Skip to main content
Erschienen in: Annals of Nuclear Medicine 3/2021

18.01.2021 | Original Article

Metal artifact reduction for improving quantitative SPECT/CT imaging

verfasst von: Takahiro Konishi, Takayuki Shibutani, Koichi Okuda, Hiroto Yoneyama, Riku Moribe, Masahisa Onoguchi, Kenichi Nakajima, Seigo Kinuya

Erschienen in: Annals of Nuclear Medicine | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Objective

This study aimed to evaluate the effect of the metal artifact reduction (MAR) method on quantitative single-photon emission computed tomography (SPECT)/computed tomography (CT) to reveal the usefulness of MAR in patients with metal implants.

Methods

We performed a phantom experiment simulating patients with artificial hip prostheses using SPECT/CT equipped with the iterative MAR (iMAR). The phantom was filled with Tc-99m solution (29.5 kBq/mL). For the CT scan conditions, tube current time products were applied to obtain volume CT dose indexes (CTDIvols) of 1.4, 2.8, and 5.6 mGy. Six types of quantitative SPECT images were reconstructed using data from different doses of CT processed with and without iMAR for CT attenuation correction. Thirty circular regions of interest (ROIs) were placed in each of the dark-band artifact areas, the white-streak artifact areas, and the non-artifact areas. We calculated radioactivity concentrations from quantitative SPECT images with and without iMAR to evaluate the quantitative accuracy. The differences of the effect of iMAR with different CT doses were also evaluated.

Results

The results obtained using CT data with a CTDIvol of 2.8 mGy are described below. For quantitative SPECT data without iMAR, we observed the underestimation of radioactivity concentration in the dark-band artifact areas and overestimation in the white-streak artifact areas. We observed quantification errors ranging from − 41.1% to + 20.0% without iMAR, depending on the ROI localization. When iMAR was used, these errors were reduced to a range of − 22.8% to + 14.2%. The mean absolute error from the true value in the artifact regions was also significantly reduced from 4.00 to 1.74 kBq/mL. In the non-artifact areas, the radioactivity concentrations obtained from the quantitative SPECT data with and without iMAR were equivalent to the true value and did not differ significantly between the two conditions. Similar results were observed for procedures with CTDIvols of 1.4 and 5.6 mGy.

