Skip to main content
Erschienen in: NeuroMolecular Medicine 4/2008

01.12.2008 | Review Paper

Mitochondrial Medicine for Aging and Neurodegenerative Diseases

verfasst von: P. Hemachandra Reddy

Erschienen in: NeuroMolecular Medicine | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Mitochondria are key cytoplasmic organelles, responsible for generating cellular energy, regulating intracellular calcium levels, altering the reduction-oxidation potential of cells, and regulating cell death. Increasing evidence suggests that mitochondria play a central role in aging and in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and Freidriech ataxia. Further, several lines of evidence suggest that mitochondrial dysfunction is an early event in most late-onset neurodegenerative diseases. Biochemical and animal model studies of inherited neurodegenerative diseases have revealed that mutant proteins of these diseases are associated with mitochondria. Mutant proteins are reported to block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins and disrupt the electron transport chain, induce free radicals, cause mitochondrial dysfunction, and, ultimately, damage neurons. This article discusses critical issues of mitochondria causing dysfunction in aging and neurodegenerative diseases, and discusses the potential of developing mitochondrial medicine, particularly mitochondrially targeted antioxidants, to treat aging and neurodegenerative diseases.
Literatur
Zurück zum Zitat Abe, Y., Hashimoto, Y., Tomita, Y., Terashita, K., Aiso, S., Tajima, H., et al. (2004). Cytotoxic mechanisms by M239 V presenilin 2, a little-analyzed Alzheimer’s disease-causative mutant. Journal of Neuroscience Research, 77, 583–595. doi:10.1002/jnr.20163.PubMed Abe, Y., Hashimoto, Y., Tomita, Y., Terashita, K., Aiso, S., Tajima, H., et al. (2004). Cytotoxic mechanisms by M239 V presenilin 2, a little-analyzed Alzheimer’s disease-causative mutant. Journal of Neuroscience Research, 77, 583–595. doi:10.​1002/​jnr.​20163.PubMed
Zurück zum Zitat Afifi, A. K., Aleu, F. P., Goodgold, J., & MacKay, B. (1966). Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis. Neurology, 16, 475–481.PubMed Afifi, A. K., Aleu, F. P., Goodgold, J., & MacKay, B. (1966). Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis. Neurology, 16, 475–481.PubMed
Zurück zum Zitat Anandatheerthavarada, H. K., Biswas, G., Robin, M. A., & Avadhani, N. G. (2003). Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. Journal of Cell Biology, 161, 41–54. doi:10.1083/jcb.200207030.PubMed Anandatheerthavarada, H. K., Biswas, G., Robin, M. A., & Avadhani, N. G. (2003). Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. Journal of Cell Biology, 161, 41–54. doi:10.​1083/​jcb.​200207030.PubMed
Zurück zum Zitat Andersen, J. K. (2004). Iron dysregulation and Parkinson’s disease. Journal of Alzheimer’s Disease, 6, S47–S52.PubMed Andersen, J. K. (2004). Iron dysregulation and Parkinson’s disease. Journal of Alzheimer’s Disease, 6, S47–S52.PubMed
Zurück zum Zitat Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465. doi:10.1038/290457a0.PubMed Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465. doi:10.​1038/​290457a0.PubMed
Zurück zum Zitat Barsoum, M. J., Yuan, H., Gerencser, A. A., et al. (2006). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO Journal, 25, 3900–3911. doi:10.1038/sj.emboj.7601253.PubMed Barsoum, M. J., Yuan, H., Gerencser, A. A., et al. (2006). Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO Journal, 25, 3900–3911. doi:10.​1038/​sj.​emboj.​7601253.PubMed
Zurück zum Zitat Bates, G. P. (2005). History of genetic disease: The molecular genetics of Huntington disease––a history. Nature Reviews. Genetics, 6, 766–773. doi:10.1038/nrg1686.PubMed Bates, G. P. (2005). History of genetic disease: The molecular genetics of Huntington disease––a history. Nature Reviews. Genetics, 6, 766–773. doi:10.​1038/​nrg1686.PubMed
Zurück zum Zitat Behbahani, H., Shabalina, I. G., Wiehager, B., et al. (2006). Differential role of Presenilin-1 and -2 on mitochondrial membrane potential and oxygen consumption in mouse embryonic fibroblasts. Journal of Neuroscience Research, 84, 891–902. doi:10.1002/jnr.20990.PubMed Behbahani, H., Shabalina, I. G., Wiehager, B., et al. (2006). Differential role of Presenilin-1 and -2 on mitochondrial membrane potential and oxygen consumption in mouse embryonic fibroblasts. Journal of Neuroscience Research, 84, 891–902. doi:10.​1002/​jnr.​20990.PubMed
Zurück zum Zitat Beilina, A., Van Der Brug, M., Ahmad, R., Kesavapany, S., Miller, D. W., Petsko, G. A., et al. (2005). Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proceedings of the National Academy of Sciences of the United States of America, 102, 5703–5708. doi:10.1073/pnas.0500617102.PubMed Beilina, A., Van Der Brug, M., Ahmad, R., Kesavapany, S., Miller, D. W., Petsko, G. A., et al. (2005). Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proceedings of the National Academy of Sciences of the United States of America, 102, 5703–5708. doi:10.​1073/​pnas.​0500617102.PubMed
Zurück zum Zitat Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T., et al. (2007). Mitochondrial bioenergetics and structural network organization. Journal of Cell Science, 120, 838–848. doi:10.1242/jcs.03381.PubMed Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T., et al. (2007). Mitochondrial bioenergetics and structural network organization. Journal of Cell Science, 120, 838–848. doi:10.​1242/​jcs.​03381.PubMed
Zurück zum Zitat Bergemalm, D., Jonsson, P. A., Graffmo, K. S., Andersen, P. M., Brannstrom, T., Rehnmark, A., et al. (2006). Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. Journal of Neuroscience, 26, 4147–4154. doi:10.1523/JNEUROSCI.5461-05.2006.PubMed Bergemalm, D., Jonsson, P. A., Graffmo, K. S., Andersen, P. M., Brannstrom, T., Rehnmark, A., et al. (2006). Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. Journal of Neuroscience, 26, 4147–4154. doi:10.​1523/​JNEUROSCI.​5461-05.​2006.PubMed
Zurück zum Zitat Bonifati, V., Rizzu, P., van Baren, M. J., et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science, 299, 256–259. doi:10.1126/science.1077209.PubMed Bonifati, V., Rizzu, P., van Baren, M. J., et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science, 299, 256–259. doi:10.​1126/​science.​1077209.PubMed
Zurück zum Zitat Bossy-Wetzel, E., Barsoum, M. J., Godzik, A., Schwarzenbacher, R., & Lipton, S. A. (2003). Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion in Cell Biology, 15, 706–716. doi:10.1016/j.ceb.2003.10.015.PubMed Bossy-Wetzel, E., Barsoum, M. J., Godzik, A., Schwarzenbacher, R., & Lipton, S. A. (2003). Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion in Cell Biology, 15, 706–716. doi:10.​1016/​j.​ceb.​2003.​10.​015.PubMed
Zurück zum Zitat Boyd-Kimball, D., Sultana, R., Abdul, H. M., & Butterfield, D. A. (2005a). Gamma-glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Abeta(1–42)-mediated oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Journal of Neuroscience Research, 79, 700–706. doi:10.1002/jnr.20394.PubMed Boyd-Kimball, D., Sultana, R., Abdul, H. M., & Butterfield, D. A. (2005a). Gamma-glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Abeta(1–42)-mediated oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Journal of Neuroscience Research, 79, 700–706. doi:10.​1002/​jnr.​20394.PubMed
Zurück zum Zitat Boyd-Kimball, D., Sultana, R., Poon, H. F., Mohmmad-Abdul, H., Lynn, B. C., Klein, J. B., et al. (2005b). Gamma-glutamylcysteine ethyl ester protection of proteins from Abeta(1-42)-mediated oxidative stress in neuronal cell culture: A proteomics approach. Journal of Neuroscience Research, 79, 707–713. doi:10.1002/jnr.20393.PubMed Boyd-Kimball, D., Sultana, R., Poon, H. F., Mohmmad-Abdul, H., Lynn, B. C., Klein, J. B., et al. (2005b). Gamma-glutamylcysteine ethyl ester protection of proteins from Abeta(1-42)-mediated oxidative stress in neuronal cell culture: A proteomics approach. Journal of Neuroscience Research, 79, 707–713. doi:10.​1002/​jnr.​20393.PubMed
Zurück zum Zitat Bozner, P., Grishko, V., LeDoux, S. P., Wilson, G. L., Chyan, Y. C., & Pappolla, M. A. (1997). The amyloid beta protein induces oxidative damage of mitochondrial DNA. Journal of Neuropathology and Experimental Neurology, 56, 1356–1362. doi:10.1097/00005072-199712000-00010.PubMed Bozner, P., Grishko, V., LeDoux, S. P., Wilson, G. L., Chyan, Y. C., & Pappolla, M. A. (1997). The amyloid beta protein induces oxidative damage of mitochondrial DNA. Journal of Neuropathology and Experimental Neurology, 56, 1356–1362. doi:10.​1097/​00005072-199712000-00010.PubMed
