Skip to main content
Erschienen in: Journal of Ocular Biology, Diseases, and Informatics 1-2/2011

01.06.2011

Glial and neuronal dysfunction in streptozotocin-induced diabetic rats

verfasst von: Vickie H. Y. Wong, Algis J. Vingrys, Bang V. Bui

Erschienen in: Journal of Ocular Biology, Diseases, and Informatics | Ausgabe 1-2/2011

Einloggen, um Zugang zu erhalten

Abstract

Neuronal dysfunction has been noted very soon after the induction of diabetes by streptozotocin injection in rats. It is not clear from anatomical evidence whether glial cell dysfunction accompanies the well-documented neuronal deficit. Here, we isolate the Müller cell driven slow-P3 component of the full-field electroretinogram and show that it is attenuated at 4 weeks following the onset of streptozotocin-hyperglycaemia. We also found a concurrent reduction in the sensitivity of the phototransduction cascade, as well as in the components of the electroretinogram known to indicate retinal ganglion cell and amacrine cell integrity. Our data support the idea that neuronal and Müller cell dysfunction occurs at the same time in streptozotocin-induced hyperglycaemia.
Literatur
1.
Zurück zum Zitat Taylor HR, Pezzullo ML, Keeffe JE. The economic impact and cost of visual impairment in Australia. Br J Ophthalmol. 2006;90:272–5.PubMedCrossRef Taylor HR, Pezzullo ML, Keeffe JE. The economic impact and cost of visual impairment in Australia. Br J Ophthalmol. 2006;90:272–5.PubMedCrossRef
2.
Zurück zum Zitat Fletcher EL, Phipps JA, Wilkinson-Berka JL. Dysfunction of retinal neurons and glia during diabetes. Clin Exp Optom. 2005;88:132–45.PubMedCrossRef Fletcher EL, Phipps JA, Wilkinson-Berka JL. Dysfunction of retinal neurons and glia during diabetes. Clin Exp Optom. 2005;88:132–45.PubMedCrossRef
3.
Zurück zum Zitat Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:283–90.PubMedCrossRef Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:283–90.PubMedCrossRef
4.
Zurück zum Zitat Coupland SG. A comparison of oscillatory potential and pattern electroretinogram measures in diabetic retinopathy. Doc Ophthalmol. 1987;66:207–18.PubMedCrossRef Coupland SG. A comparison of oscillatory potential and pattern electroretinogram measures in diabetic retinopathy. Doc Ophthalmol. 1987;66:207–18.PubMedCrossRef
5.
Zurück zum Zitat van der Torren K, van Lith G. Oscillatory potentials in early diabetic retinopathy. Doc Ophthalmol. 1989;71:375–9.PubMedCrossRef van der Torren K, van Lith G. Oscillatory potentials in early diabetic retinopathy. Doc Ophthalmol. 1989;71:375–9.PubMedCrossRef
6.
Zurück zum Zitat Parisi V, Uccioli L. Visual electrophysiological responses in persons with type 1 diabetes. Diabetes Metab Res Rev. 2001;17:12–8.PubMedCrossRef Parisi V, Uccioli L. Visual electrophysiological responses in persons with type 1 diabetes. Diabetes Metab Res Rev. 2001;17:12–8.PubMedCrossRef
7.
Zurück zum Zitat Bearse Jr MA, Adams AJ, Han Y, et al. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res. 2006;25:425–48.PubMedCrossRef Bearse Jr MA, Adams AJ, Han Y, et al. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res. 2006;25:425–48.PubMedCrossRef
8.
Zurück zum Zitat Harrison WW, Bearse Jr MA, Ng JS, et al. Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci. 2011;52:772–7.PubMedCrossRef Harrison WW, Bearse Jr MA, Ng JS, et al. Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci. 2011;52:772–7.PubMedCrossRef
9.
Zurück zum Zitat Uccioli L, Parisi V, Monticone G, et al. Electrophysiological assessment of visual function in newly-diagnosed IDDM patients. Diabetologia. 1995;38:804–8.PubMedCrossRef Uccioli L, Parisi V, Monticone G, et al. Electrophysiological assessment of visual function in newly-diagnosed IDDM patients. Diabetologia. 1995;38:804–8.PubMedCrossRef
10.
Zurück zum Zitat Chen H, Zhang M, Huang S, Wu D. The photopic negative response of flash ERG in nonproliferative diabetic retinopathy. Doc Ophthalmol. 2008;117:129–35.PubMedCrossRef Chen H, Zhang M, Huang S, Wu D. The photopic negative response of flash ERG in nonproliferative diabetic retinopathy. Doc Ophthalmol. 2008;117:129–35.PubMedCrossRef
