Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2017

31.08.2017

Cardiovascular Effects of the MEK Inhibitor, Trametinib: A Case Report, Literature Review, and Consideration of Mechanism

verfasst von: Mary Banks, Karen Crowell, Amber Proctor, Brian C. Jensen

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

The MEK inhibitor trametinib was approved in 2013 for the treatment of unresectable or metastatic melanoma with a BRAF V600E mutation, the most common pathogenic mutation in melanoma. Trametinib blocks activation of ERK1/2, inhibiting cell proliferation in melanoma. ERK1/2 also protects against multiple types of cardiac insult in mouse models. Trametinib improves survival in melanoma patients, but evidence of unanticipated cardiotoxicity is emerging. Here we describe the case of a patient with metastatic melanoma who developed acute systolic heart failure after trametinib treatment and present the results of the literature review prompted by this case. A patient with no cardiac history presented with a 6.5-mm skin lesion and was found to have metastatic BRAF V600E melanoma. Combination treatment with trametinib and the BRAF inhibitor, dabrafenib, was initiated. The patient’s pre-treatment ejection fraction was 55–60%. His EF declined after 13 days and that was 40% 1 month after treatment. Two months after initiating trametinib, he developed dyspnea and fatigue. We conducted a chart review in the electronic medical record. We conducted a PubMed search using trametinib/adverse effects AND (“heart failure” OR “left ventricular dysfunction” OR hypertension OR cardiotoxicity OR mortality). We also queried the FDA Adverse Events Reporting System for reports of cardiomyopathy, ejection fraction decrease, and left ventricular dysfunction associated with trametinib between January 1, 2013, and July 20, 2017. The literature search retrieved 19 articles, including clinical trials and case reports. Early clinical experience with the MEK inhibitor trametinib suggests that its clinical efficacy may be compromised by cardiotoxicity. Further studies in humans and animals are required to determine the extent of this adverse effect, as well as its underlying mechanisms.
Literatur
1.
Zurück zum Zitat Lugowska, I., Kosela-Paterczyk, H., Kozak, K., & Rutkowski, P. (2015). Trametinib: A MEK inhibitor for management of metastatic melanoma. OncoTargets and Therapy, 8, 2251–2259.PubMedPubMedCentral Lugowska, I., Kosela-Paterczyk, H., Kozak, K., & Rutkowski, P. (2015). Trametinib: A MEK inhibitor for management of metastatic melanoma. OncoTargets and Therapy, 8, 2251–2259.PubMedPubMedCentral
2.
Zurück zum Zitat Zhao, Y., & Adjei, A. A. (2014). The clinical development of MEK inhibitors. Nature Reviews Clinical Oncology, 11, 385–400.CrossRefPubMed Zhao, Y., & Adjei, A. A. (2014). The clinical development of MEK inhibitors. Nature Reviews Clinical Oncology, 11, 385–400.CrossRefPubMed
3.
Zurück zum Zitat Infante, J. R., Papadopoulos, K. P., Bendell, J. C., Patnaik, A., Burris, H. A., 3rd, Rasco, D., et al. (2013). A phase 1b study of trametinib, an oral mitogen-activated protein kinase kinase (MEK) inhibitor, in combination with gemcitabine in advanced solid tumours. European Journal of Cancer, 49, 2077–2085.CrossRefPubMed Infante, J. R., Papadopoulos, K. P., Bendell, J. C., Patnaik, A., Burris, H. A., 3rd, Rasco, D., et al. (2013). A phase 1b study of trametinib, an oral mitogen-activated protein kinase kinase (MEK) inhibitor, in combination with gemcitabine in advanced solid tumours. European Journal of Cancer, 49, 2077–2085.CrossRefPubMed
4.
Zurück zum Zitat Bridgeman, V. L., Wan, E., Foo, S., Nathan, M. R., Welti, J. C., Frentzas, S., et al. (2016). Preclinical evidence that trametinib enhances the response to antiangiogenic tyrosine kinase inhibitors in renal cell carcinoma. Molecular Cancer Therapeutics, 15, 172–183.CrossRefPubMed Bridgeman, V. L., Wan, E., Foo, S., Nathan, M. R., Welti, J. C., Frentzas, S., et al. (2016). Preclinical evidence that trametinib enhances the response to antiangiogenic tyrosine kinase inhibitors in renal cell carcinoma. Molecular Cancer Therapeutics, 15, 172–183.CrossRefPubMed
5.
