Skip to main content
Erschienen in: International Journal of Hematology 6/2011

01.12.2011 | Review Article

Biological aspects of angiogenesis in multiple myeloma

verfasst von: Eléonore Otjacques, Marilène Binsfeld, Agnes Noel, Yves Beguin, Didier Cataldo, Jo Caers

Erschienen in: International Journal of Hematology | Ausgabe 6/2011

Einloggen, um Zugang zu erhalten

Abstract

Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant expansion of malignant plasma cells within the bone marrow (BM). One of the hallmarks of this disease is the close interaction between myeloma cells and neighboring cells within the BM. Angiogenesis, through the activation of endothelial cells, plays an essential role in MM biology. In the current review, we describe the angiogenesis process in MM by identifying the interacting cells, the pro- and anti-angiogenic cytokines modulated, and the extracellular matrix degrading proteases liable to participate in the pathophysiology. Finally, we highlight the impact of hypoxia (through hypoxia-inducible factor-1) and constitutive activation of nuclear factor-κB in this tumor-induced neo-vascularization.
Literatur
1.
Zurück zum Zitat Bray F, et al. Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer. 2002;38(1):99–166.PubMedCrossRef Bray F, et al. Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer. 2002;38(1):99–166.PubMedCrossRef
2.
Zurück zum Zitat Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance. Br J Haematol. 2006;134(6):573–89.PubMedCrossRef Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance. Br J Haematol. 2006;134(6):573–89.PubMedCrossRef
3.
Zurück zum Zitat Caers J, et al. Unraveling the biology of multiple myeloma disease: cancer stem cells, acquired intracellular changes and interactions with the surrounding micro-environment. Bull Cancer. 2008;95(3):301–13.PubMed Caers J, et al. Unraveling the biology of multiple myeloma disease: cancer stem cells, acquired intracellular changes and interactions with the surrounding micro-environment. Bull Cancer. 2008;95(3):301–13.PubMed
4.
Zurück zum Zitat Mattioli M, et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene. 2005;24(15):2461–73.PubMedCrossRef Mattioli M, et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene. 2005;24(15):2461–73.PubMedCrossRef
5.
Zurück zum Zitat Kyle RA, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564–9.PubMedCrossRef Kyle RA, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564–9.PubMedCrossRef
6.
Zurück zum Zitat Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.PubMedCrossRef Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.PubMedCrossRef
7.
8.
Zurück zum Zitat Rajkumar SV, et al. Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia. 1999;13(3):469–72.PubMedCrossRef Rajkumar SV, et al. Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia. 1999;13(3):469–72.PubMedCrossRef
9.
Zurück zum Zitat Vacca A, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol. 1994;87(3):503–8.PubMedCrossRef Vacca A, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol. 1994;87(3):503–8.PubMedCrossRef
10.
11.
Zurück zum Zitat Asosingh K, et al. Angiogenic switch during 5T2MM murine myeloma tumorigenesis: role of CD45 heterogeneity. Blood. 2004;103(8):3131–7.PubMedCrossRef Asosingh K, et al. Angiogenic switch during 5T2MM murine myeloma tumorigenesis: role of CD45 heterogeneity. Blood. 2004;103(8):3131–7.PubMedCrossRef
12.
Zurück zum Zitat Perez-Atayde AR, et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol. 1997;150(3):815–21.PubMed Perez-Atayde AR, et al. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol. 1997;150(3):815–21.PubMed
13.
Zurück zum Zitat Sezer O, et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol. 2000;79(10):574–7.PubMedCrossRef Sezer O, et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol. 2000;79(10):574–7.PubMedCrossRef
14.
Zurück zum Zitat Rajkumar SV, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res. 2000;6(8):3111–6.PubMed Rajkumar SV, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res. 2000;6(8):3111–6.PubMed
15.
Zurück zum Zitat Rajkumar SV, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res. 2002;8(7):2210–6.PubMed Rajkumar SV, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res. 2002;8(7):2210–6.PubMed
16.