11.
12.
Zurück zum Zitat van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50:3404–9.PubMedCrossRef van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50:3404–9.PubMedCrossRef
13.
Zurück zum Zitat Sugimoto M, Sasoh M, Ido M, Wakitani Y, Takahashi C, Uji Y. Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy. Ophthalmologica. 2005;219:379–85.PubMedCrossRef Sugimoto M, Sasoh M, Ido M, Wakitani Y, Takahashi C, Uji Y. Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy. Ophthalmologica. 2005;219:379–85.PubMedCrossRef
14.
Zurück zum Zitat Phipps JA, Fletcher EL, Vingrys AJ. Paired-flash identification of rod and cone dysfunction in the diabetic rat. Invest Ophthalmol Vis Sci. 2004;45:4592–600.PubMedCrossRef Phipps JA, Fletcher EL, Vingrys AJ. Paired-flash identification of rod and cone dysfunction in the diabetic rat. Invest Ophthalmol Vis Sci. 2004;45:4592–600.PubMedCrossRef
15.
Zurück zum Zitat Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res. 2002;74:615–25.PubMedCrossRef Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res. 2002;74:615–25.PubMedCrossRef
16.
Zurück zum Zitat Kohzaki K, Vingrys AJ, Bui BV. Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2008;49:3595–604.PubMedCrossRef Kohzaki K, Vingrys AJ, Bui BV. Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2008;49:3595–604.PubMedCrossRef
17.
Zurück zum Zitat Pautler EL, Ennis SR. The effect of induced diabetes on the electroretinogram components of the pigmented rat. Invest Ophthalmol Vis Sci. 1980;19:702–5.PubMed Pautler EL, Ennis SR. The effect of induced diabetes on the electroretinogram components of the pigmented rat. Invest Ophthalmol Vis Sci. 1980;19:702–5.PubMed
18.
Zurück zum Zitat Schneck ME, Fortune B, Adams AJ. The fast oscillation of the electrooculogram reveals sensitivity of the human outer retina/retinal pigment epithelium to glucose level. Vision Res. 2000;40:3447–53.PubMedCrossRef Schneck ME, Fortune B, Adams AJ. The fast oscillation of the electrooculogram reveals sensitivity of the human outer retina/retinal pigment epithelium to glucose level. Vision Res. 2000;40:3447–53.PubMedCrossRef
19.
Zurück zum Zitat Stockton RA, Slaughter MM. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol. 1989;93:101–22.PubMedCrossRef Stockton RA, Slaughter MM. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol. 1989;93:101–22.PubMedCrossRef
20.
Zurück zum Zitat Green DG, Kapousta-Bruneau NV. A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs. Vis Neurosci. 1999;16:727–41.PubMedCrossRef Green DG, Kapousta-Bruneau NV. A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs. Vis Neurosci. 1999;16:727–41.PubMedCrossRef
21.
Zurück zum Zitat Puro DG, Stuenkel EL. Thrombin-induced inhibition of potassium currents in human retinal glial (Muller) cells. J Physiol. 1995;485(Pt 2):337–48.PubMed Puro DG, Stuenkel EL. Thrombin-induced inhibition of potassium currents in human retinal glial (Muller) cells. J Physiol. 1995;485(Pt 2):337–48.PubMed
22.
Zurück zum Zitat Newman EA. Potassium conductance block by barium in amphibian Muller cells. Brain Res. 1989;498:308–14.PubMedCrossRef Newman EA. Potassium conductance block by barium in amphibian Muller cells. Brain Res. 1989;498:308–14.PubMedCrossRef
23.
Zurück zum Zitat Reichelt W, Muller T, Pastor A, et al. Patch-clamp recording from Muller (glial) cell endfeet in the intact isolated retina and acutely isolated Muller cells of mouse and guinea-pig. Neuroscience. 1993;57:599–613.PubMedCrossRef Reichelt W, Muller T, Pastor A, et al. Patch-clamp recording from Muller (glial) cell endfeet in the intact isolated retina and acutely isolated Muller cells of mouse and guinea-pig. Neuroscience. 1993;57:599–613.PubMedCrossRef
24.
Zurück zum Zitat Kofuji P, Biedermann B, Siddharthan V, et al. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia. 2002;39:292–303.PubMedCrossRef Kofuji P, Biedermann B, Siddharthan V, et al. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia. 2002;39:292–303.PubMedCrossRef