Zurück zum Zitat Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., et al. (1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia. Annals of Neurology, 41, 646–653. doi:10.1002/ana.410410514.PubMed Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., et al. (1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia. Annals of Neurology, 41, 646–653. doi:10.​1002/​ana.​410410514.PubMed
Zurück zum Zitat Bruijn, L. I., Houseweart, M. K., Kato, S., Anderson, K. L., Anderson, S. D., Ohama, E., et al. (1998). Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science, 281, 1851–1854. doi:10.1126/science.281.5384.1851.PubMed Bruijn, L. I., Houseweart, M. K., Kato, S., Anderson, K. L., Anderson, S. D., Ohama, E., et al. (1998). Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science, 281, 1851–1854. doi:10.​1126/​science.​281.​5384.​1851.PubMed
Zurück zum Zitat Canet-Avilés, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon, C., Bandyopadhyay, S., et al. (2004). The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 101, 9103–9108.PubMed Canet-Avilés, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon, C., Bandyopadhyay, S., et al. (2004). The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 101, 9103–9108.PubMed
Zurück zum Zitat Caspersen, C., Wang, N., Yao, J., Sosunov, A., Chen, X., Lustbader, J. W., et al. (2005). Mitochondrial Abeta: A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB Journal, 19, 2040–2041.PubMed Caspersen, C., Wang, N., Yao, J., Sosunov, A., Chen, X., Lustbader, J. W., et al. (2005). Mitochondrial Abeta: A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB Journal, 19, 2040–2041.PubMed
Zurück zum Zitat Chan, S. L., Furukawa, K., & Mattson, M. P. (2002). Presenilins and APP in neuritic and synaptic plasticity: Implications for the pathogenesis of Alzheimer’s disease. Neuromolecular Medicine, 2, 167–196. doi:10.1385/NMM:2:2:167.PubMed Chan, S. L., Furukawa, K., & Mattson, M. P. (2002). Presenilins and APP in neuritic and synaptic plasticity: Implications for the pathogenesis of Alzheimer’s disease. Neuromolecular Medicine, 2, 167–196. doi:10.​1385/​NMM:​2:​2:​167.PubMed
Zurück zum Zitat Chang, S., Ran, M. A. T., Miranda, R. D., Balestra, M. E., Mahley, R. W., & Huang, Y. (2005). Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18694–18689 doi:10.1073/pnas.0508254102. Chang, S., Ran, M. A. T., Miranda, R. D., Balestra, M. E., Mahley, R. W., & Huang, Y. (2005). Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18694–18689 doi:10.​1073/​pnas.​0508254102.
Zurück zum Zitat Chang, D. T., Rintoul, G. L., Pandipati, S., & Reynolds, I. J. (2006). Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiology of Disease, 22, 388–400. doi:10.1016/j.nbd.2005.12.007.PubMed Chang, D. T., Rintoul, G. L., Pandipati, S., & Reynolds, I. J. (2006). Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiology of Disease, 22, 388–400. doi:10.​1016/​j.​nbd.​2005.​12.​007.PubMed
Zurück zum Zitat Chen, X., Liang, H., Van Remmen, H., Vijg, J., & Richradson, A. (2004). Catalase transgenic mice: Characterization and sensitivity to oxidative stress. Archives of Biochemistry and Biophysics, 422, 197–210. doi:10.1016/j.abb.2003.12.023.PubMed Chen, X., Liang, H., Van Remmen, H., Vijg, J., & Richradson, A. (2004). Catalase transgenic mice: Characterization and sensitivity to oxidative stress. Archives of Biochemistry and Biophysics, 422, 197–210. doi:10.​1016/​j.​abb.​2003.​12.​023.PubMed
Zurück zum Zitat Cho, S., Szeto, H. H., Kim, E., Kim, H., Tolhurst, A. T., & Pinto, J. T. (2007a). A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. Journal of Biological Chemistry, 282, 4634–4642. doi:10.1074/jbc.M609388200.PubMed Cho, S., Szeto, H. H., Kim, E., Kim, H., Tolhurst, A. T., & Pinto, J. T. (2007a). A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. Journal of Biological Chemistry, 282, 4634–4642. doi:10.​1074/​jbc.​M609388200.PubMed
Zurück zum Zitat Chung, M. J., & Suh, Y. L. (2002). Ultrastructural changes of mitochondria in the skeletal muscle of patients with amyotrophic lateral sclerosis. Ultrastructural Pathology, 26, 3–7. doi:10.1080/01913120252934260.PubMed Chung, M. J., & Suh, Y. L. (2002). Ultrastructural changes of mitochondria in the skeletal muscle of patients with amyotrophic lateral sclerosis. Ultrastructural Pathology, 26, 3–7. doi:10.​1080/​0191312025293426​0.PubMed
Zurück zum Zitat Cocheme, H. M., Kelso, G. F., James, A. M. Ross, M. F., Trnka, J., Mahendrian, T., Asin-Cayuela, J., Blaike, F. H., Manas, A. R., Porteous, C. M., Adlam, V. J., Smith, R. A. & Murphy, M. P. (2007). Mitochondrial targeting of quinones: Therapeutic implications. Mitochondrion (Suppl:S94–S102) doi:10.1016/j.mito.2007.02.007. Cocheme, H. M., Kelso, G. F., James, A. M. Ross, M. F., Trnka, J., Mahendrian, T., Asin-Cayuela, J., Blaike, F. H., Manas, A. R., Porteous, C. M., Adlam, V. J., Smith, R. A. & Murphy, M. P. (2007). Mitochondrial targeting of quinones: Therapeutic implications. Mitochondrion (Suppl:S94–S102) doi:10.​1016/​j.​mito.​2007.​02.​007.
Zurück zum Zitat Cooper, J. M., Mann, V. M., & Schapira, A. H. (1992). Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing. Journal of the Neurological Sciences, 113, 91–98. doi:10.1016/0022-510X(92)90270-U.PubMed Cooper, J. M., Mann, V. M., & Schapira, A. H. (1992). Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing. Journal of the Neurological Sciences, 113, 91–98. doi:10.​1016/​0022-510X(92)90270-U.PubMed
Zurück zum Zitat Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., McKee, A. C., Beal, M. F., et al. (1994). Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics, 23, 471–476. doi:10.1006/geno.1994.1525.PubMed Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., McKee, A. C., Beal, M. F., et al. (1994). Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics, 23, 471–476. doi:10.​1006/​geno.​1994.​1525.PubMed
Zurück zum Zitat Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., & Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59–69. doi:10.1016/j.cell.2006.09.015.PubMed Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., & Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59–69. doi:10.​1016/​j.​cell.​2006.​09.​015.PubMed
Zurück zum Zitat Deng, H. X., Shi, Y., Furukawa, Y., Zhai, H., et al. (2006). Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 103, 7142–7147. doi:10.1073/pnas.0602046103.PubMed Deng, H. X., Shi, Y., Furukawa, Y., Zhai, H., et al. (2006). Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 103, 7142–7147. doi:10.​1073/​pnas.​0602046103.PubMed
Zurück zum Zitat Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., & Prochiantz, A. (1996). Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. Journal of Biological Chemistry, 271, 18188–18193. doi:10.1074/jbc.271.30.18188.PubMed Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., & Prochiantz, A. (1996). Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. Journal of Biological Chemistry, 271, 18188–18193. doi:10.​1074/​jbc.​271.​30.​18188.PubMed
Zurück zum Zitat Devi, L., Prabhu, B. M., Galati, D. F., Avadhani, N. G., & Anandatheerthavarada, H. K. (2006). Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. Journal of Neuroscience, 26, 9057–9068. doi:10.1523/JNEUROSCI.1469-06.2006.PubMed Devi, L., Prabhu, B. M., Galati, D. F., Avadhani, N. G., & Anandatheerthavarada, H. K. (2006). Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. Journal of Neuroscience, 26, 9057–9068. doi:10.​1523/​JNEUROSCI.​1469-06.​2006.PubMed
Zurück zum Zitat Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G., & Anandatheerthavarada, H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry, 283, 9089–9100. doi:10.1074/jbc.M710012200.PubMed Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G., & Anandatheerthavarada, H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry, 283, 9089–9100. doi:10.​1074/​jbc.​M710012200.PubMed
Zurück zum Zitat Dhanasekaran, A., Kotamraju, S., Kalivendi, S. V., Matsunaga, T., Shang, T., Keszler, A., Jpseph, J., & Kalyanaraman, B. (2004). Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. Jounal of Biological Chemistry, 279, 37575–37587. Dhanasekaran, A., Kotamraju, S., Kalivendi, S. V., Matsunaga, T., Shang, T., Keszler, A., Jpseph, J., & Kalyanaraman, B. (2004). Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. Jounal of Biological Chemistry, 279, 37575–37587.