Zurück zum Zitat Alexandrakis MG, et al. The relation between bone marrow angiogenesis and the proliferation index Ki-67 in multiple myeloma. J Clin Pathol. 2004;57(8):856–60.PubMedCrossRef Alexandrakis MG, et al. The relation between bone marrow angiogenesis and the proliferation index Ki-67 in multiple myeloma. J Clin Pathol. 2004;57(8):856–60.PubMedCrossRef
17.
Zurück zum Zitat Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19(5):329–37.PubMedCrossRef Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Semin Cancer Biol. 2009;19(5):329–37.PubMedCrossRef
18.
Zurück zum Zitat Kumar S, et al. Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood. 2004;104(4):1159–65.PubMedCrossRef Kumar S, et al. Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood. 2004;104(4):1159–65.PubMedCrossRef
19.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef
20.
Zurück zum Zitat Pour L, et al. Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann Hematol. 2010;89(4):385–9.PubMedCrossRef Pour L, et al. Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann Hematol. 2010;89(4):385–9.PubMedCrossRef
21.
Zurück zum Zitat Fujii R, Yaccoby S, Epstein J. Control of myeloma growth with the anti-angiogenic agent endostatin. Blood. 2002;96:360a. Fujii R, Yaccoby S, Epstein J. Control of myeloma growth with the anti-angiogenic agent endostatin. Blood. 2002;96:360a.
22.
Zurück zum Zitat Urbanska-Rys H, Robak T. High serum level of endostatin in multiple myeloma at diagnosis but not in the plateau phase after treatment. Mediators Inflamm. 2003;12(4):229–35.PubMedCrossRef Urbanska-Rys H, Robak T. High serum level of endostatin in multiple myeloma at diagnosis but not in the plateau phase after treatment. Mediators Inflamm. 2003;12(4):229–35.PubMedCrossRef
23.
Zurück zum Zitat De Raeve H, et al. Angiogenesis and the role of bone marrow endothelial cells in haematological malignancies. Histol Histopathol. 2004;19(3):935–50.PubMed De Raeve H, et al. Angiogenesis and the role of bone marrow endothelial cells in haematological malignancies. Histol Histopathol. 2004;19(3):935–50.PubMed
24.
Zurück zum Zitat Ribatti D. The discovery of endothelial progenitor cells. An historical review. Leuk Res. 2007;31(4):439–44.PubMedCrossRef Ribatti D. The discovery of endothelial progenitor cells. An historical review. Leuk Res. 2007;31(4):439–44.PubMedCrossRef
25.
Zurück zum Zitat Vacca A, et al. Endothelial cells in the bone marrow of patients with multiple myeloma. Blood. 2003;102(9):3340–8.PubMedCrossRef Vacca A, et al. Endothelial cells in the bone marrow of patients with multiple myeloma. Blood. 2003;102(9):3340–8.PubMedCrossRef
26.
Zurück zum Zitat Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.PubMedCrossRef Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.PubMedCrossRef
27.
Zurück zum Zitat Rafii S. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest. 2000;105(1):17–9.PubMedCrossRef Rafii S. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest. 2000;105(1):17–9.PubMedCrossRef
28.
Zurück zum Zitat Suda T, Takakura N, Oike Y. Hematopoiesis and angiogenesis. Int J Hematol. 2000;71(2):99–107.PubMed Suda T, Takakura N, Oike Y. Hematopoiesis and angiogenesis. Int J Hematol. 2000;71(2):99–107.PubMed
29.
Zurück zum Zitat Lyden D, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7(11):1194–201.PubMedCrossRef Lyden D, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7(11):1194–201.PubMedCrossRef
30.
Zurück zum Zitat Yin AH, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.PubMed Yin AH, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.PubMed
31.
Zurück zum Zitat Miraglia S, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013–21.PubMed Miraglia S, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013–21.PubMed
32.
Zurück zum Zitat Zhang H, et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood. 2005;105(8):3286–94.PubMedCrossRef Zhang H, et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood. 2005;105(8):3286–94.PubMedCrossRef
33.
Zurück zum Zitat Dominici M, et al. Angiogenesis in multiple myeloma: correlation between in vitro endothelial colonies growth (CFU-En) and clinical–biological features. Leukemia. 2001;15(1):171–6.PubMedCrossRef Dominici M, et al. Angiogenesis in multiple myeloma: correlation between in vitro endothelial colonies growth (CFU-En) and clinical–biological features. Leukemia. 2001;15(1):171–6.PubMedCrossRef
34.
