Skip to main content
Erschienen in: Annals of Nuclear Medicine 5/2021

10.03.2021 | Original Article

18F-FLT PET/CT imaging for early monitoring response to CDK4/6 inhibitor therapy in triple negative breast cancer

verfasst von: Guang Ma, Cheng Liu, Weiling Lian, Yongping Zhang, Huiyu Yuan, Yingjian Zhang, Shaoli Song, Zhongyi Yang

Erschienen in: Annals of Nuclear Medicine | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Our study was to investigate 18F-FLT PET/CT imaging monitor the early response of CDK4/6 inhibitor therapy in triple negative breast cancer (TNBC).

Methods

MDA-MB-231 and MDA-MB-468 cell lines and corresponding subcutaneous tumor models in CB17-SCID mice were used. Cell viability assay, cell-cycle analysis, and western blotting were performed in vitro experiments. 18F-FLT PET/CT imaging was performed and the value of tumor/muscle (T/M) of mice was measured before and 1–3 days after treatment in vivo experiments. Then, the tumor volume was recorded every day for 15 days.

Results

In the presence of Palbociclib (CDK4/6 inhibitor), the results of in vitro experiments showed that protein pRB and E2F levels were significantly down-regulated in MDA-MB-231 cells leading to G0/G1 arrest with consumption in S phase compared with MDA-MB-468 cells. In PET/CT imaging, the 18F-FLT T/M ratio of treatment group was a significant and sustained reduction from 1 to 3 days (all p < 0.05) compared with control group in MDA-MB-231 section. However, there was no significant difference between treatment and control groups in MDA-MB-468 section. Compared with the control group, the tumor volume of the treatment group was significantly reduced from the 11th day in MDA-MB-231 section, but not in MDA-MB-468 section until 15 days.