Conclusions

This study indicated that iMAR could improve the quantitative accuracy of SPECT/CT independent of the CT dose. iMAR can serve as a practicable technique for quantitative SPECT/CT in patients with metal implants.
Literatur
1.
Zurück zum Zitat Fricke E, Fricke H, Weise R, Kammeier A, Hagedorn R, Lotz N, et al. Attenuation Correction Of Myocardial SPECT perfusion images with low-dose CT: evaluation of the method by comparison with perfusion PET. J Nucl Med. 2005;46:736–44.PubMed Fricke E, Fricke H, Weise R, Kammeier A, Hagedorn R, Lotz N, et al. Attenuation Correction Of Myocardial SPECT perfusion images with low-dose CT: evaluation of the method by comparison with perfusion PET. J Nucl Med. 2005;46:736–44.PubMed
2.
Zurück zum Zitat Filippi L, Schillaci O. Usefulness of hybrid SPECTCT in 99mTc-HMPAO–labeled leukocyte scintigraphy for bone and joint infections. J Nucl Med. 2006;47:1908–13.PubMed Filippi L, Schillaci O. Usefulness of hybrid SPECTCT in 99mTc-HMPAO–labeled leukocyte scintigraphy for bone and joint infections. J Nucl Med. 2006;47:1908–13.PubMed
3.
Zurück zum Zitat Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med. 2006;36(4):286–94.CrossRef Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med. 2006;36(4):286–94.CrossRef
4.
Zurück zum Zitat Gnesin S, Leite Ferreira P, Malterre J, Laub P, Prior JO, Verdun FR. Phantom validation of Tc-99m absolute quantification in a SPECT/CT commercial device. Comput Math Methods Med. 2016;2016:4360371.CrossRef Gnesin S, Leite Ferreira P, Malterre J, Laub P, Prior JO, Verdun FR. Phantom validation of Tc-99m absolute quantification in a SPECT/CT commercial device. Comput Math Methods Med. 2016;2016:4360371.CrossRef
5.
Zurück zum Zitat Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51(6):921–8.CrossRef Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51(6):921–8.CrossRef
6.
Zurück zum Zitat Bailey D, Willowson K. An Evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med. 2013;54:83–9.CrossRef Bailey D, Willowson K. An Evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med. 2013;54:83–9.CrossRef
7.
Zurück zum Zitat Kuji I, Yamane T, Seto A, Yasumizu Y, Shirotake S, Oyama M. Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer. Eur J Hybrid Imaging. 2017;1(1):2.CrossRef Kuji I, Yamane T, Seto A, Yasumizu Y, Shirotake S, Oyama M. Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer. Eur J Hybrid Imaging. 2017;1(1):2.CrossRef
8.
Zurück zum Zitat Suh M, Lee W, Kim Y, Yun P, Kim S. Maximum SUV of 99mTc HMDP SPECTCT for the evaluation of temporomandibular joint disorder. Radiology. 2016;280:890–6.CrossRef Suh M, Lee W, Kim Y, Yun P, Kim S. Maximum SUV of 99mTc HMDP SPECTCT for the evaluation of temporomandibular joint disorder. Radiology. 2016;280:890–6.CrossRef
9.
Zurück zum Zitat DiFilippo F, Brunken R. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J Nucl Med. 2005;46:436–43.PubMed DiFilippo F, Brunken R. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J Nucl Med. 2005;46:436–43.PubMed
10.
Zurück zum Zitat Suzuki A, Koshida K, Matsubara K. Effects of pacemaker, implantable cardioverter-defibrillator, and left ventricular leads on CT-based attenuation correction. J Nucl Med Technol. 2014;42(1):37–41.CrossRef Suzuki A, Koshida K, Matsubara K. Effects of pacemaker, implantable cardioverter-defibrillator, and left ventricular leads on CT-based attenuation correction. J Nucl Med Technol. 2014;42(1):37–41.CrossRef
11.
Zurück zum Zitat Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys. 2010;37(10):5482–93.CrossRef Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys. 2010;37(10):5482–93.CrossRef
12.
Zurück zum Zitat Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys. 2012;39(4):1904–16.CrossRef Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys. 2012;39(4):1904–16.CrossRef
13.
Zurück zum Zitat Martin O, Aissa J, Boos J, Wingendorf K, Latz D, Buchbender C, et al. Impact of different metal artifact reduction techniques on attenuation correction in 18F-FDG PET/CT examinations. Br J Radiol. 2019;92:20190069.CrossRef Martin O, Aissa J, Boos J, Wingendorf K, Latz D, Buchbender C, et al. Impact of different metal artifact reduction techniques on attenuation correction in 18F-FDG PET/CT examinations. Br J Radiol. 2019;92:20190069.CrossRef
14.
Zurück zum Zitat van der Vos CS, Arens AIJ, Hamill JJ, Hofmann C, Panin VY, Meeuwis APW, et al. Metal artifact reduction of CT scans to improve PET/CT. J Nucl Med. 2017;58(11):1867–72.CrossRef van der Vos CS, Arens AIJ, Hamill JJ, Hofmann C, Panin VY, Meeuwis APW, et al. Metal artifact reduction of CT scans to improve PET/CT. J Nucl Med. 2017;58(11):1867–72.CrossRef