25.
Zurück zum Zitat Karowski CJ, Proenza LM. Relationship between Muller cell responses, a local transretinal potential, and potassium flux. J Neurophysiol. 1977;40:244–59.PubMed Karowski CJ, Proenza LM. Relationship between Muller cell responses, a local transretinal potential, and potassium flux. J Neurophysiol. 1977;40:244–59.PubMed
26.
Zurück zum Zitat Semple-Rowland SL, Dawson WW. Cyclic light intensity threshold for retinal damage in albino rats raised under 6 lx. Exp Eye Res. 1987;44:643–61.PubMedCrossRef Semple-Rowland SL, Dawson WW. Cyclic light intensity threshold for retinal damage in albino rats raised under 6 lx. Exp Eye Res. 1987;44:643–61.PubMedCrossRef
27.
Zurück zum Zitat Bui BV, Loeliger M, Thomas M, et al. Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats. Exp Eye Res. 2009;88:1076–83.PubMedCrossRef Bui BV, Loeliger M, Thomas M, et al. Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats. Exp Eye Res. 2009;88:1076–83.PubMedCrossRef
28.
Zurück zum Zitat Weymouth AE, Vingrys AJ. Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res. 2008;27:1–44.PubMedCrossRef Weymouth AE, Vingrys AJ. Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res. 2008;27:1–44.PubMedCrossRef
29.
Zurück zum Zitat Robson JG, Frishman LJ. Dissecting the dark-adapted electroretinogram. Doc Ophthalmol. 1998;95:187–215.PubMedCrossRef Robson JG, Frishman LJ. Dissecting the dark-adapted electroretinogram. Doc Ophthalmol. 1998;95:187–215.PubMedCrossRef
30.
Zurück zum Zitat Dang TM, Tsai TI, Vingrys AJ, Bui BV. Post-receptoral contributions to the rat scotopic electroretinogram a-wave. Doc Ophthalmol. 2011;122:149–56.PubMedCrossRef Dang TM, Tsai TI, Vingrys AJ, Bui BV. Post-receptoral contributions to the rat scotopic electroretinogram a-wave. Doc Ophthalmol. 2011;122:149–56.PubMedCrossRef
31.
Zurück zum Zitat Lamb TD, Pugh ENJ. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol. 1992;449:719–58.PubMed Lamb TD, Pugh ENJ. A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol. 1992;449:719–58.PubMed
32.
Zurück zum Zitat Hood DC, Birch DG. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci. 1994;35:2948–61.PubMed Hood DC, Birch DG. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci. 1994;35:2948–61.PubMed
33.
Zurück zum Zitat Hood DC, Birch DG. A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis Neurosci. 1992;8:107–26.PubMedCrossRef Hood DC, Birch DG. A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis Neurosci. 1992;8:107–26.PubMedCrossRef
34.
Zurück zum Zitat Bui BV, Fortune B. Ganglion cell contributions to the rat full-field electroretinogram. J Physiol. 2004;555:153–73.PubMedCrossRef Bui BV, Fortune B. Ganglion cell contributions to the rat full-field electroretinogram. J Physiol. 2004;555:153–73.PubMedCrossRef
35.
Zurück zum Zitat Saszik SM, Robson JG, Frishman LJ. The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol. 2002;543:899–916.PubMedCrossRef Saszik SM, Robson JG, Frishman LJ. The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol. 2002;543:899–916.PubMedCrossRef
36.
Zurück zum Zitat Moshiri A, Gonzalez E, Tagawa K, et al. Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev Biol. 2008;316:214–27.PubMedCrossRef Moshiri A, Gonzalez E, Tagawa K, et al. Near complete loss of retinal ganglion cells in the math5/brn3b double knockout elicits severe reductions of other cell types during retinal development. Dev Biol. 2008;316:214–27.PubMedCrossRef
37.
Zurück zum Zitat Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res. 1998;17:485–521.PubMedCrossRef Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res. 1998;17:485–521.PubMedCrossRef
38.
Zurück zum Zitat Perlman I. Relationship between the amplitudes of the b wave and the a wave as a useful index for evaluating the electroretinogram. Br J Ophthalmol. 1983;67:443–8.PubMedCrossRef Perlman I. Relationship between the amplitudes of the b wave and the a wave as a useful index for evaluating the electroretinogram. Br J Ophthalmol. 1983;67:443–8.PubMedCrossRef