Zurück zum Zitat Wang X, Zhang Z, Yao C. Angiogenic activity of mesenchymal stem cells in multiple myeloma. Cancer Invest. 2011;29(1):37–41.PubMedCrossRef Wang X, Zhang Z, Yao C. Angiogenic activity of mesenchymal stem cells in multiple myeloma. Cancer Invest. 2011;29(1):37–41.PubMedCrossRef
35.
Zurück zum Zitat Scavelli C, et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene. 2008;27(5):663–74.PubMedCrossRef Scavelli C, et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene. 2008;27(5):663–74.PubMedCrossRef
36.
Zurück zum Zitat Caers J, et al. Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia. 2007;21(7):1580–4.PubMedCrossRef Caers J, et al. Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia. 2007;21(7):1580–4.PubMedCrossRef
37.
Zurück zum Zitat Dankbar B, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma. Blood. 2000;95(8):2630–6.PubMed Dankbar B, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor–stromal cell interactions in multiple myeloma. Blood. 2000;95(8):2630–6.PubMed
38.
Zurück zum Zitat Barille S, et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood. 1997;90(4):1649–55.PubMed Barille S, et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood. 1997;90(4):1649–55.PubMed
39.
Zurück zum Zitat Urashima M, et al. The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood. 1997;90(2):754–65.PubMed Urashima M, et al. The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood. 1997;90(2):754–65.PubMed
40.
Zurück zum Zitat Borset M, et al. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood. 1996;88(10):3998–4004.PubMed Borset M, et al. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood. 1996;88(10):3998–4004.PubMed
41.
Zurück zum Zitat Hose D, et al. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009;114(1):128–43.PubMedCrossRef Hose D, et al. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009;114(1):128–43.PubMedCrossRef
42.
Zurück zum Zitat Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9(4):777–94.PubMedCrossRef Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9(4):777–94.PubMedCrossRef
43.
Zurück zum Zitat Vacca A, et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica. 2003;88(2):176–85.PubMed Vacca A, et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica. 2003;88(2):176–85.PubMed
44.
Zurück zum Zitat Podar K, et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001;98(2):428–35.PubMedCrossRef Podar K, et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood. 2001;98(2):428–35.PubMedCrossRef
45.
Zurück zum Zitat Uchiyama H, et al. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood. 1993;82(12):3712–20.PubMed Uchiyama H, et al. Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood. 1993;82(12):3712–20.PubMed
46.
Zurück zum Zitat Chauhan D, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87(3):1104–12.PubMed Chauhan D, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87(3):1104–12.PubMed
47.
Zurück zum Zitat Kim I, et al. Cell surface expression and functional significance of adhesion molecules on human myeloma-derived cell lines. Br J Haematol. 1994;87(3):483–93.PubMedCrossRef Kim I, et al. Cell surface expression and functional significance of adhesion molecules on human myeloma-derived cell lines. Br J Haematol. 1994;87(3):483–93.PubMedCrossRef
48.
Zurück zum Zitat Ribatti D, Nico B, Vacca A. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene. 2006;25(31):4257–66.PubMedCrossRef Ribatti D, Nico B, Vacca A. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene. 2006;25(31):4257–66.PubMedCrossRef
49.
Zurück zum Zitat Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.PubMedCrossRef Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.PubMedCrossRef
50.
Zurück zum Zitat Maulik G, et al. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 2002;13(1):41–59.PubMedCrossRef Maulik G, et al. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 2002;13(1):41–59.PubMedCrossRef
51.
Zurück zum Zitat Hose D, et al. Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood. 2009;113(18):4331–40.PubMedCrossRef Hose D, et al. Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood. 2009;113(18):4331–40.PubMedCrossRef
52.
Zurück zum Zitat Seidel C, et al. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood. 1998;91(3):806–12.PubMed Seidel C, et al. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood. 1998;91(3):806–12.PubMed
53.
Zurück zum Zitat Derksen PW, et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia. 2003;17(4):764–74.PubMedCrossRef Derksen PW, et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia. 2003;17(4):764–74.PubMedCrossRef
54.