Zurück zum Zitat Drin, G., Cottin, S., Blanc, E., Rees, A. R., & Temsamani, J. (2003). Studies on the internalization mechanism of cationic cell-penetrating peptides. Journal of Biological Chemistry, 278, 31192–31201. doi:10.1074/jbc.M303938200.PubMed Drin, G., Cottin, S., Blanc, E., Rees, A. R., & Temsamani, J. (2003). Studies on the internalization mechanism of cationic cell-penetrating peptides. Journal of Biological Chemistry, 278, 31192–31201. doi:10.​1074/​jbc.​M303938200.PubMed
Zurück zum Zitat Dupuis, L., di Scala, F., Rene, F., de Tapia, M., Oudart, H., Pradat, P. F., et al. (2003). Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB Journal, 17, 2091–2093.PubMed Dupuis, L., di Scala, F., Rene, F., de Tapia, M., Oudart, H., Pradat, P. F., et al. (2003). Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB Journal, 17, 2091–2093.PubMed
Zurück zum Zitat Fromenty, B., Grimbert, S., Mansouri, A., Beaugrand, M., Erlinger, S., Rotug, A., et al. (1995). Hepatic mitochondrial DNA deletion in alcoholics: Association with microvesicular steatosis. Gastroenterology, 108, 193–200. doi:10.1016/0016-5085(95)90024-1.PubMed Fromenty, B., Grimbert, S., Mansouri, A., Beaugrand, M., Erlinger, S., Rotug, A., et al. (1995). Hepatic mitochondrial DNA deletion in alcoholics: Association with microvesicular steatosis. Gastroenterology, 108, 193–200. doi:10.​1016/​0016-5085(95)90024-1.PubMed
Zurück zum Zitat Folstein, S. E. (1990). Huntington’s Disease. Baltimore: Johns Hopkins University Press. Folstein, S. E. (1990). Huntington’s Disease. Baltimore: Johns Hopkins University Press.
Zurück zum Zitat Fukui, H., & Moraes, C. T. (2007). Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Human Molecular Genetics, 16, 783–797. doi:10.1093/hmg/ddm023.PubMed Fukui, H., & Moraes, C. T. (2007). Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Human Molecular Genetics, 16, 783–797. doi:10.​1093/​hmg/​ddm023.PubMed
Zurück zum Zitat Furukawa, Y., Fu, R., Deng, H. X., Siddique, T., & O’Halloran, T. V. (2006). Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7148–7153. doi:10.1073/pnas.0602048103.PubMed Furukawa, Y., Fu, R., Deng, H. X., Siddique, T., & O’Halloran, T. V. (2006). Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7148–7153. doi:10.​1073/​pnas.​0602048103.PubMed
Zurück zum Zitat Galter, D., Westerlund, M., Carmine, A., Lindqvist, E., Sydow, O., & Olson, L. (2006). LRRK2 expression linked to dopamine-innervated areas. Annals of Neurology, 59, 714–719. doi:10.1002/ana.20808.PubMed Galter, D., Westerlund, M., Carmine, A., Lindqvist, E., Sydow, O., & Olson, L. (2006). LRRK2 expression linked to dopamine-innervated areas. Annals of Neurology, 59, 714–719. doi:10.​1002/​ana.​20808.PubMed
Zurück zum Zitat Gandhi, S., & Wood, N. W. (2005). Molecular pathogenesis of Parkinson’s disease. Human Molecular Genetics, 14, 2749–2755. Gandhi, S., & Wood, N. W. (2005). Molecular pathogenesis of Parkinson’s disease. Human Molecular Genetics, 14, 2749–2755.
Zurück zum Zitat Gibson, G. E., Sheu, K. F., & Blass, J. P. (1998). Abnormalities of mitochondrial enzymes in Alzheimer disease. Journal of Neural Transmission, 105, 855–870. doi:10.1007/s007020050099.PubMed Gibson, G. E., Sheu, K. F., & Blass, J. P. (1998). Abnormalities of mitochondrial enzymes in Alzheimer disease. Journal of Neural Transmission, 105, 855–870. doi:10.​1007/​s007020050099.PubMed
Zurück zum Zitat Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., et al. (2005). A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet, 365, 415–416.PubMed Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., et al. (2005). A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet, 365, 415–416.PubMed
Zurück zum Zitat Guarente, L. (2000). Sir2 links chromatin silencing, metabolism, and aging. Genes and Development, 14, 1021–1026.PubMed Guarente, L. (2000). Sir2 links chromatin silencing, metabolism, and aging. Genes and Development, 14, 1021–1026.PubMed
Zurück zum Zitat Guo, Q., Sebastian, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., et al. (1999). Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: Central roles of superoxide production and caspase activation. Journal of Neurochemistry, 72, 1019–1029. doi:10.1046/j.1471-4159.1999.0721019.x.PubMed Guo, Q., Sebastian, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., et al. (1999). Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: Central roles of superoxide production and caspase activation. Journal of Neurochemistry, 72, 1019–1029. doi:10.​1046/​j.​1471-4159.​1999.​0721019.​x.PubMed
Zurück zum Zitat Guo, Q., Sopher, B. L., Furukawa, K., Pham, D. G., Robinson, N., Martin, G. M., et al. (1997). Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: Involvement of calcium and oxyradicals. Journal of Neuroscience, 17, 4212–4222.PubMed Guo, Q., Sopher, B. L., Furukawa, K., Pham, D. G., Robinson, N., Martin, G. M., et al. (1997). Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: Involvement of calcium and oxyradicals. Journal of Neuroscience, 17, 4212–4222.PubMed
Zurück zum Zitat Gurney, M. E., Pu, H., Chiu, A. Y., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775. doi:10.1126/science.8209258.PubMed Gurney, M. E., Pu, H., Chiu, A. Y., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775. doi:10.​1126/​science.​8209258.PubMed
Zurück zum Zitat Hansson, C. A., Frykman, S., Farmery, M. R., et al. (2004). Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. Journal of Biological Chemistry, 279, 51654–51660. doi:10.1074/jbc.M404500200.PubMed Hansson, C. A., Frykman, S., Farmery, M. R., et al. (2004). Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. Journal of Biological Chemistry, 279, 51654–51660. doi:10.​1074/​jbc.​M404500200.PubMed
Zurück zum Zitat Hausse, A. O., Aggoun, Y., Bonnet, D., Sidi, D., Munnich, A., Rotig, A., et al. (2002). Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart, 87, 346–349. doi:10.1136/heart.87.4.346.PubMed Hausse, A. O., Aggoun, Y., Bonnet, D., Sidi, D., Munnich, A., Rotig, A., et al. (2002). Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart, 87, 346–349. doi:10.​1136/​heart.​87.​4.​346.PubMed
Zurück zum Zitat Hervias, I., Beal, M. F., & Manfredi, G. (2006). Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle and Nerve, 33, 598–608. doi:10.1002/mus.20489.PubMed Hervias, I., Beal, M. F., & Manfredi, G. (2006). Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle and Nerve, 33, 598–608. doi:10.​1002/​mus.​20489.PubMed
Zurück zum Zitat Higgins, C. M., Jung, C., & Xu, Z. (2003). ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neuroscience, 4, 16. doi:10.1186/1471-2202-4-16.PubMed Higgins, C. M., Jung, C., & Xu, Z. (2003). ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neuroscience, 4, 16. doi:10.​1186/​1471-2202-4-16.PubMed
Zurück zum Zitat Hirai, K., Aliev, G., Nunomura, A., et al. (2001). Mitochondrial abnormalities in Alzheimer’s disease. Journal of Neuroscience, 21, 3017–3023.PubMed Hirai, K., Aliev, G., Nunomura, A., et al. (2001). Mitochondrial abnormalities in Alzheimer’s disease. Journal of Neuroscience, 21, 3017–3023.PubMed
Zurück zum Zitat Hirano, A., Donnenfeld, H., Sasaki, S., & Nakano, I. (1984). Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 43, 461–470. doi:10.1097/00005072-198409000-00001.PubMed Hirano, A., Donnenfeld, H., Sasaki, S., & Nakano, I. (1984). Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 43, 461–470. doi:10.​1097/​00005072-198409000-00001.PubMed
Zurück zum Zitat Hodgson, J. G., Agopyan, N., Gutekunst, C. A., et al. (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23, 181–192. doi:10.1016/S0896-6273(00)80764-3.PubMed Hodgson, J. G., Agopyan, N., Gutekunst, C. A., et al. (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23, 181–192. doi:10.​1016/​S0896-6273(00)80764-3.PubMed
Zurück zum Zitat Horton, T. M., Graham, B. H., Corral-Debranski, M., Shoffner, J. M., Kaufman, A. E., Beal, M. F., et al. (1995). Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington’s disease patients. Neurology, 45, 1879–1883.PubMed Horton, T. M., Graham, B. H., Corral-Debranski, M., Shoffner, J. M., Kaufman, A. E., Beal, M. F., et al. (1995). Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington’s disease patients. Neurology, 45, 1879–1883.PubMed