Conclusion

18F-FLT PET/CT imaging can immediately and effectively monitor the early treatment response of CDK4/6 inhibitors in TNBC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9(2):176–98.CrossRef Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9(2):176–98.CrossRef
2.
Zurück zum Zitat Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34.CrossRef Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34.CrossRef
3.
Zurück zum Zitat Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.CrossRef Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.CrossRef
4.
Zurück zum Zitat Nagarajan D, McArdle SEB. Immune landscape of breast cancers. Biomedicines. 2018;6(1):20.CrossRef Nagarajan D, McArdle SEB. Immune landscape of breast cancers. Biomedicines. 2018;6(1):20.CrossRef
5.
Zurück zum Zitat Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE. 2016;11(6):e0157368.CrossRef Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE. 2016;11(6):e0157368.CrossRef
6.
Zurück zum Zitat de Groot AF, Kuijpers CJ, Kroep JR. CDK4/6 inhibition in early and metastatic breast cancer: a review. Cancer Treat Rev. 2017;60:130–8.CrossRef de Groot AF, Kuijpers CJ, Kroep JR. CDK4/6 inhibition in early and metastatic breast cancer: a review. Cancer Treat Rev. 2017;60:130–8.CrossRef
7.
Zurück zum Zitat Thill M, Schmidt M. Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther Adv Med Oncol. 2018;10:1758835918793326.CrossRef Thill M, Schmidt M. Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther Adv Med Oncol. 2018;10:1758835918793326.CrossRef
8.
Zurück zum Zitat VanArsdale T, Boshoff C, Arndt KT, Abraham RT. Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin Cancer Res. 2015;21(13):2905–10.CrossRef VanArsdale T, Boshoff C, Arndt KT, Abraham RT. Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin Cancer Res. 2015;21(13):2905–10.CrossRef
9.
Zurück zum Zitat Sobhani N, D’Angelo A, Pittacolo M, Roviello G, Miccoli A, Corona SP, et al. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer. Cells. 2019;8(4):321.CrossRef Sobhani N, D’Angelo A, Pittacolo M, Roviello G, Miccoli A, Corona SP, et al. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer. Cells. 2019;8(4):321.CrossRef
10.
Zurück zum Zitat Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471–5.CrossRef Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471–5.CrossRef
11.
Zurück zum Zitat Fassl A, Brain C, Abu-Remaileh M, Stukan I, Butter D, Stepien P, et al. Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Sci Adv. 2020;6(25):eabb2210.CrossRef Fassl A, Brain C, Abu-Remaileh M, Stukan I, Butter D, Stepien P, et al. Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Sci Adv. 2020;6(25):eabb2210.CrossRef
12.
Zurück zum Zitat Liu CY, Lau KY, Hsu CC, Chen JL, Lee CH, Huang TT, et al. Combination of Palbociclib with enzalutamide shows in vitro activity in RB proficient and androgen receptor positive triple negative breast cancer cells. PLoS ONE. 2017;12(12):e0189007.CrossRef Liu CY, Lau KY, Hsu CC, Chen JL, Lee CH, Huang TT, et al. Combination of Palbociclib with enzalutamide shows in vitro activity in RB proficient and androgen receptor positive triple negative breast cancer cells. PLoS ONE. 2017;12(12):e0189007.CrossRef
13.
Zurück zum Zitat Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with 18F-FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.CrossRef Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with 18F-FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.CrossRef
14.
Zurück zum Zitat Peck M, Pollack HA, Friesen A, Muzi M, Shoner SC, Shankland EG, et al. Applications of PET imaging with the proliferation marker 18F-FLT. Q J Nucl Med Mol Imaging. 2015;59(1):95–104.PubMedPubMedCentral Peck M, Pollack HA, Friesen A, Muzi M, Shoner SC, Shankland EG, et al. Applications of PET imaging with the proliferation marker 18F-FLT. Q J Nucl Med Mol Imaging. 2015;59(1):95–104.PubMedPubMedCentral
15.
Zurück zum Zitat McKinley ET, Ayers GD, Smith RA, Saleh SA, Zhao P, Washington MK, et al. Limits of 18F-FLT PET as a biomarker of proliferation in oncology. PLoS ONE. 2013;8(3):e58938.CrossRef McKinley ET, Ayers GD, Smith RA, Saleh SA, Zhao P, Washington MK, et al. Limits of 18F-FLT PET as a biomarker of proliferation in oncology. PLoS ONE. 2013;8(3):e58938.CrossRef
16.