Zurück zum Zitat Andersen NF, et al. Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol. 2005;128(2):210–7.PubMedCrossRef Andersen NF, et al. Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol. 2005;128(2):210–7.PubMedCrossRef
55.
Zurück zum Zitat Alexandrakis MG, et al. Elevated serum concentration of hepatocyte growth factor in patients with multiple myeloma: correlation with markers of disease activity. Am J Hematol. 2003;72(4):229–33.PubMedCrossRef Alexandrakis MG, et al. Elevated serum concentration of hepatocyte growth factor in patients with multiple myeloma: correlation with markers of disease activity. Am J Hematol. 2003;72(4):229–33.PubMedCrossRef
56.
Zurück zum Zitat Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–65.PubMedCrossRef Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–65.PubMedCrossRef
57.
Zurück zum Zitat Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993;73(1):161–95.PubMed Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993;73(1):161–95.PubMed
58.
Zurück zum Zitat Ribatti D, et al. In vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor-2. J Cell Sci. 1999;112(Pt 23):4213–21.PubMed Ribatti D, et al. In vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor-2. J Cell Sci. 1999;112(Pt 23):4213–21.PubMed
59.
Zurück zum Zitat Vacca A, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood. 1999;93(9):3064–73.PubMed Vacca A, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood. 1999;93(9):3064–73.PubMed
60.
Zurück zum Zitat Bisping G, et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood. 2003;101(7):2775–83.PubMedCrossRef Bisping G, et al. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood. 2003;101(7):2775–83.PubMedCrossRef
61.
Zurück zum Zitat Noel A, Jost M, Maquoi E. Matrix metalloproteinases at cancer tumor–host interface. Semin Cell Dev Biol. 2008;19(1):52–60.PubMedCrossRef Noel A, Jost M, Maquoi E. Matrix metalloproteinases at cancer tumor–host interface. Semin Cell Dev Biol. 2008;19(1):52–60.PubMedCrossRef
62.
Zurück zum Zitat Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422–33.PubMedCrossRef Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3(6):422–33.PubMedCrossRef
63.
Zurück zum Zitat Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65(10):3967–79.PubMedCrossRef Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res. 2005;65(10):3967–79.PubMedCrossRef
64.
Zurück zum Zitat Monteiro Torres PH, Limaverde Soares Costa Sousa G, Pascutti PG. Structural analysis of the N-terminal fragment of the antiangiogenic protein endostatin: a molecular dynamics study. Proteins. 2011;79(9):2684–92. Monteiro Torres PH, Limaverde Soares Costa Sousa G, Pascutti PG. Structural analysis of the N-terminal fragment of the antiangiogenic protein endostatin: a molecular dynamics study. Proteins. 2011;79(9):2684–92.
65.
Zurück zum Zitat Van Valckenborgh E, et al. Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer. 2002;101(6):512–8.PubMedCrossRef Van Valckenborgh E, et al. Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer. 2002;101(6):512–8.PubMedCrossRef
66.
Zurück zum Zitat Vanderkerken K, et al. Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev. 2003;194:196–206.PubMedCrossRef Vanderkerken K, et al. Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev. 2003;194:196–206.PubMedCrossRef
67.
Zurück zum Zitat Alexandrakis MG, et al. Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta. 2007;379(1–2):31–5.PubMedCrossRef Alexandrakis MG, et al. Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta. 2007;379(1–2):31–5.PubMedCrossRef
68.
Zurück zum Zitat Rocks N, et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008;90(2):369–79.PubMedCrossRef Rocks N, et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008;90(2):369–79.PubMedCrossRef
69.
Zurück zum Zitat Bret C, et al. Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp Hematol. 2011;39:546–57.PubMedCrossRef Bret C, et al. Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp Hematol. 2011;39:546–57.PubMedCrossRef
70.
Zurück zum Zitat Karadag A, Zhou M, Croucher PI. ADAM-9 (MDC-9/meltrin-gamma), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell-induced interleukin-6 production in osteoblasts by direct interaction with the alpha(v)beta5 integrin. Blood. 2006;107(8):3271–8.PubMedCrossRef Karadag A, Zhou M, Croucher PI. ADAM-9 (MDC-9/meltrin-gamma), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell-induced interleukin-6 production in osteoblasts by direct interaction with the alpha(v)beta5 integrin. Blood. 2006;107(8):3271–8.PubMedCrossRef
71.