Zurück zum Zitat Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J. P., MacDonald, M. E., et al. (1998). Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins. Somatic Cell and Molecular Genetics, 24, 217–233. doi:10.1023/B:SCAM.0000007124.19463.e5.PubMed Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J. P., MacDonald, M. E., et al. (1998). Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins. Somatic Cell and Molecular Genetics, 24, 217–233. doi:10.​1023/​B:​SCAM.​0000007124.​19463.​e5.PubMed
Zurück zum Zitat Ikebe, S., Tanaka, M., Ohno, K., Sato, W., Hattori, K., Kondo, T., et al. (1990). Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochemical and Biophysical Research Communications, 170, 1044–1048. doi:10.1016/0006-291X(90)90497-B.PubMed Ikebe, S., Tanaka, M., Ohno, K., Sato, W., Hattori, K., Kondo, T., et al. (1990). Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochemical and Biophysical Research Communications, 170, 1044–1048. doi:10.​1016/​0006-291X(90)90497-B.PubMed
Zurück zum Zitat Jauslin, M. L., Meier, T., Smith, R. A., & Murphy, M. P. (2003). Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB Journal, 17(13), 1972–1974.PubMed Jauslin, M. L., Meier, T., Smith, R. A., & Murphy, M. P. (2003). Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB Journal, 17(13), 1972–1974.PubMed
Zurück zum Zitat Jin, J., Meredeith, G. E., Chen, L., Zhou, Y., Xu, J., Shie, F. S., Lockhart, P., & Zhang, J. (2005). Quantitative proteomic analysis of mitochondrial proteins: Relevance to Lewy body formation and Parkinson's disease. Brain Research. Molecular Brain Research, 134, 119–138.PubMed Jin, J., Meredeith, G. E., Chen, L., Zhou, Y., Xu, J., Shie, F. S., Lockhart, P., & Zhang, J. (2005). Quantitative proteomic analysis of mitochondrial proteins: Relevance to Lewy body formation and Parkinson's disease. Brain Research. Molecular Brain Research, 134, 119–138.PubMed
Zurück zum Zitat Jonsson, P. A., Graffmo, K. S., Andersen, P. M., Brannstrom, T., Lindberg, M., Oliveberg, M., et al. (2006). Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain, 129, 451–464. doi:10.1093/brain/awh704.PubMed Jonsson, P. A., Graffmo, K. S., Andersen, P. M., Brannstrom, T., Lindberg, M., Oliveberg, M., et al. (2006). Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain, 129, 451–464. doi:10.​1093/​brain/​awh704.PubMed
Zurück zum Zitat Kao, S., Chao, H. T., & Wei, Y. H. (1995). Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biology of Reproduction, 52, 729–736. doi:10.1095/biolreprod52.4.729.PubMed Kao, S., Chao, H. T., & Wei, Y. H. (1995). Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biology of Reproduction, 52, 729–736. doi:10.​1095/​biolreprod52.​4.​729.PubMed
Zurück zum Zitat Keller, J. N., Guo, Q., Holtsberg, F. W., Bruce-Keller, A. J., & Mattson, M. P. (1998). Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. Journal of Neuroscience, 18, 4439–4450.PubMed Keller, J. N., Guo, Q., Holtsberg, F. W., Bruce-Keller, A. J., & Mattson, M. P. (1998). Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. Journal of Neuroscience, 18, 4439–4450.PubMed
Zurück zum Zitat Khan, S. M., Cassarino, D. S., Abramova, N. N., Keeney, P. M., Borland, M. K., Timmer, P. A., et al. (2000). Alzheimer’s disease cybrids replicate beta-amyloid abnormalities through cell death pathways. Annals of Neurology, 48, 148–155. doi:10.1002/1531-8249(200008)48:2<148::AID-ANA3>3.0.CO;2-7. Khan, S. M., Cassarino, D. S., Abramova, N. N., Keeney, P. M., Borland, M. K., Timmer, P. A., et al. (2000). Alzheimer’s disease cybrids replicate beta-amyloid abnormalities through cell death pathways. Annals of Neurology, 48, 148–155. doi:10.1002/1531-8249(200008)48:2<148::AID-ANA3>3.0.CO;2-7.
Zurück zum Zitat Kim, D., Nguyen, M. D., Dobbin, M. M., Fischer, A., Sananbenesi, F., Rodgers, J. T., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO Journal, 26, 3169–3179. doi:10.1038/sj.emboj.7601758.PubMed Kim, D., Nguyen, M. D., Dobbin, M. M., Fischer, A., Sananbenesi, F., Rodgers, J. T., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO Journal, 26, 3169–3179. doi:10.​1038/​sj.​emboj.​7601758.PubMed
Zurück zum Zitat Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–608. doi:10.1038/33416.PubMed Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–608. doi:10.​1038/​33416.PubMed
Zurück zum Zitat Kotake, Y. (1999). Pharmacologic properties of phenyl N-tert-butylnitrone. Antioxidants Redox Signaling, 1, 481–499.PubMed Kotake, Y. (1999). Pharmacologic properties of phenyl N-tert-butylnitrone. Antioxidants Redox Signaling, 1, 481–499.PubMed
Zurück zum Zitat LaFerla, F. M., Gree, K. N., & Oddo, S. (2007). Intracellular amyloid-beta in Alzheimer’s disease. Nature Reviews. Neuroscience, 8, 499–509. doi:10.1038/nrn2168.PubMed LaFerla, F. M., Gree, K. N., & Oddo, S. (2007). Intracellular amyloid-beta in Alzheimer’s disease. Nature Reviews. Neuroscience, 8, 499–509. doi:10.​1038/​nrn2168.PubMed
Zurück zum Zitat Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–980. doi:10.1126/science.6823561.PubMed Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–980. doi:10.​1126/​science.​6823561.PubMed
Zurück zum Zitat Leroy, E., Boyer, R., Auburger, G., et al. (1998). The ubiquitin pathway in Parkinson’s disease. Nature, 395, 451–452. doi:10.1038/26652.PubMed Leroy, E., Boyer, R., Auburger, G., et al. (1998). The ubiquitin pathway in Parkinson’s disease. Nature, 395, 451–452. doi:10.​1038/​26652.PubMed
Zurück zum Zitat Manczak, M., Anekonda, T. S., Henson, E., Park, B. S., Quinn, J., & Reddy, P. H. (2006). Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression. Human Molecular Genetics, 15, 1437–1449. doi:10.1093/hmg/ddl066.PubMed Manczak, M., Anekonda, T. S., Henson, E., Park, B. S., Quinn, J., & Reddy, P. H. (2006). Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression. Human Molecular Genetics, 15, 1437–1449. doi:10.​1093/​hmg/​ddl066.PubMed
Zurück zum Zitat Manczak, M., Park, B. S., Jung, Y., & Reddy, P. H. (2004). Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: Implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Medicine, 5, 147–162. doi:10.1385/NMM:5:2:147.PubMed Manczak, M., Park, B. S., Jung, Y., & Reddy, P. H. (2004). Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: Implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Medicine, 5, 147–162. doi:10.​1385/​NMM:​5:​2:​147.PubMed
Zurück zum Zitat Mandelkow, E. M., Thies, E., Trinczek, B., Biernat, J., & Mandelkow, E. (2004). MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. Journal of Cell Biology, 167, 99–110. doi:10.1083/jcb.200401085.PubMed Mandelkow, E. M., Thies, E., Trinczek, B., Biernat, J., & Mandelkow, E. (2004). MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. Journal of Cell Biology, 167, 99–110. doi:10.​1083/​jcb.​200401085.PubMed
Zurück zum Zitat Mohmmad Abdul, H., Sultana, R., Keller, J. N., St Clair, D. K., Markesbery, W. R., & Butterfield, D. A. (2006). Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta-peptide (1–42), HO and kainic acid: Implications for Alzheimer’s disease. Journal of Neurochemistry, 96, 1322–1335. doi:10.1111/j.1471-4159.2005.03647.x.PubMed Mohmmad Abdul, H., Sultana, R., Keller, J. N., St Clair, D. K., Markesbery, W. R., & Butterfield, D. A. (2006). Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta-peptide (1–42), HO and kainic acid: Implications for Alzheimer’s disease. Journal of Neurochemistry, 96, 1322–1335. doi:10.​1111/​j.​1471-4159.​2005.​03647.​x.PubMed
Zurück zum Zitat Moreira, P. I., Santos, M. S., Seica, R., & Oliveira, C. R. (2007). Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. Journal of the Neurological Sciences, 257, 206–214. doi:10.1016/j.jns.2007.01.017. Moreira, P. I., Santos, M. S., Seica, R., & Oliveira, C. R. (2007). Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. Journal of the Neurological Sciences, 257, 206–214. doi:10.​1016/​j.​jns.​2007.​01.​017.