Zurück zum Zitat Bollineni VR, Kramer GM, Jansma EP, Liu Y, Oyen WJ. A systematic review on 18F-FLT PET uptake as a measure of treatment response in cancer patients. Eur J Cancer. 2016;55:81–97.CrossRef Bollineni VR, Kramer GM, Jansma EP, Liu Y, Oyen WJ. A systematic review on 18F-FLT PET uptake as a measure of treatment response in cancer patients. Eur J Cancer. 2016;55:81–97.CrossRef
17.
Zurück zum Zitat Wang M, Zhang Y, Zhang Y. Routinely automated production of 3’-deoxy-3’-[18F]fluorothymidine as a specific molecular imaging probe of tumor cell proliferation. Nucl Tech. 2011;34(7):537–42. Wang M, Zhang Y, Zhang Y. Routinely automated production of 3’-deoxy-3’-[18F]fluorothymidine as a specific molecular imaging probe of tumor cell proliferation. Nucl Tech. 2011;34(7):537–42.
18.
Zurück zum Zitat Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers (Basel). 2020;12(4):916.CrossRef Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers (Basel). 2020;12(4):916.CrossRef
19.
Zurück zum Zitat Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.CrossRef Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.CrossRef
20.
Zurück zum Zitat Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.CrossRef Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.CrossRef
21.
Zurück zum Zitat Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163(2):506–19.CrossRef Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163(2):506–19.CrossRef
22.
Zurück zum Zitat Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. NCCN guidelines insights: breast cancer, version 1.2017. J Natl Compr Canc Netw. 2017;15(4):433–51.CrossRef Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. NCCN guidelines insights: breast cancer, version 1.2017. J Natl Compr Canc Netw. 2017;15(4):433–51.CrossRef
23.
Zurück zum Zitat Andreopoulou E, Schweber SJ, Sparano JA, McDaid HM. Therapies for triple negative breast cancer. Expert Opin Pharmacother. 2015;16(7):983–98.CrossRef Andreopoulou E, Schweber SJ, Sparano JA, McDaid HM. Therapies for triple negative breast cancer. Expert Opin Pharmacother. 2015;16(7):983–98.CrossRef
24.
Zurück zum Zitat Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, et al. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33(17):1902–9.CrossRef Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, et al. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33(17):1902–9.CrossRef
25.
Zurück zum Zitat Gupta GK, Collier AL. Perspectives on triple-negative breast cancer: current treatment strategies, unmet needs, and potential targets for future therapies. Cancers (Basel). 2020;12(9):292.CrossRef Gupta GK, Collier AL. Perspectives on triple-negative breast cancer: current treatment strategies, unmet needs, and potential targets for future therapies. Cancers (Basel). 2020;12(9):292.CrossRef
26.
Zurück zum Zitat Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.CrossRef Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.CrossRef
27.
Zurück zum Zitat Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23(18):5561–72.CrossRef Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23(18):5561–72.CrossRef
28.
Zurück zum Zitat Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.PubMed Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.PubMed
29.
Zurück zum Zitat Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle. 2012;11(14):2756–61.CrossRef Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, et al. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle. 2012;11(14):2756–61.CrossRef
30.
Zurück zum Zitat Witkiewicz AK, Knudsen ES. Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Res. 2014;16(3):207.PubMedPubMedCentral Witkiewicz AK, Knudsen ES. Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Res. 2014;16(3):207.PubMedPubMedCentral
31.
Zurück zum Zitat Elmi A, Makvandi M, Weng CC, Hou C, Clark AS, Mach RH, et al. Cell-proliferation imaging for monitoring response to CDK4/6 inhibition combined with endocrine-therapy in breast cancer: comparison of 18F-FLT and 18F-ISO-1 PET/CT. Clin Cancer Res. 2019;25(10):3063–73.CrossRef Elmi A, Makvandi M, Weng CC, Hou C, Clark AS, Mach RH, et al. Cell-proliferation imaging for monitoring response to CDK4/6 inhibition combined with endocrine-therapy in breast cancer: comparison of 18F-FLT and 18F-ISO-1 PET/CT. Clin Cancer Res. 2019;25(10):3063–73.CrossRef
32.