Zurück zum Zitat Hideshima T, et al. Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol. 2001;28(6):607–12.PubMedCrossRef Hideshima T, et al. Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol. 2001;28(6):607–12.PubMedCrossRef
72.
Zurück zum Zitat Giuliani N, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100(13):4615–21.PubMedCrossRef Giuliani N, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100(13):4615–21.PubMedCrossRef
73.
Zurück zum Zitat Martin SK, et al. Tumor angiogenesis is associated with plasma levels of stromal-derived factor-1alpha in patients with multiple myeloma. Clin Cancer Res. 2006;12(23):6973–7.PubMedCrossRef Martin SK, et al. Tumor angiogenesis is associated with plasma levels of stromal-derived factor-1alpha in patients with multiple myeloma. Clin Cancer Res. 2006;12(23):6973–7.PubMedCrossRef
74.
Zurück zum Zitat Terpos E, et al. Significance of macrophage inflammatory protein-1 alpha (MIP-1alpha) in multiple myeloma. Leuk Lymphoma. 2005;46(12):1699–707.PubMedCrossRef Terpos E, et al. Significance of macrophage inflammatory protein-1 alpha (MIP-1alpha) in multiple myeloma. Leuk Lymphoma. 2005;46(12):1699–707.PubMedCrossRef
75.
Zurück zum Zitat Fisher LW, et al. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem. 1987;262(20):9702–8.PubMed Fisher LW, et al. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem. 1987;262(20):9702–8.PubMed
76.
Zurück zum Zitat Caers J, et al. The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model. Br J Haematol. 2006;132(4):469–77.PubMed Caers J, et al. The involvement of osteopontin and its receptors in multiple myeloma cell survival, migration and invasion in the murine 5T33MM model. Br J Haematol. 2006;132(4):469–77.PubMed
77.
Zurück zum Zitat Colla S, et al. Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia. 2005;19(12):2166–76.PubMedCrossRef Colla S, et al. Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia. 2005;19(12):2166–76.PubMedCrossRef
78.
Zurück zum Zitat Brahimi-Horn MC, Pouyssegur J. Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol. 2007;73(3):450–7.PubMedCrossRef Brahimi-Horn MC, Pouyssegur J. Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol. 2007;73(3):450–7.PubMedCrossRef
79.
Zurück zum Zitat Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 2002;16(10):1151–62.PubMedCrossRef Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 2002;16(10):1151–62.PubMedCrossRef
80.
Zurück zum Zitat Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85.PubMedCrossRef Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85.PubMedCrossRef
81.
Zurück zum Zitat Wang GL, et al. Hypoxia-inducible factor 1 is a basic helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510–4.PubMedCrossRef Wang GL, et al. Hypoxia-inducible factor 1 is a basic helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510–4.PubMedCrossRef
82.
Zurück zum Zitat Yoo YG, et al. An essential role of the HIF-1alpha-c-Myc axis in malignant progression. Ann NY Acad Sci. 2009;1177:198–204.PubMedCrossRef Yoo YG, et al. An essential role of the HIF-1alpha-c-Myc axis in malignant progression. Ann NY Acad Sci. 2009;1177:198–204.PubMedCrossRef
83.
Zurück zum Zitat Zundel W, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14(4):391–6.PubMed Zundel W, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14(4):391–6.PubMed
84.
Zurück zum Zitat Hu Y, et al. Inhibition of hypoxia-inducible factor-1 function enhances the sensitivity of multiple myeloma cells to melphalan. Mol Cancer Ther. 2009;8(8):2329–38.PubMedCrossRef Hu Y, et al. Inhibition of hypoxia-inducible factor-1 function enhances the sensitivity of multiple myeloma cells to melphalan. Mol Cancer Ther. 2009;8(8):2329–38.PubMedCrossRef
85.