Zurück zum Zitat Murphy, M. P., Echtay, K. S., Blaikie, F. H., et al. (2003). Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: Studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. Journal of Biological Chemistry, 278, 48534–48545. doi:10.1074/jbc.M308529200.PubMed Murphy, M. P., Echtay, K. S., Blaikie, F. H., et al. (2003). Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: Studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. Journal of Biological Chemistry, 278, 48534–48545. doi:10.​1074/​jbc.​M308529200.PubMed
Zurück zum Zitat Nichols, W. C., Pankratz, N., Hernandez, D., Paisan-Ruiz, C., et al. (2005). Genetic screening for a single common LRRK2 mutation in familial Parkinson’s disease. Lancet, 365, 410–412.PubMed Nichols, W. C., Pankratz, N., Hernandez, D., Paisan-Ruiz, C., et al. (2005). Genetic screening for a single common LRRK2 mutation in familial Parkinson’s disease. Lancet, 365, 410–412.PubMed
Zurück zum Zitat Orr, A. L., Li, S., Wang, C. E., Wang, J., Rong, J., Xu, X., et al. (2008). N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. Journal of Neuroscience, 28, 2783–2792. doi:10.1523/JNEUROSCI.0106-08.2008.PubMed Orr, A. L., Li, S., Wang, C. E., Wang, J., Rong, J., Xu, X., et al. (2008). N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. Journal of Neuroscience, 28, 2783–2792. doi:10.​1523/​JNEUROSCI.​0106-08.​2008.PubMed
Zurück zum Zitat Ozawa, T., Tanaka, M., Ikebe, S., Ohno, K., Kondo, T., & Mizuno, Y. (1990). Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochemical and Biophysical Research Communications, 172, 483–489. doi:10.1016/0006-291X(90)90698-M.PubMed Ozawa, T., Tanaka, M., Ikebe, S., Ohno, K., Kondo, T., & Mizuno, Y. (1990). Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochemical and Biophysical Research Communications, 172, 483–489. doi:10.​1016/​0006-291X(90)90698-M.PubMed
Zurück zum Zitat Panov, A. V., Gutekunst, C. A., Leavitt, B. R., Hayden, M. R., Burke, J. R., Strittmatter, W. J., et al. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nature Neuroscience, 5, 731–736.PubMed Panov, A. V., Gutekunst, C. A., Leavitt, B. R., Hayden, M. R., Burke, J. R., Strittmatter, W. J., et al. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nature Neuroscience, 5, 731–736.PubMed
Zurück zum Zitat Panov, A. V., Lund, S., & Greenamyre, J. T. (2005). Ca2 + -induced permeability transition in human lymphoblastoid cell mitochondria from normal and Huntington’s disease individuals. Molecular and Cellular Biochemistry, 269, 143–152. doi:10.1007/s11010-005-3454-9.PubMed Panov, A. V., Lund, S., & Greenamyre, J. T. (2005). Ca2 + -induced permeability transition in human lymphoblastoid cell mitochondria from normal and Huntington’s disease individuals. Molecular and Cellular Biochemistry, 269, 143–152. doi:10.​1007/​s11010-005-3454-9.PubMed
Zurück zum Zitat Parker, J. A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H., et al. (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genetics, 37, 349–350. doi:10.1038/ng1534.PubMed Parker, J. A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H., et al. (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genetics, 37, 349–350. doi:10.​1038/​ng1534.PubMed
Zurück zum Zitat Parker, W. D., Jr., Boyson, S. J., & Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Annals of Neurology, 26, 719–723. doi:10.1002/ana.410260606.PubMed Parker, W. D., Jr., Boyson, S. J., & Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Annals of Neurology, 26, 719–723. doi:10.​1002/​ana.​410260606.PubMed
Zurück zum Zitat Parker, W. D., Jr., Filley, C. M., & Parks, J. K. (1990). Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology, 40, 1302–1303.PubMed Parker, W. D., Jr., Filley, C. M., & Parks, J. K. (1990). Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology, 40, 1302–1303.PubMed
Zurück zum Zitat Patel, N. V., Gordon, M. N., Connor, K. E., Good, R. A., Engelmann, R. W., Mason, J., Morgan, D. G., Morgan, T. E., & Finch, C. E. (2005). Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiology of Aging, 26, 995–1000.PubMed Patel, N. V., Gordon, M. N., Connor, K. E., Good, R. A., Engelmann, R. W., Mason, J., Morgan, D. G., Morgan, T. E., & Finch, C. E. (2005). Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiology of Aging, 26, 995–1000.PubMed
Zurück zum Zitat Perez, M. K., Paulson, H. L., Pendse, S. J., Saionz, S. J., Bonini, N. M., & Pittman, R. N. (1998). Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. Journal of Cell Biology, 143, 1457–1470. doi:10.1083/jcb.143.6.1457.PubMed Perez, M. K., Paulson, H. L., Pendse, S. J., Saionz, S. J., Bonini, N. M., & Pittman, R. N. (1998). Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. Journal of Cell Biology, 143, 1457–1470. doi:10.​1083/​jcb.​143.​6.​1457.PubMed
Zurück zum Zitat Perry, G., Roder, H., Nunomura, A., et al. (1999). Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. NeuroReport, 10, 2411–4215.PubMed Perry, G., Roder, H., Nunomura, A., et al. (1999). Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. NeuroReport, 10, 2411–4215.PubMed
Zurück zum Zitat Petri, S., Kiaei, M., Damiano, M., Hiller, A., Wille, E., Manfredi, G., Calingasan, N. Y., Szeto, H. H., & Beal, M. F. (2006). Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 98, 1141–1148. Petri, S., Kiaei, M., Damiano, M., Hiller, A., Wille, E., Manfredi, G., Calingasan, N. Y., Szeto, H. H., & Beal, M. F. (2006). Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 98, 1141–1148.
Zurück zum Zitat Pocernich, C. B., Cardin, A. L., Racine, C. L., Lauderback, C. M., & Butterfield, D. A. (2001). Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: Relevance to brain lipid peroxidation in neurodegenerative disease. Neurochemistry International, 39, 141–149. doi:10.1016/S0197-0186(01)00012-2.PubMed Pocernich, C. B., Cardin, A. L., Racine, C. L., Lauderback, C. M., & Butterfield, D. A. (2001). Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: Relevance to brain lipid peroxidation in neurodegenerative disease. Neurochemistry International, 39, 141–149. doi:10.​1016/​S0197-0186(01)00012-2.PubMed
Zurück zum Zitat Qin, W., Chachich, M., Lane, M., et al. (2006a). Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). Journal of Alzheimer’s Disease, 10, 417–422.PubMed Qin, W., Chachich, M., Lane, M., et al. (2006a). Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). Journal of Alzheimer’s Disease, 10, 417–422.PubMed
Zurück zum Zitat Qin, W., Yang, T., Ho, L., et al. (2006b). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. Journal of Biological Chemistry, 281, 21745–21754. doi:10.1074/jbc.M602909200.PubMed Qin, W., Yang, T., Ho, L., et al. (2006b). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. Journal of Biological Chemistry, 281, 21745–21754. doi:10.​1074/​jbc.​M602909200.PubMed
Zurück zum Zitat Rabol, R., Boushel, R., & Dela, F. (2006). Mitochondrial oxidative function and type 2 diabetes. Applied Physiology, Nutrition, and Metabolism, 31, 675–683. doi:10.1139/H06-071.PubMed Rabol, R., Boushel, R., & Dela, F. (2006). Mitochondrial oxidative function and type 2 diabetes. Applied Physiology, Nutrition, and Metabolism, 31, 675–683. doi:10.​1139/​H06-071.PubMed
Zurück zum Zitat Ran, Q., Liang, H., Gu, M., Qi, W., Walter, C. A., Roberts, L. J., et al. (2004). Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. Journal of Biological Chemistry, 279, 55137–55146. doi:10.1074/jbc.M410387200.PubMed Ran, Q., Liang, H., Gu, M., Qi, W., Walter, C. A., Roberts, L. J., et al. (2004). Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. Journal of Biological Chemistry, 279, 55137–55146. doi:10.​1074/​jbc.​M410387200.PubMed
Zurück zum Zitat Reddy, P. H. (2006b). Mitochondrial oxidative damage in aging and Alzheimer’s disease: Implications for mitochondrially targeted antioxidant therapeutics. Journal of Biomedicine & Biotechnology, 31372, 13. Reddy, P. H. (2006b). Mitochondrial oxidative damage in aging and Alzheimer’s disease: Implications for mitochondrially targeted antioxidant therapeutics. Journal of Biomedicine & Biotechnology, 31372, 13.