15.
Zurück zum Zitat Loening A, Gambhir S. AMIDE: a free software tool for multimodality medical image analysis. Molecular Imaging. 2003;2:131–7.CrossRef Loening A, Gambhir S. AMIDE: a free software tool for multimodality medical image analysis. Molecular Imaging. 2003;2:131–7.CrossRef
16.
Zurück zum Zitat Cohen J. Statistical power analysis for the behavioral sciences, 2nd ed. Lawrence Erlbaum Associates; 1988. Cohen J. Statistical power analysis for the behavioral sciences, 2nd ed. Lawrence Erlbaum Associates; 1988.
17.
Zurück zum Zitat Kotsenas AL, Michalak GJ, DeLone DR, Diehn FE, Grant K, Halaweish AF, et al. CT metal artifact reduction in the spine: can an iterative reconstruction technique improve visualization? AJNR Am J Neuroradiol. 2015;36(11):2184–90.CrossRef Kotsenas AL, Michalak GJ, DeLone DR, Diehn FE, Grant K, Halaweish AF, et al. CT metal artifact reduction in the spine: can an iterative reconstruction technique improve visualization? AJNR Am J Neuroradiol. 2015;36(11):2184–90.CrossRef
18.
Zurück zum Zitat Subhas N, Primak AN, Obuchowski NA, Gupta A, Polster JM, Krauss A, et al. Iterative metal artifact reduction: evaluation and optimization of technique. Skeletal Radiol. 2014;43(12):1729–35.CrossRef Subhas N, Primak AN, Obuchowski NA, Gupta A, Polster JM, Krauss A, et al. Iterative metal artifact reduction: evaluation and optimization of technique. Skeletal Radiol. 2014;43(12):1729–35.CrossRef
19.
Zurück zum Zitat Abdoli M, Dierckx R, Zaidi H. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/C Timaging. Med Phys. 2012;39(6):3343–60.CrossRef Abdoli M, Dierckx R, Zaidi H. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/C Timaging. Med Phys. 2012;39(6):3343–60.CrossRef
20.
Zurück zum Zitat Harnish R, Prevrhal S, Alavi A, Zaidi H, Lang TF. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants: a phantom study. Ann Nucl Med. 2014;28(6):540–50.CrossRef Harnish R, Prevrhal S, Alavi A, Zaidi H, Lang TF. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants: a phantom study. Ann Nucl Med. 2014;28(6):540–50.CrossRef
21.
Zurück zum Zitat Schabel C, Gatidis S, Bongers M, Hüttig F, Bier G, Kupferschlaeger J, et al. Improving CT-based PET attenuation correction in the vicinity of metal implants by an iterative metal artifact reduction algorithm of CT data and its comparison to dual-energy-based strategies: a phantom study. Invest Radiol. 2017;52:61–5.CrossRef Schabel C, Gatidis S, Bongers M, Hüttig F, Bier G, Kupferschlaeger J, et al. Improving CT-based PET attenuation correction in the vicinity of metal implants by an iterative metal artifact reduction algorithm of CT data and its comparison to dual-energy-based strategies: a phantom study. Invest Radiol. 2017;52:61–5.CrossRef
22.
Zurück zum Zitat Etemadi Z, Ghafarian P, Bitarafan-Rajabi A, Malek H, Rahmim A, Ay MR. Is correction for metallic artefacts mandatory in cardiac SPECT/CT imaging in the presence of pacemaker and implantable cardioverter defibrillator leads? Iran J Nucl Med. 2018;26:35–46. Etemadi Z, Ghafarian P, Bitarafan-Rajabi A, Malek H, Rahmim A, Ay MR. Is correction for metallic artefacts mandatory in cardiac SPECT/CT imaging in the presence of pacemaker and implantable cardioverter defibrillator leads? Iran J Nucl Med. 2018;26:35–46.
23.
Zurück zum Zitat Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics. 2018;38(2):450–61.CrossRef Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics. 2018;38(2):450–61.CrossRef
24.
Zurück zum Zitat Haramati N, Staron R, Mazel-Sperling K, Freeman K, Nickoloff E, Barax C, et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph. 1994;18:429–34.CrossRef Haramati N, Staron R, Mazel-Sperling K, Freeman K, Nickoloff E, Barax C, et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph. 1994;18:429–34.CrossRef
25.
Zurück zum Zitat Lee M, Kim S, Lee S, Song H, Huh Y, Kim D, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–803.CrossRef Lee M, Kim S, Lee S, Song H, Huh Y, Kim D, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–803.CrossRef
Metadaten
Titel
Metal artifact reduction for improving quantitative SPECT/CT imaging
verfasst von
Takahiro Konishi
Takayuki Shibutani
Koichi Okuda
Hiroto Yoneyama
Riku Moribe
Masahisa Onoguchi
Kenichi Nakajima
Seigo Kinuya
Publikationsdatum
18.01.2021
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 3/2021
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-020-01560-w

Weitere Artikel der Ausgabe 3/2021

Annals of Nuclear Medicine 3/2021 Zur Ausgabe