Zurück zum Zitat Moroz MA, Kochetkov T, Cai S, Wu J, Shamis M, Nair J, et al. Imaging colon cancer response following treatment with AZD1152: a preclinical analysis of [18F]fluoro-2-deoxyglucose and 3’-deoxy-3’-[18F]fluorothymidine imaging. Clin Cancer Res. 2011;17(5):1099–110.CrossRef Moroz MA, Kochetkov T, Cai S, Wu J, Shamis M, Nair J, et al. Imaging colon cancer response following treatment with AZD1152: a preclinical analysis of [18F]fluoro-2-deoxyglucose and 3’-deoxy-3’-[18F]fluorothymidine imaging. Clin Cancer Res. 2011;17(5):1099–110.CrossRef
33.
Zurück zum Zitat Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O, et al. 18F-FLT PET as a surrogate marker of drug efficacy during mTOR inhibition by everolimus in a preclinical cisplatin-resistant ovarian tumor model. J Nucl Med. 2010;51(10):1559–64.CrossRef Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O, et al. 18F-FLT PET as a surrogate marker of drug efficacy during mTOR inhibition by everolimus in a preclinical cisplatin-resistant ovarian tumor model. J Nucl Med. 2010;51(10):1559–64.CrossRef
34.
Zurück zum Zitat Solit DB, Santos E, Pratilas CA, Lobo J, Moroz M, Cai S, et al. 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography is a sensitive method for imaging the response of BRAF-dependent tumors to MEK inhibition. Cancer Res. 2007;67(23):11463–9.CrossRef Solit DB, Santos E, Pratilas CA, Lobo J, Moroz M, Cai S, et al. 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography is a sensitive method for imaging the response of BRAF-dependent tumors to MEK inhibition. Cancer Res. 2007;67(23):11463–9.CrossRef
35.
Zurück zum Zitat Francis DL, Freeman A, Visvikis D, Costa DC, Luthra SK, Novelli M, et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut. 2003;52(11):1602–6.CrossRef Francis DL, Freeman A, Visvikis D, Costa DC, Luthra SK, Novelli M, et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut. 2003;52(11):1602–6.CrossRef
36.
Zurück zum Zitat McKinley ET, Smith RA, Tanksley JP, Washington MK, Walker R, Coffey RJ, et al. 18F-FLT PET to predict pharmacodynamic and clinical response to cetuximab therapy in Ménétrier’s disease. Ann Nucl Med. 2012;26(9):757–63.CrossRef McKinley ET, Smith RA, Tanksley JP, Washington MK, Walker R, Coffey RJ, et al. 18F-FLT PET to predict pharmacodynamic and clinical response to cetuximab therapy in Ménétrier’s disease. Ann Nucl Med. 2012;26(9):757–63.CrossRef
37.
Zurück zum Zitat Giammarile F, Billotey C, Lombard-Bohas C, Le Bars D, Bournaud C, Masson S, et al. 18F-FLT and 18F-FDG positron emission tomography for the imaging of advanced well-differentiated gastro-entero-pancreatic endocrine tumours. Nucl Med Commun. 2011;32(2):91–7.CrossRef Giammarile F, Billotey C, Lombard-Bohas C, Le Bars D, Bournaud C, Masson S, et al. 18F-FLT and 18F-FDG positron emission tomography for the imaging of advanced well-differentiated gastro-entero-pancreatic endocrine tumours. Nucl Med Commun. 2011;32(2):91–7.CrossRef
38.
Zurück zum Zitat Shen G, Ma H, Pang F, Ren P, Kuang A. Correlations of 18F-FDG and 18F-FLT uptake on PET with Ki-67 expression in patients with lung cancer: a meta-analysis. Acta Radiol. 2018;59(2):188–95.CrossRef Shen G, Ma H, Pang F, Ren P, Kuang A. Correlations of 18F-FDG and 18F-FLT uptake on PET with Ki-67 expression in patients with lung cancer: a meta-analysis. Acta Radiol. 2018;59(2):188–95.CrossRef
39.
Zurück zum Zitat Zheng Y, Yang Z, Zhang Y, Shi Q, Bao X, Zhang J, et al. The preliminary study of 18F-FLT micro-PET/CT in predicting radiosensitivity of human nasopharyngeal carcinoma xenografts. Ann Nucl Med. 2015;29(1):29–36.CrossRef Zheng Y, Yang Z, Zhang Y, Shi Q, Bao X, Zhang J, et al. The preliminary study of 18F-FLT micro-PET/CT in predicting radiosensitivity of human nasopharyngeal carcinoma xenografts. Ann Nucl Med. 2015;29(1):29–36.CrossRef
40.
Zurück zum Zitat Qi S, Zhongyi Y, Yingjian Z, Chaosu H. 18F-FLT and 18F-FDG PET/CT in predicting response to chemoradiotherapy in nasopharyngeal carcinoma: preliminary results. Sci Rep. 2017;7:40552.CrossRef Qi S, Zhongyi Y, Yingjian Z, Chaosu H. 18F-FLT and 18F-FDG PET/CT in predicting response to chemoradiotherapy in nasopharyngeal carcinoma: preliminary results. Sci Rep. 2017;7:40552.CrossRef
Metadaten
Titel
18F-FLT PET/CT imaging for early monitoring response to CDK4/6 inhibitor therapy in triple negative breast cancer
verfasst von
Guang Ma
Cheng Liu
Weiling Lian
Yongping Zhang
Huiyu Yuan
Yingjian Zhang
Shaoli Song
Zhongyi Yang
Publikationsdatum
10.03.2021
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 5/2021
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-021-01603-w

Weitere Artikel der Ausgabe 5/2021

Annals of Nuclear Medicine 5/2021 Zur Ausgabe