Zurück zum Zitat Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction, and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends in Molecular Medicine, 14, 45–53. doi:10.1016/j.molmed.2007.12.002.PubMed Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction, and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends in Molecular Medicine, 14, 45–53. doi:10.​1016/​j.​molmed.​2007.​12.​002.PubMed
Zurück zum Zitat Reddy, P. H., McWeeney, S., Park, B. S., Manczak, M., Gutala, R. V., Partovi, D., et al. (2004). Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: Up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Human Molecular Genetics, 13, 1225–1240. doi:10.1093/hmg/ddh140.PubMed Reddy, P. H., McWeeney, S., Park, B. S., Manczak, M., Gutala, R. V., Partovi, D., et al. (2004). Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: Up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease. Human Molecular Genetics, 13, 1225–1240. doi:10.​1093/​hmg/​ddh140.PubMed
Zurück zum Zitat Reddy, P. H., & Tagle, D. A. (1999). Biology of trinucleotide repeat disorders. In P. M. Mattson (Ed.) (Vol. 3). Genetic aberrancies and neurodegenerative disorders. Advances in cell aging and gerontology. Stanford, Connecticut: Jai press Inc. Reddy, P. H., & Tagle, D. A. (1999). Biology of trinucleotide repeat disorders. In P. M. Mattson (Ed.) (Vol. 3). Genetic aberrancies and neurodegenerative disorders. Advances in cell aging and gerontology. Stanford, Connecticut: Jai press Inc.
Zurück zum Zitat Reddy, P. H., Williams, M., Charles, V., Garrett, L., Pike-Bucanan, L., Whetsell, W. O. Jr., Miller, G., & Tagle, D. A. (1998). Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nature Genetics, 20, 198–202. Reddy, P. H., Williams, M., Charles, V., Garrett, L., Pike-Bucanan, L., Whetsell, W. O. Jr., Miller, G., & Tagle, D. A. (1998). Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nature Genetics, 20, 198–202.
Zurück zum Zitat Richter, C., Park, J. W., & Ames, B. N. (1988). Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences of the United States of America, 85, 6465–6467. doi:10.1073/pnas.85.17.6465.PubMed Richter, C., Park, J. W., & Ames, B. N. (1988). Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences of the United States of America, 85, 6465–6467. doi:10.​1073/​pnas.​85.​17.​6465.PubMed
Zurück zum Zitat Rogaeva, E., Meng, Y., Lee, J. H., et al. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics, 39, 168–177. doi:10.1038/ng1943.PubMed Rogaeva, E., Meng, Y., Lee, J. H., et al. (2007). The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics, 39, 168–177. doi:10.​1038/​ng1943.PubMed
Zurück zum Zitat Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, H. P., Perricak-Vance, M. A., Joo, S. H., et al. (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467–1472.PubMed Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, H. P., Perricak-Vance, M. A., Joo, S. H., et al. (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467–1472.PubMed
Zurück zum Zitat Sasaki, S., Warita, H., Murakami, T., Abe, K., & Iwata, M. (2004). Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathologica, 107, 461–474. Sasaki, S., Warita, H., Murakami, T., Abe, K., & Iwata, M. (2004). Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathologica, 107, 461–474.
Zurück zum Zitat Sayer, J. A., Manczak, M., Akileswaran, L., Reddy, P. H., & Coghlan, V. M. (2005). Interaction of the nuclear matrix protein NAKAP with HypA and huntingtin: Implications for nuclear toxicity in Huntington’s disease pathogenesis. Neuromolecular Medicine, 7, 297–310. doi:10.1385/NMM:7:4:297.PubMed Sayer, J. A., Manczak, M., Akileswaran, L., Reddy, P. H., & Coghlan, V. M. (2005). Interaction of the nuclear matrix protein NAKAP with HypA and huntingtin: Implications for nuclear toxicity in Huntington’s disease pathogenesis. Neuromolecular Medicine, 7, 297–310. doi:10.​1385/​NMM:​7:​4:​297.PubMed
Zurück zum Zitat Schilling, G., Becher, M. W., Sharp, A. H., et al. (1999). Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Human Molecular Genetics, 8, 397–407. doi:10.1093/hmg/8.3.397.PubMed Schilling, G., Becher, M. W., Sharp, A. H., et al. (1999). Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Human Molecular Genetics, 8, 397–407. doi:10.​1093/​hmg/​8.​3.​397.PubMed
Zurück zum Zitat Schmidt, C., Lepsverdize, E., Chi, S. L., Das, A. M., Pizzo, S. V., Dityatev, A., & Schachner, M. (2007). Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Molecular Psychiatry [Epub ahead of print]. Schmidt, C., Lepsverdize, E., Chi, S. L., Das, A. M., Pizzo, S. V., Dityatev, A., & Schachner, M. (2007). Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Molecular Psychiatry [Epub ahead of print].
Zurück zum Zitat Schriner, S. E., Linford, N. J., Martin, G. M., et al. (2005). Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science, 308, 1909–1911. doi:10.1126/science.1106653.PubMed Schriner, S. E., Linford, N. J., Martin, G. M., et al. (2005). Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science, 308, 1909–1911. doi:10.​1126/​science.​1106653.PubMed
Zurück zum Zitat Schultz, D., & Harrison, D. G. (2000). Quest for fire: Seeking the source of pathogenic oxygen radicals in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1412–1423.PubMed Schultz, D., & Harrison, D. G. (2000). Quest for fire: Seeking the source of pathogenic oxygen radicals in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1412–1423.PubMed
Zurück zum Zitat Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.PubMed Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.PubMed
Zurück zum Zitat Seong, I. S., Ivanova, E., Lee, J. M., et al. (2005). HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Human Molecular Genetics, 14, 2871–2880. Seong, I. S., Ivanova, E., Lee, J. M., et al. (2005). HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Human Molecular Genetics, 14, 2871–2880.