Zurück zum Zitat Pervere, L. M., Rakshit, S., Schrock, A. B., Miller, V. A., Ali, S. M., Velcheti, V. (2017). Durable response to combination of dabrafenib and trametinib in BRAF V600E-mutated non-small-cell lung cancer. Clinical Lung Cancer, 18(3), e211–e213. CrossRefPubMed Pervere, L. M., Rakshit, S., Schrock, A. B., Miller, V. A., Ali, S. M., Velcheti, V. (2017). Durable response to combination of dabrafenib and trametinib in BRAF V600E-mutated non-small-cell lung cancer. Clinical Lung Cancer, 18(3), e211–e213. CrossRefPubMed
6.
Zurück zum Zitat Cho, H., Matsumoto, S., Fujita, Y., Kuroda, A., Menju, T., Sonobe, M., et al. (2017). Trametinib plus 4-methylumbelliferone exhibits antitumor effects by ERK blockade and CD44 downregulation and affects PD-1 and PD-l1 in malignant pleural mesothelioma. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 12(3), 477–490. Cho, H., Matsumoto, S., Fujita, Y., Kuroda, A., Menju, T., Sonobe, M., et al. (2017). Trametinib plus 4-methylumbelliferone exhibits antitumor effects by ERK blockade and CD44 downregulation and affects PD-1 and PD-l1 in malignant pleural mesothelioma. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 12(3), 477–490.
7.
Zurück zum Zitat Roskoski, R., Jr. (2012). MEK1/2 dual-specificity protein kinases: Structure and regulation. Biochemical and Biophysical Research Communications, 417, 5–10.CrossRefPubMed Roskoski, R., Jr. (2012). MEK1/2 dual-specificity protein kinases: Structure and regulation. Biochemical and Biophysical Research Communications, 417, 5–10.CrossRefPubMed
8.
Zurück zum Zitat Gilmartin, A. G., Bleam, M. R., Groy, A., Moss, K. G., Minthorn, E. A., Kulkarni, S. G., et al. (2011). GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17, 989–1000.CrossRef Gilmartin, A. G., Bleam, M. R., Groy, A., Moss, K. G., Minthorn, E. A., Kulkarni, S. G., et al. (2011). GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17, 989–1000.CrossRef
9.
Zurück zum Zitat Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine, 367, 107–114.CrossRefPubMed Flaherty, K. T., Robert, C., Hersey, P., Nathan, P., Garbe, C., Milhem, M., et al. (2012). Improved survival with MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine, 367, 107–114.CrossRefPubMed
10.
Zurück zum Zitat Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.CrossRefPubMed Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.CrossRefPubMed
11.
Zurück zum Zitat Solit, D. B., Garraway, L. A., Pratilas, C. A., Sawai, A., Getz, G., Basso, A., et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature, 439, 358–362.CrossRefPubMed Solit, D. B., Garraway, L. A., Pratilas, C. A., Sawai, A., Getz, G., Basso, A., et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature, 439, 358–362.CrossRefPubMed
12.
Zurück zum Zitat Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372, 30–39.CrossRefPubMed Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372, 30–39.CrossRefPubMed
13.
Zurück zum Zitat Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2015). Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet, 386, 444–451.CrossRefPubMed Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2015). Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet, 386, 444–451.CrossRefPubMed
14.
Zurück zum Zitat Modak, S., Asante-Korang, A., Steinherz, L. J., & Grana, N. (2015). Trametinib-induced left ventricular dysfunction in a child with relapsed neuroblastoma. Journal of Pediatric Hematology/oncology, 37, e381–e383.CrossRefPubMed Modak, S., Asante-Korang, A., Steinherz, L. J., & Grana, N. (2015). Trametinib-induced left ventricular dysfunction in a child with relapsed neuroblastoma. Journal of Pediatric Hematology/oncology, 37, e381–e383.CrossRefPubMed
15.
