossRef Cvetkovic, R. S., & Scott, L. J. (2005). Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs, 65, 1005–1024.PubMedCrossRef
52.
Zurück zum Zitat Miyamoto, S., Murphy, A. N., & Brown, J. H. (2009). Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 41, 169–180.PubMedCrossRef Miyamoto, S., Murphy, A. N., & Brown, J. H. (2009). Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 41, 169–180.PubMedCrossRef
53.
Zurück zum Zitat Kim, S. Y., Kim, H. P., Kim, Y. J., Oh do, Y., Im, S. A., et al. (2008). Trastuzumab inhibits the growth of human gastric cancer cell lines with HER2 amplification synergistically with cisplatin. International Journal of Oncology, 32, 89–95.PubMed Kim, S. Y., Kim, H. P., Kim, Y. J., Oh do, Y., Im, S. A., et al. (2008). Trastuzumab inhibits the growth of human gastric cancer cell lines with HER2 amplification synergistically with cisplatin. International Journal of Oncology, 32, 89–95.PubMed
54.
Zurück zum Zitat Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X., et al. (2010). Membrane transporters in drug development. Nature Reviews Drug Discovery, 9, 215–236.PubMedCrossRef Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X., et al. (2010). Membrane transporters in drug development. Nature Reviews Drug Discovery, 9, 215–236.PubMedCrossRef
55.
Zurück zum Zitat Vannini, I., Zoli, W., Fabbri, F., Ulivi, P., Tesei, A., Carloni, S., et al. (2009). Role of efflux pump activity in lapatinib/caelyx combination in breast cancer cell lines. Anti-Cancer Drugs, 20, 918–925.PubMedCrossRef Vannini, I., Zoli, W., Fabbri, F., Ulivi, P., Tesei, A., Carloni, S., et al. (2009). Role of efflux pump activity in lapatinib/caelyx combination in breast cancer cell lines. Anti-Cancer Drugs, 20, 918–925.PubMedCrossRef
56.
Zurück zum Zitat Estevez, M. D., Wolf, A., & Schramm, U. (2000). Effect of PSC 833, verapamil and amiodarone on adriamycin toxicity in cultured rat cardiomyocytes. Toxicology in Vitro, 14, 17–23.PubMedCrossRef Estevez, M. D., Wolf, A., & Schramm, U. (2000). Effect of PSC 833, verapamil and amiodarone on adriamycin toxicity in cultured rat cardiomyocytes. Toxicology in Vitro, 14, 17–23.PubMedCrossRef
57.
Zurück zum Zitat McBride, B. F., Yang, T., Liu, K., Urban, T. J., Giacomini, K. M., Kim, R. B., et al. (2009). The organic cation transporter, OCTN1, expressed in the human heart, potentiates antagonism of the HERG potassium channel. Journal of Cardiovascular Pharmacology, 54, 63–71.PubMedCrossRef McBride, B. F., Yang, T., Liu, K., Urban, T. J., Giacomini, K. M., Kim, R. B., et al. (2009). The organic cation transporter, OCTN1, expressed in the human heart, potentiates antagonism of the HERG potassium channel. Journal of Cardiovascular Pharmacology, 54, 63–71.PubMedCrossRef
58.
Zurück zum Zitat Solbach, T. F., Paulus, B., Weyand, M., Eschenhagen, T., Zolk, O., & Fromm, M. F. (2008). ATP-binding cassette transporters in human heart failure. Naunyn-Schmiedeberg’s Archives of Pharmacology, 377, 231–243.PubMedCrossRef Solbach, T. F., Paulus, B., Weyand, M., Eschenhagen, T., Zolk, O., & Fromm, M. F. (2008). ATP-binding cassette transporters in human heart failure. Naunyn-Schmiedeberg’s Archives of Pharmacology, 377, 231–243.PubMedCrossRef
Metadaten
Titel
The Dual-Targeted HER1/HER2 Tyrosine Kinase Inhibitor Lapatinib Strongly Potentiates the Cardiac Myocyte-Damaging Effects of Doxorubicin
verfasst von
Brian B. Hasinoff
Daywin Patel
Xing Wu
Publikationsdatum
01.03.2013
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 1/2013
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-012-9183-x

Weitere Artikel der Ausgabe 1/2013

Cardiovascular Toxicology 1/2013 Zur Ausgabe