Zurück zum Zitat Sheu, S. S., Nauduri, D., & Anders, M. W. (2006). Targeting antioxidants to mitochondria: A new therapeutic direction. Biochimica et Biophysica Acta, 1762, 256–265.PubMed Sheu, S. S., Nauduri, D., & Anders, M. W. (2006). Targeting antioxidants to mitochondria: A new therapeutic direction. Biochimica et Biophysica Acta, 1762, 256–265.PubMed
Zurück zum Zitat Shimohata, T., Nakajima, T., Yamada, M., et al. (2000). Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nature Genetics, 26, 29–36. doi:10.1038/79139.PubMed Shimohata, T., Nakajima, T., Yamada, M., et al. (2000). Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nature Genetics, 26, 29–36. doi:10.​1038/​79139.PubMed
Zurück zum Zitat Shirane, M., & Nakayama, K. I. (2003). Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nature Cell Biology, 5, 28–37. doi:10.1038/ncb894.PubMed Shirane, M., & Nakayama, K. I. (2003). Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nature Cell Biology, 5, 28–37. doi:10.​1038/​ncb894.PubMed
Zurück zum Zitat Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Agid, Y., Javoy-Agid, F., et al. (1994). Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Annals of Neurology, 36, 348–355. doi:10.1002/ana.410360305.PubMed Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Agid, Y., Javoy-Agid, F., et al. (1994). Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Annals of Neurology, 36, 348–355. doi:10.​1002/​ana.​410360305.PubMed
Zurück zum Zitat Siler-Marsiglio, K. I., Pan, Q., Paiva, M., Madorsky, I., Kurana, N. C., & Heato, M. B. (2005). Mitochondrially targeted vitamin E and vitamin E mitigate ethanol-mediated effects on cerebellar granule cell antioxidant defense systems. Brain Research, 1052, 202–211.PubMed Siler-Marsiglio, K. I., Pan, Q., Paiva, M., Madorsky, I., Kurana, N. C., & Heato, M. B. (2005). Mitochondrially targeted vitamin E and vitamin E mitigate ethanol-mediated effects on cerebellar granule cell antioxidant defense systems. Brain Research, 1052, 202–211.PubMed
Zurück zum Zitat Simon, D. K., Pulst, S. M., Sutton, J. P., Browne, S. E., Beal, M. F., & John, D. R. (1999). Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutation. Neurology, 53, 1787–1793.PubMed Simon, D. K., Pulst, S. M., Sutton, J. P., Browne, S. E., Beal, M. F., & John, D. R. (1999). Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutation. Neurology, 53, 1787–1793.PubMed
Zurück zum Zitat Smith, M. A., Hirai, K., Hsiao, K., Pappolla, M. A., Harris, P. L., Siedlak, S. L., et al. (1998). Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. Journal of Neurochemistry, 70, 2212–2215.PubMed Smith, M. A., Hirai, K., Hsiao, K., Pappolla, M. A., Harris, P. L., Siedlak, S. L., et al. (1998). Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. Journal of Neurochemistry, 70, 2212–2215.PubMed
Zurück zum Zitat Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., et al. (1996). Oxidative damage in Alzheimer’s. Nature, 382, 120–121. doi:10.1038/382120b0.PubMed Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., et al. (1996). Oxidative damage in Alzheimer’s. Nature, 382, 120–121. doi:10.​1038/​382120b0.PubMed
Zurück zum Zitat Smith, R. A., Porteous, C. M., Coulter, C. V., & Murphy, M. P. (1999). Selective targeting of an antioxidant to mitochondria. European Journal of Biochemistry, 263, 709–716. PubMed Smith, R. A., Porteous, C. M., Coulter, C. V., & Murphy, M. P. (1999). Selective targeting of an antioxidant to mitochondria. European Journal of Biochemistry, 263, 709–716. PubMed
Zurück zum Zitat Stamer, K., Vogel, R., Thies, E., Mandelkow, E., & Mandelkow, E. M. (2002). Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons & enhances oxidative stress. Journal of Cell Biology, 156, 1051–1063. doi:10.1083/jcb.200108057.PubMed Stamer, K., Vogel, R., Thies, E., Mandelkow, E., & Mandelkow, E. M. (2002). Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons & enhances oxidative stress. Journal of Cell Biology, 156, 1051–1063. doi:10.​1083/​jcb.​200108057.PubMed
Zurück zum Zitat Strauss, K. M., Martins, L. M., Plun-Favreau, H., et al. (2005). Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Human Molecular Genetics, 14, 2099–2111. doi:10.1093/hmg/ddi215.PubMed Strauss, K. M., Martins, L. M., Plun-Favreau, H., et al. (2005). Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Human Molecular Genetics, 14, 2099–2111. doi:10.​1093/​hmg/​ddi215.PubMed
Zurück zum Zitat Sultana, R., Perluigi, M., & Butterfield, D. A. (2006). Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: Insights into mechanism of neurodegeneration from redox proteomics. Antioxidants Redox Signaling, 8, 2021–2037. doi:10.1089/ars.2006.8.2021.PubMed Sultana, R., Perluigi, M., & Butterfield, D. A. (2006). Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: Insights into mechanism of neurodegeneration from redox proteomics. Antioxidants Redox Signaling, 8, 2021–2037. doi:10.​1089/​ars.​2006.​8.​2021.PubMed
Zurück zum Zitat Swerdlow, R. H. (2007a). Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. Journal of Neuroscience Research, 85, 3416–3428. doi:10.1002/jnr.21167.PubMed Swerdlow, R. H. (2007a). Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. Journal of Neuroscience Research, 85, 3416–3428. doi:10.​1002/​jnr.​21167.PubMed
Zurück zum Zitat Swerdlow, R. H. (2007b). Treating neurodegeneration by modifying mitochondria: Potential solutions to a complex problem. Antioxidants Redox Signaling, 9, 1591–1603. doi:10.1089/ars.2007.1676.PubMed Swerdlow, R. H. (2007b). Treating neurodegeneration by modifying mitochondria: Potential solutions to a complex problem. Antioxidants Redox Signaling, 9, 1591–1603. doi:10.​1089/​ars.​2007.​1676.PubMed
Zurück zum Zitat Swerdlow, R. H., Parks, J. K., Cassarino, D. S., Maguire, D. J., Maguire, R. S., Bennett, J. P., Jr., et al. (1997). Cybrids in Alzheimer’s disease: A cellular model of the disease? Neurology, 49, 918–925. Swerdlow, R. H., Parks, J. K., Cassarino, D. S., Maguire, D. J., Maguire, R. S., Bennett, J. P., Jr., et al. (1997). Cybrids in Alzheimer’s disease: A cellular model of the disease? Neurology, 49, 918–925.
Zurück zum Zitat Szeto, H. H. (2006b). Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS Journal, 8, E277–E283.PubMed Szeto, H. H. (2006b). Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS Journal, 8, E277–E283.PubMed
Zurück zum Zitat Szeto, H. H., Lovelace, J. L., Fridland, G., Soong, Y., Fasolo, J., Wu, D., et al. (2001). In vivo pharmacokinetics of selective mu-opioid peptide agonists. Journal of Pharmacology and Experimental Therapeutics, 298, 57–61.PubMed Szeto, H. H., Lovelace, J. L., Fridland, G., Soong, Y., Fasolo, J., Wu, D., et al. (2001). In vivo pharmacokinetics of selective mu-opioid peptide agonists. Journal of Pharmacology and Experimental Therapeutics, 298, 57–61.PubMed
Zurück zum Zitat Szeto, H. H., Schiller, P. W., Zhao, K., & Luo, G. (2005). Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides. FASEB Journal, 19, 118–120.PubMed Szeto, H. H., Schiller, P. W., Zhao, K., & Luo, G. (2005). Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides. FASEB Journal, 19, 118–120.PubMed
Zurück zum Zitat Tabrizin, S. J., Cleeter, M. W., Xuereb, J., Taanman, J. W., Cooper, J. M., & Schapira, A. H. (1999). Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Annals of Neurology, 45, 25–32. doi:10.1002/1531–8249(199901)45:1<25::AID-ART6>3.0.CO;2-E Tabrizin, S. J., Cleeter, M. W., Xuereb, J., Taanman, J. W., Cooper, J. M., & Schapira, A. H. (1999). Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Annals of Neurology, 45, 25–32. doi:10.1002/1531–8249(199901)45:1<25::AID-ART6>3.0.CO;2-E
Zurück zum Zitat Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S. M., Takahashi, K., & Ariga, H. (2004). DJ–1 has a role in antioxidative stress to prevent cell death. EMBO Reports, 5, 213–218. doi:10.1038/sj.embor.7400074.PubMed Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S. M., Takahashi, K., & Ariga, H. (2004). DJ–1 has a role in antioxidative stress to prevent cell death. EMBO Reports, 5, 213–218. doi:10.​1038/​sj.​embor.​7400074.PubMed
Zurück zum Zitat Takuma, K., Yao, J., Huang, J., Xu, H., Chen, X., Luddy, J., et al. (2005). ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB Journal, 19, 597–598.PubMed Takuma, K., Yao, J., Huang, J., Xu, H., Chen, X., Luddy, J., et al. (2005). ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB Journal, 19, 597–598.PubMed
Zurück zum Zitat Tamagno, E., Gugglielmotto, M., Argno, M., Borghi, R., Autelli, R., Giliberto, L., et al. (2008). Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. Journal of Neurochemistry, 104, 683–695.PubMed Tamagno, E., Gugglielmotto, M., Argno, M., Borghi, R., Autelli, R., Giliberto, L., et al. (2008). Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. Journal of Neurochemistry, 104, 683–695.PubMed
Zurück zum Zitat Thomas, B & Beal, M. F. (2007). Parkinson’s disease. Human molecular genetics, 16(Spec No. 2), R183–R194. Thomas, B & Beal, M. F. (2007). Parkinson’s disease. Human molecular genetics, 16(Spec No. 2), R183–R194.
Zurück zum Zitat Thomas, D. A., Stauffer, C., Zhao, K., Yang, H., Sharma, V. K., Szeto, H. H., et al. (2007). Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. Journal of the American Society of Nephrology, 18, 213–222. doi:10.1681/ASN.2006080825.PubMed Thomas, D. A., Stauffer, C., Zhao, K., Yang, H., Sharma, V. K., Szeto, H. H., et al. (2007). Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. Journal of the American Society of Nephrology, 18, 213–222. doi:10.​1681/​ASN.​2006080825.PubMed
Zurück zum Zitat Tissenbaum, H. A., & Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature, 410, 227–230. doi:10.1038/35065638.PubMed Tissenbaum, H. A., & Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature, 410, 227–230. doi:10.​1038/​35065638.PubMed
Zurück zum Zitat Trifunovic, A., Wredenberg, A., Falkenberg, M., et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 429, 417–423. doi:10.1038/nature02517.PubMed Trifunovic, A., Wredenberg, A., Falkenberg, M., et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 429, 417–423. doi:10.​1038/​nature02517.PubMed
Zurück zum Zitat Trimmer, P. A., Swerdlow, R. H., Park, J. K., Keeney, P., Bennet, J. P., Miller, S. W., et al. (2004). Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Experimental Neurology, 162, 37–50. doi:10.1006/exnr.2000.7333. Trimmer, P. A., Swerdlow, R. H., Park, J. K., Keeney, P., Bennet, J. P., Miller, S. W., et al. (2004). Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Experimental Neurology, 162, 37–50. doi:10.​1006/​exnr.​2000.​7333.