Zurück zum Zitat Harrison JS, et al. Oxygen saturation in the bone marrow of healthy volunteers. Blood. 2002;99(1):394.PubMedCrossRef Harrison JS, et al. Oxygen saturation in the bone marrow of healthy volunteers. Blood. 2002;99(1):394.PubMedCrossRef
86.
Zurück zum Zitat Colla S, et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1alpha overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia. 2010;24(11):1967–70.PubMedCrossRef Colla S, et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1alpha overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia. 2010;24(11):1967–70.PubMedCrossRef
87.
Zurück zum Zitat Asosingh K, et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica. 2005;90(6):810–7.PubMed Asosingh K, et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica. 2005;90(6):810–7.PubMed
88.
Zurück zum Zitat Zannettino AC, et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res. 2005;65(5):1700–9.PubMedCrossRef Zannettino AC, et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res. 2005;65(5):1700–9.PubMedCrossRef
89.
Zurück zum Zitat Martin SK, et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica. 2010;95(5):776–84.PubMedCrossRef Martin SK, et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica. 2010;95(5):776–84.PubMedCrossRef
90.
Zurück zum Zitat Maxwell PH, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.PubMedCrossRef Maxwell PH, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.PubMedCrossRef
91.
Zurück zum Zitat Hatzimichael E, et al. Von Hippel–Lindau methylation status in patients with multiple myeloma: a potential predictive factor for the development of bone disease. Clin Lymphoma Myeloma. 2009;9(3):239–42.PubMedCrossRef Hatzimichael E, et al. Von Hippel–Lindau methylation status in patients with multiple myeloma: a potential predictive factor for the development of bone disease. Clin Lymphoma Myeloma. 2009;9(3):239–42.PubMedCrossRef
92.
Zurück zum Zitat Eischen CM, et al. Disruption of the ARF-Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13(20):2658–69.PubMedCrossRef Eischen CM, et al. Disruption of the ARF-Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13(20):2658–69.PubMedCrossRef
93.
Zurück zum Zitat Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–33.PubMedCrossRef Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–33.PubMedCrossRef
94.
Zurück zum Zitat Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA. 2002;99(9):6274–9.PubMedCrossRef Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA. 2002;99(9):6274–9.PubMedCrossRef
95.
Zurück zum Zitat Zhang J, et al. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res. 2009;69(12):5082–90.PubMedCrossRef Zhang J, et al. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res. 2009;69(12):5082–90.PubMedCrossRef
96.
Zurück zum Zitat Koong AC, et al. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res. 1994;54(20):5273–9.PubMed Koong AC, et al. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res. 1994;54(20):5273–9.PubMed
97.
Zurück zum Zitat Karashima T, et al. Nuclear factor-kappaB mediates angiogenesis and metastasis of human bladder cancer through the regulation of interleukin-8. Clin Cancer Res. 2003;9(7):2786–97.PubMed Karashima T, et al. Nuclear factor-kappaB mediates angiogenesis and metastasis of human bladder cancer through the regulation of interleukin-8. Clin Cancer Res. 2003;9(7):2786–97.PubMed
98.
Zurück zum Zitat Annunziata CM, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12(2):115–30.PubMedCrossRef Annunziata CM, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12(2):115–30.PubMedCrossRef
99.
Zurück zum Zitat Keats JJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131–44.PubMedCrossRef Keats JJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131–44.PubMedCrossRef
100.
Zurück zum Zitat van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 2008;412(3):477–84.PubMedCrossRef van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 2008;412(3):477–84.PubMedCrossRef
101.
Zurück zum Zitat Jung YJ, et al. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 2003;17(14):2115–7.PubMed Jung YJ, et al. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 2003;17(14):2115–7.PubMed
102.
Zurück zum Zitat Qiao Q, et al. NF-kappaB mediates aberrant activation of HIF-1 in malignant lymphoma. Exp Hematol. 2010;38(12):1199–208.PubMedCrossRef Qiao Q, et al. NF-kappaB mediates aberrant activation of HIF-1 in malignant lymphoma. Exp Hematol. 2010;38(12):1199–208.PubMedCrossRef
103.
Zurück zum Zitat Nam SY, et al. A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-kappaB promotes gastric tumour growth and angiogenesis. Br J Cancer. 2011;104(1):166–74.PubMedCrossRef Nam SY, et al. A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-kappaB promotes gastric tumour growth and angiogenesis. Br J Cancer. 2011;104(1):166–74.PubMedCrossRef
104.