Zurück zum Zitat Tseng, D., Mason, X. L., Neilan, T. G., & Sullivan, R. J. (2016). Cardiogenic shock and respiratory failure in a patient with metastatic melanoma receiving trametinib therapy. The Oncologist, 21, 1136–1137.CrossRefPubMedPubMedCentral Tseng, D., Mason, X. L., Neilan, T. G., & Sullivan, R. J. (2016). Cardiogenic shock and respiratory failure in a patient with metastatic melanoma receiving trametinib therapy. The Oncologist, 21, 1136–1137.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Falchook, G. S., Lewis, K. D., Infante, J. R., Gordon, M. S., Vogelzang, N. J., DeMarini, D. J., et al. (2012). Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: A phase 1 dose-escalation trial. The Lancet Oncology, 13, 782–789.CrossRefPubMedPubMedCentral Falchook, G. S., Lewis, K. D., Infante, J. R., Gordon, M. S., Vogelzang, N. J., DeMarini, D. J., et al. (2012). Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: A phase 1 dose-escalation trial. The Lancet Oncology, 13, 782–789.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Infante, J. R., Somer, B. G., Park, J. O., Li, C. P., Scheulen, M. E., Kasubhai, S. M., et al. (2014). A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. European Journal of Cancer, 50, 2072–2081.CrossRefPubMed Infante, J. R., Somer, B. G., Park, J. O., Li, C. P., Scheulen, M. E., Kasubhai, S. M., et al. (2014). A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. European Journal of Cancer, 50, 2072–2081.CrossRefPubMed
18.
Zurück zum Zitat Planchard, D., Besse, B., Groen, H. J., Souquet, P. J., Quoix, E., Baik, C. S., et al. (2016). Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. The Lancet Oncology, 17, 984–993.CrossRefPubMedPubMedCentral Planchard, D., Besse, B., Groen, H. J., Souquet, P. J., Quoix, E., Baik, C. S., et al. (2016). Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. The Lancet Oncology, 17, 984–993.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kim, K. B., Kefford, R., Pavlick, A. C., Infante, J. R., Ribas, A., Sosman, J. A., et al. (2013). Phase II study of the MEK1/MEK2 inhibitor trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 482–489.CrossRef Kim, K. B., Kefford, R., Pavlick, A. C., Infante, J. R., Ribas, A., Sosman, J. A., et al. (2013). Phase II study of the MEK1/MEK2 inhibitor trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 482–489.CrossRef
20.
Zurück zum Zitat Shah, R. R., & Morganroth, J. (2015). Update on cardiovascular safety of tyrosine kinase inhibitors: With a special focus on qt interval, left ventricular dysfunction and overall risk/benefit. Drug Safety, 38, 693–710.CrossRefPubMed Shah, R. R., & Morganroth, J. (2015). Update on cardiovascular safety of tyrosine kinase inhibitors: With a special focus on qt interval, left ventricular dysfunction and overall risk/benefit. Drug Safety, 38, 693–710.CrossRefPubMed
21.
Zurück zum Zitat Tolcher, A. W., Bendell, J. C., Papadopoulos, K. P., Burris, H. A., 3rd, Patnaik, A., Jones, S. F., et al. (2015). A phase IB trial of the oral MEK inhibitor trametinib (GSK1120212) in combination with everolimus in patients with advanced solid tumors. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 26, 58–64.CrossRef Tolcher, A. W., Bendell, J. C., Papadopoulos, K. P., Burris, H. A., 3rd, Patnaik, A., Jones, S. F., et al. (2015). A phase IB trial of the oral MEK inhibitor trametinib (GSK1120212) in combination with everolimus in patients with advanced solid tumors. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 26, 58–64.CrossRef
22.
Zurück zum Zitat Shroff, R. T., Yarchoan, M., O’Connor, A., Gallagher, D., Zahurak, M. L., Rosner, G., et al. (2017). The oral VEGF receptor tyrosine kinase inhibitor pazopanib in combination with the MEK inhibitor trametinib in advanced cholangiocarcinoma. British Journal of Cancer, 116(11), 1402–1407.CrossRefPubMed Shroff, R. T., Yarchoan, M., O’Connor, A., Gallagher, D., Zahurak, M. L., Rosner, G., et al. (2017). The oral VEGF receptor tyrosine kinase inhibitor pazopanib in combination with the MEK inhibitor trametinib in advanced cholangiocarcinoma. British Journal of Cancer, 116(11), 1402–1407.CrossRefPubMed
23.