Zurück zum Zitat Valente, E. M., Abou-Sleiman, P. M., Caputo, V., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158–1160. doi:10.1126/science.1096284.PubMed Valente, E. M., Abou-Sleiman, P. M., Caputo, V., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158–1160. doi:10.​1126/​science.​1096284.PubMed
Zurück zum Zitat Van Blerkom, J. (2008). Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reproductive Biomedicine Online, 16, 553–569.PubMedCrossRef Van Blerkom, J. (2008). Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reproductive Biomedicine Online, 16, 553–569.PubMedCrossRef
Zurück zum Zitat Van Remmen, H., Qi, W., Sabia, M., Freeman, G., Estlack, L., Yang, H., et al. (2004). Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radical Biology and Medicine, 36, 1625–1634. doi:10.1016/j.freeradbiomed.2004.03.016.PubMed Van Remmen, H., Qi, W., Sabia, M., Freeman, G., Estlack, L., Yang, H., et al. (2004). Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radical Biology and Medicine, 36, 1625–1634. doi:10.​1016/​j.​freeradbiomed.​2004.​03.​016.PubMed
Zurück zum Zitat Vijayvergiya, C., Beal, M. F., Buck, J., & Manfredi, G. (2005). Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. Journal of Neuroscience, 25, 2463–2470. doi:10.1523/JNEUROSCI.4385-04.2005.PubMed Vijayvergiya, C., Beal, M. F., Buck, J., & Manfredi, G. (2005). Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. Journal of Neuroscience, 25, 2463–2470. doi:10.​1523/​JNEUROSCI.​4385-04.​2005.PubMed
Zurück zum Zitat Vinogradov, A. D., & Grivennikova, V. G. (2005). Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. Biochemistry (Mosc), 70, 120–127. Vinogradov, A. D., & Grivennikova, V. G. (2005). Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria. Biochemistry (Mosc), 70, 120–127.
Zurück zum Zitat Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., & Richardson, E. P., Jr. (1985). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44, 559–577. doi:10.1097/00005072-198511000-00003.PubMed Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., & Richardson, E. P., Jr. (1985). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44, 559–577. doi:10.​1097/​00005072-198511000-00003.PubMed
Zurück zum Zitat Wang, J., Ho, L., Qin, W., et al. (2005a). Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB Journal, 19, 659–661. doi:10.1096/fj.04-2370com.PubMed Wang, J., Ho, L., Qin, W., et al. (2005a). Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB Journal, 19, 659–661. doi:10.​1096/​fj.​04-2370com.PubMed
Zurück zum Zitat Wang, H. Q., Nakaya, Y., Du, Z., et al. (2005b). Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Human Molecular Genetics, 14, 1889–1902. doi:10.1093/hmg/ddi195.PubMed Wang, H. Q., Nakaya, Y., Du, Z., et al. (2005b). Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Human Molecular Genetics, 14, 1889–1902. doi:10.​1093/​hmg/​ddi195.PubMed
Zurück zum Zitat Watanabe, M., Dykes-Hoberg, M., Culotta, V. C., Price, D. L., Wong, P. C., & Rothstein, J. D. (2001). Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiology of Disease, 8, 933–941. doi:10.1006/nbdi.2001.0443.PubMed Watanabe, M., Dykes-Hoberg, M., Culotta, V. C., Price, D. L., Wong, P. C., & Rothstein, J. D. (2001). Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiology of Disease, 8, 933–941. doi:10.​1006/​nbdi.​2001.​0443.PubMed
Zurück zum Zitat West, A. B., Morre, D. J., Biskup, S., Bugayenko, A., Smith, W·W., Ross, C. A., Dawson, V. L., Dawson, T. M. (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 102, 16842–1687. West, A. B., Morre, D. J., Biskup, S., Bugayenko, A., Smith, W·W., Ross, C. A., Dawson, V. L., Dawson, T. M. (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 102, 16842–1687.
Zurück zum Zitat Weydt, P., Pineda, V. V., Torrence, A. E., et al. (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metabolism, 4, 349–362. doi:10.1016/j.cmet.2006.10.004.PubMed Weydt, P., Pineda, V. V., Torrence, A. E., et al. (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metabolism, 4, 349–362. doi:10.​1016/​j.​cmet.​2006.​10.​004.PubMed
Zurück zum Zitat Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., et al. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 14, 1105–1116. doi:10.1016/0896-6273(95)90259-7.PubMed Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., et al. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 14, 1105–1116. doi:10.​1016/​0896-6273(95)90259-7.PubMed
Zurück zum Zitat Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M., et al. (2004). Sirtuin Ctivators mimic caloric restriction and delay ageing in metazoans. Nature, 430, 686–689. doi:10.1038/nature02789.PubMed Wood, J. G., Rogina, B., Lavu, S., Howitz, K., Helfand, S. L., Tatar, M., et al. (2004). Sirtuin Ctivators mimic caloric restriction and delay ageing in metazoans. Nature, 430, 686–689. doi:10.​1038/​nature02789.PubMed
Zurück zum Zitat Yoon, Y. S., Yoon, D. S., Lim, I. K., et al. (2006). Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. Journal of Cellular Physiology, 209, 468–480. doi:10.1002/jcp. 20753.PubMed Yoon, Y. S., Yoon, D. S., Lim, I. K., et al. (2006). Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. Journal of Cellular Physiology, 209, 468–480. doi:10.​1002/​jcp.​ 20753.PubMed
Zurück zum Zitat Zhang, L., Shimoji, M., Thomas, B., Moore, D. J., Yu, S. W., Marupudi, N. I., Torp, R., Torgner, I. A., Ottersen, O. P., Dawso, T. M., & Dawson, V. L. (2005). Mitochondrial localization of the Parkinson's disease related protein DJ-1: Implications for pathogenesis. Human Molecular Genetics, 14, 2063–2073. Zhang, L., Shimoji, M., Thomas, B., Moore, D. J., Yu, S. W., Marupudi, N. I., Torp, R., Torgner, I. A., Ottersen, O. P., Dawso, T. M., & Dawson, V. L. (2005). Mitochondrial localization of the Parkinson's disease related protein DJ-1: Implications for pathogenesis. Human Molecular Genetics, 14, 2063–2073.
Zurück zum Zitat Zhao, K., Luo, G., Zhao, G. M., Schiller, P. W., & Szeto, H. H. (2003). Transcellular transport of a highly polar 3 + net charge opioid tetrapeptide. Journal of Pharmacology and Experimental Therapeutics, 304, 425–432. doi:10.1124/jpet.102.040147.PubMed Zhao, K., Luo, G., Zhao, G. M., Schiller, P. W., & Szeto, H. H. (2003). Transcellular transport of a highly polar 3 + net charge opioid tetrapeptide. Journal of Pharmacology and Experimental Therapeutics, 304, 425–432. doi:10.​1124/​jpet.​102.​040147.PubMed
Zurück zum Zitat Zhao, G. M., Wu, D., Soong, Y., Shimoyama, M., Berezowska, I., Schiller, P. W., et al. (2002). Profound spinal tolerance after repeated exposure to a highly selective mu-opioid peptide agonist: Role of delta-opioid receptors. Journal of Pharmacology and Experimental Therapeutics, 302, 188–196. doi:10.1124/jpet.302.1.188.PubMed Zhao, G. M., Wu, D., Soong, Y., Shimoyama, M., Berezowska, I., Schiller, P. W., et al. (2002). Profound spinal tolerance after repeated exposure to a highly selective mu-opioid peptide agonist: Role of delta-opioid receptors. Journal of Pharmacology and Experimental Therapeutics, 302, 188–196. doi:10.​1124/​jpet.​302.​1.​188.PubMed
Zurück zum Zitat Zhao, K., Zhao, G. M., Wu, D., Soong, Y., Birk, A. V., Schiller, P. W., et al. (2004). Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. Journal of Biological Chemistry, 279, 34682–34690. doi:10.1074/jbc.M402999200.PubMed Zhao, K., Zhao, G. M., Wu, D., Soong, Y., Birk, A. V., Schiller, P. W., et al. (2004). Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. Journal of Biological Chemistry, 279, 34682–34690. doi:10.​1074/​jbc.​M402999200.PubMed
Metadaten
Titel
Mitochondrial Medicine for Aging and Neurodegenerative Diseases
verfasst von
P. Hemachandra Reddy
Publikationsdatum
01.12.2008
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 4/2008
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8044-z

Weitere Artikel der Ausgabe 4/2008

NeuroMolecular Medicine 4/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.