Zurück zum Zitat Kwon HC, et al. Clinicopathological significance of nuclear factor-kappa B, HIF-1 alpha, and vascular endothelial growth factor expression in stage III colorectal cancer. Cancer Sci. 2010;101(6):1557–61.PubMedCrossRef Kwon HC, et al. Clinicopathological significance of nuclear factor-kappa B, HIF-1 alpha, and vascular endothelial growth factor expression in stage III colorectal cancer. Cancer Sci. 2010;101(6):1557–61.PubMedCrossRef
105.
Zurück zum Zitat D’Amato RJ, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91(9):4082–5.PubMedCrossRef D’Amato RJ, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91(9):4082–5.PubMedCrossRef
106.
Zurück zum Zitat Vacca A, et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(23):5334–46.CrossRef Vacca A, et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(23):5334–46.CrossRef
107.
Zurück zum Zitat Rajkumar SV, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood. 2005;106(13):4050–3.PubMedCrossRef Rajkumar SV, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood. 2005;106(13):4050–3.PubMedCrossRef
108.
Zurück zum Zitat Richardson PG, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006;108(10):3458–64.PubMedCrossRef Richardson PG, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006;108(10):3458–64.PubMedCrossRef
109.
Zurück zum Zitat Lentzsch S, et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia. 2003;17(1):41–4.PubMedCrossRef Lentzsch S, et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia. 2003;17(1):41–4.PubMedCrossRef
110.
Zurück zum Zitat Lu L, et al. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009;77(2):78–86.PubMedCrossRef Lu L, et al. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009;77(2):78–86.PubMedCrossRef
111.
Zurück zum Zitat De Luisi A, et al. Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin Cancer Res. 2011;17(7):1935–46.PubMedCrossRef De Luisi A, et al. Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin Cancer Res. 2011;17(7):1935–46.PubMedCrossRef
112.
Zurück zum Zitat Mitra-Kaushik S, et al. Effects of the proteasome inhibitor PS-341 on tumor growth in HTLV-1 Tax transgenic mice and Tax tumor transplants. Blood. 2004;104(3):802–9.PubMedCrossRef Mitra-Kaushik S, et al. Effects of the proteasome inhibitor PS-341 on tumor growth in HTLV-1 Tax transgenic mice and Tax tumor transplants. Blood. 2004;104(3):802–9.PubMedCrossRef
113.
Zurück zum Zitat Roccaro AM, et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006;66(1):184–91.PubMedCrossRef Roccaro AM, et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006;66(1):184–91.PubMedCrossRef
114.
Zurück zum Zitat De Vos J, et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene. 2002;21(44):6848–57.PubMedCrossRef De Vos J, et al. Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene. 2002;21(44):6848–57.PubMedCrossRef
115.
Zurück zum Zitat Munshi NC, et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004;103(5):1799–806.PubMedCrossRef Munshi NC, et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004;103(5):1799–806.PubMedCrossRef
116.
Zurück zum Zitat Bao H, et al. Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. Int J Hematol. 2009;90(2):177–85.PubMedCrossRef Bao H, et al. Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. Int J Hematol. 2009;90(2):177–85.PubMedCrossRef
117.
Zurück zum Zitat Seckinger A, et al. Bone morphogenic protein 6: a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis. Oncogene. 2009;28(44):3866–79.PubMedCrossRef Seckinger A, et al. Bone morphogenic protein 6: a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis. Oncogene. 2009;28(44):3866–79.PubMedCrossRef
Metadaten
Titel
Biological aspects of angiogenesis in multiple myeloma
verfasst von
Eléonore Otjacques
Marilène Binsfeld
Agnes Noel
Yves Beguin
Didier Cataldo
Jo Caers
Publikationsdatum
01.12.2011
Verlag
Springer Japan
Erschienen in
International Journal of Hematology / Ausgabe 6/2011
Print ISSN: 0925-5710
Elektronische ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-011-0963-z

Weitere Artikel der Ausgabe 6/2011

International Journal of Hematology 6/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.