Zurück zum Zitat Tolcher, A. W., Patnaik, A., Papadopoulos, K. P., Rasco, D. W., Becerra, C. R., Allred, A. J., et al. (2015). Phase I study of the MEK inhibitor trametinib in combination with the AKT inhibitor afuresertib in patients with solid tumors and multiple myeloma. Cancer Chemotherapy and Pharmacology, 75, 183–189.CrossRefPubMed Tolcher, A. W., Patnaik, A., Papadopoulos, K. P., Rasco, D. W., Becerra, C. R., Allred, A. J., et al. (2015). Phase I study of the MEK inhibitor trametinib in combination with the AKT inhibitor afuresertib in patients with solid tumors and multiple myeloma. Cancer Chemotherapy and Pharmacology, 75, 183–189.CrossRefPubMed
24.
Zurück zum Zitat Ghatalia, P., Je, Y., Kaymakcalan, M. D., Sonpavde, G., & Choueiri, T. K. (2015). QTc interval prolongation with vascular endothelial growth factor receptor tyrosine kinase inhibitors. British Journal of Cancer, 112, 296–305.CrossRefPubMed Ghatalia, P., Je, Y., Kaymakcalan, M. D., Sonpavde, G., & Choueiri, T. K. (2015). QTc interval prolongation with vascular endothelial growth factor receptor tyrosine kinase inhibitors. British Journal of Cancer, 112, 296–305.CrossRefPubMed
25.
Zurück zum Zitat Patnaik, A., Tolcher, A., Papadopoulos, K. P., Beeram, M., Rasco, D., Werner, T. L., et al. (2016). Phase 1 study to evaluate the effect of the MEK inhibitor trametinib on cardiac repolarization in patients with solid tumours. Cancer Chemotherapy and Pharmacology, 78, 491–500.CrossRefPubMed Patnaik, A., Tolcher, A., Papadopoulos, K. P., Beeram, M., Rasco, D., Werner, T. L., et al. (2016). Phase 1 study to evaluate the effect of the MEK inhibitor trametinib on cardiac repolarization in patients with solid tumours. Cancer Chemotherapy and Pharmacology, 78, 491–500.CrossRefPubMed
26.
Zurück zum Zitat Thakur, A., & Witteles, R. M. (2014). Cancer therapy-induced left ventricular dysfunction: Interventions and prognosis. Journal of Cardiac Failure, 20, 155–158.CrossRefPubMed Thakur, A., & Witteles, R. M. (2014). Cancer therapy-induced left ventricular dysfunction: Interventions and prognosis. Journal of Cardiac Failure, 20, 155–158.CrossRefPubMed
27.
Zurück zum Zitat Hu, L. A., Chen, W., Martin, N. P., Whalen, E. J., Premont, R. T., & Lefkowitz, R. J. (2003). Gipc interacts with the β1-adrenergic receptor and regulates β1-adrenergic receptor-mediated ERK activation. The Journal of Biological Chemistry, 278, 26295–26301.CrossRefPubMed Hu, L. A., Chen, W., Martin, N. P., Whalen, E. J., Premont, R. T., & Lefkowitz, R. J. (2003). Gipc interacts with the β1-adrenergic receptor and regulates β1-adrenergic receptor-mediated ERK activation. The Journal of Biological Chemistry, 278, 26295–26301.CrossRefPubMed
28.
Zurück zum Zitat Sabri, A., Pak, E., Alcott, S. A., Wilson, B. A., & Steinberg, S. F. (2000). Coupling function of endogenous α(1)- and β-adrenergic receptors in mouse cardiomyocytes. Circulation Research, 86, 1047–1053.CrossRefPubMed Sabri, A., Pak, E., Alcott, S. A., Wilson, B. A., & Steinberg, S. F. (2000). Coupling function of endogenous α(1)- and β-adrenergic receptors in mouse cardiomyocytes. Circulation Research, 86, 1047–1053.CrossRefPubMed
29.
Zurück zum Zitat Marber, M. S., Rose, B., & Wang, Y. (2011). The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure. Journal of Molecular and Cellular Cardiology, 51, 485–490.CrossRefPubMed Marber, M. S., Rose, B., & Wang, Y. (2011). The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure. Journal of Molecular and Cellular Cardiology, 51, 485–490.CrossRefPubMed
30.