39.
Zurück zum Zitat Sieving PA, Murayama K, Naarendorp F. Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994;11:519–32.PubMedCrossRef Sieving PA, Murayama K, Naarendorp F. Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994;11:519–32.PubMedCrossRef
40.
Zurück zum Zitat Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci. 2000;20:5733–40.PubMed Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci. 2000;20:5733–40.PubMed
41.
Zurück zum Zitat Phipps JA, Yee P, Fletcher EL, Vingrys AJ. Rod photoreceptor dysfunction in diabetes: activation, deactivation, and dark adaptation. Invest Ophthalmol Vis Sci. 2006;47:3187–94.PubMedCrossRef Phipps JA, Yee P, Fletcher EL, Vingrys AJ. Rod photoreceptor dysfunction in diabetes: activation, deactivation, and dark adaptation. Invest Ophthalmol Vis Sci. 2006;47:3187–94.PubMedCrossRef
42.
Zurück zum Zitat Kowluru A, Kowluru RA, Yamazaki A. Functional alterations of G-proteins in diabetic rat retina: a possible explanation for the early visual abnormalities in diabetes mellitus. Diabetologia. 1992;35:624–31.PubMedCrossRef Kowluru A, Kowluru RA, Yamazaki A. Functional alterations of G-proteins in diabetic rat retina: a possible explanation for the early visual abnormalities in diabetes mellitus. Diabetologia. 1992;35:624–31.PubMedCrossRef
43.
Zurück zum Zitat Raz-Prag D, Grimes WN, Fariss RN, et al. Probing potassium channel function in vivo by intracellular delivery of antibodies in a rat model of retinal neurodegeneration. Proc Natl Acad Sci U S A. 2010;107:12710–5.PubMedCrossRef Raz-Prag D, Grimes WN, Fariss RN, et al. Probing potassium channel function in vivo by intracellular delivery of antibodies in a rat model of retinal neurodegeneration. Proc Natl Acad Sci U S A. 2010;107:12710–5.PubMedCrossRef
44.
Zurück zum Zitat Dick E, Miller RF, Bloomfield S. Extracellular K + activity changes related to electroretinogram components. II. Rabbit (E-type) retinas. J Gen Physiol. 1985;85:911–31.PubMedCrossRef Dick E, Miller RF, Bloomfield S. Extracellular K + activity changes related to electroretinogram components. II. Rabbit (E-type) retinas. J Gen Physiol. 1985;85:911–31.PubMedCrossRef
45.
Zurück zum Zitat Bringmann A, Pannicke T, Uhlmann S, Kohen L, Wiedemann P, Reichenbach A. Membrane conductance of Muller glial cells in proliferative diabetic retinopathy. Can J Ophthalmol. 2002;37:221–7.PubMed Bringmann A, Pannicke T, Uhlmann S, Kohen L, Wiedemann P, Reichenbach A. Membrane conductance of Muller glial cells in proliferative diabetic retinopathy. Can J Ophthalmol. 2002;37:221–7.PubMed
46.
Zurück zum Zitat Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 2006;55:633–9.PubMedCrossRef Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 2006;55:633–9.PubMedCrossRef
47.
Zurück zum Zitat Curtis TM, Hamilton R, Yong PH, et al. Muller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia. 2011;54:690–8.PubMedCrossRef Curtis TM, Hamilton R, Yong PH, et al. Muller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia. 2011;54:690–8.PubMedCrossRef
Metadaten
Titel
Glial and neuronal dysfunction in streptozotocin-induced diabetic rats
verfasst von
Vickie H. Y. Wong
Algis J. Vingrys
Bang V. Bui
Publikationsdatum
01.06.2011
Verlag
Springer-Verlag
Erschienen in
Journal of Ocular Biology, Diseases, and Informatics / Ausgabe 1-2/2011
Elektronische ISSN: 1936-8445
DOI
https://doi.org/10.1007/s12177-011-9069-3

Weitere Artikel der Ausgabe 1-2/2011

Journal of Ocular Biology, Diseases, and Informatics 1-2/2011 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Die überschießende Wundheilung in der filtrierenden Glaukomchirurgie ist ein zentraler Faktor für ein operatives Versagen. Nach der Einführung der Trabekulektomie in den 1960er-Jahren wurden viele Faktoren erkannt, die mit einer vermehrten …

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.