Zurück zum Zitat Kerkela, R., & Force, T. (2006). P38 mitogen-activated protein kinase: A future target for heart failure therapy? Journal of the American College of Cardiology, 48, 556–558.CrossRefPubMed Kerkela, R., & Force, T. (2006). P38 mitogen-activated protein kinase: A future target for heart failure therapy? Journal of the American College of Cardiology, 48, 556–558.CrossRefPubMed
31.
Zurück zum Zitat Fischer, P., & Hilfiker-Kleiner, D. (2007). Survival pathways in hypertrophy and heart failure: The gp130-STAT3 axis. Basic Research in Cardiology, 102, 279–297.CrossRefPubMed Fischer, P., & Hilfiker-Kleiner, D. (2007). Survival pathways in hypertrophy and heart failure: The gp130-STAT3 axis. Basic Research in Cardiology, 102, 279–297.CrossRefPubMed
32.
Zurück zum Zitat Rose, B. A., Force, T., & Wang, Y. (2010). Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiological Reviews, 90, 1507–1546.CrossRefPubMed Rose, B. A., Force, T., & Wang, Y. (2010). Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiological Reviews, 90, 1507–1546.CrossRefPubMed
33.
Zurück zum Zitat Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., et al. (1997). Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. The Journal of Clinical Investigation, 100, 1813–1821.CrossRefPubMedPubMedCentral Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., et al. (1997). Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. The Journal of Clinical Investigation, 100, 1813–1821.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Bueno, O. F., & Molkentin, J. D. (2002). Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circulation Research, 91, 776–781.CrossRefPubMed Bueno, O. F., & Molkentin, J. D. (2002). Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circulation Research, 91, 776–781.CrossRefPubMed
35.
Zurück zum Zitat Lou, H., Danelisen, I., & Singal, P. K. (2005). Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 288, H1925–H1930.CrossRefPubMed Lou, H., Danelisen, I., & Singal, P. K. (2005). Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 288, H1925–H1930.CrossRefPubMed
36.
Zurück zum Zitat Lips, D. J., Bueno, O. F., Wilkins, B. J., Purcell, N. H., Kaiser, R. A., Lorenz, J. N., et al. (2004). MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation, 109, 1938–1941.CrossRefPubMed Lips, D. J., Bueno, O. F., Wilkins, B. J., Purcell, N. H., Kaiser, R. A., Lorenz, J. N., et al. (2004). MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation, 109, 1938–1941.CrossRefPubMed
37.
Zurück zum Zitat Purcell, N. H., Wilkins, B. J., York, A., Saba-El-Leil, M. K., Meloche, S., Robbins, J., et al. (2007). Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 14074–14079.CrossRefPubMedPubMedCentral Purcell, N. H., Wilkins, B. J., York, A., Saba-El-Leil, M. K., Meloche, S., Robbins, J., et al. (2007). Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 14074–14079.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Duran, J. M., Makarewich, C. A., Trappanese, D., Gross, P., Husain, S., Dunn, J., et al. (2014). Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circulation Research, 114, 1700–1712.CrossRefPubMedPubMedCentral Duran, J. M., Makarewich, C. A., Trappanese, D., Gross, P., Husain, S., Dunn, J., et al. (2014). Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circulation Research, 114, 1700–1712.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Chavez-MacGregor, M., Zhang, N., Buchholz, T. A., Zhang, Y., Niu, J., Elting, L., et al. (2013). Trastuzumab-related cardiotoxicity among older patients with breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 4222–4228.CrossRef Chavez-MacGregor, M., Zhang, N., Buchholz, T. A., Zhang, Y., Niu, J., Elting, L., et al. (2013). Trastuzumab-related cardiotoxicity among older patients with breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 4222–4228.CrossRef
Metadaten
Titel
Cardiovascular Effects of the MEK Inhibitor, Trametinib: A Case Report, Literature Review, and Consideration of Mechanism
verfasst von
Mary Banks
Karen Crowell
Amber Proctor
Brian C. Jensen
Publikationsdatum
31.08.2017
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2017
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9425-z

Weitere Artikel der Ausgabe 4/2017

Cardiovascular Toxicology 4/2017 Zur Ausgabe