Skip to main content
Erschienen in: Radiological Physics and Technology 1/2020

04.11.2019

A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features

verfasst von: Ayaka Sakai, Yuya Onishi, Misaki Matsui, Hidetoshi Adachi, Atsushi Teramoto, Kuniaki Saito, Hiroshi Fujita

Erschienen in: Radiological Physics and Technology | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

In digital mammography, which is used for the early detection of breast tumors, oversight may occur due to overlap between normal tissues and lesions. However, since digital breast tomosynthesis can acquire three-dimensional images, tissue overlapping is reduced, and, therefore, the shape and distribution of the lesions can be easily identified. However, it is often difficult to distinguish between benign and malignant breast lesions on images, and the diagnostic accuracy can be reduced due to complications from radiological interpretations, owing to acquisition of a higher number of images. In this study, we developed an automated classification method for diagnosing breast lesions on digital breast tomosynthesis images using radiomics to comprehensively analyze the radiological images. We extracted an analysis area centered on the lesion and calculated 70 radiomic features, including the shape of the lesion, existence of spicula, and texture information. The accuracy was compared by inputting the obtained radiomic features to four classifiers (support vector machine, random forest, naïve Bayes, and multi-layer perceptron), and the final classification result was obtained as an output using a classifier with high accuracy. To confirm the effectiveness of the proposed method, we used 24 cases with confirmed pathological diagnosis on biopsy. We also compared the classification results based on the presence or absence of dimension reduction using least absolute shrinkage and a selection operator (LASSO). As a result, when the support vector machine was used as a classifier, the correct identification rate of the benign tumors was 55% and that of malignant tumors was 84%, with best results. These results indicate that the proposed method may help in more accurately diagnosing cases that are difficult to classify on images.
Literatur
2.
Zurück zum Zitat Lee A, Mavaddat N, Wilcox A, et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med. 2019;21(8):1708–18.CrossRef Lee A, Mavaddat N, Wilcox A, et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med. 2019;21(8):1708–18.CrossRef
3.
Zurück zum Zitat Sardanelli F, Aase HS, Alvarez M, Azavedo E. Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies. Eur Radiol. 2017;27(7):2737–43.CrossRef Sardanelli F, Aase HS, Alvarez M, Azavedo E. Position paper on screening for breast cancer by the European Society of Breast Imaging (EUSOBI) and 30 national breast radiology bodies. Eur Radiol. 2017;27(7):2737–43.CrossRef
4.
Zurück zum Zitat Roth RG, Maidment AD, Weinstein SP, Roth SO, Conant EF. Digital breast tomosynthesis: lessons learned from early clinical implementation. Radiographics. 2014;34:E89–E102.CrossRef Roth RG, Maidment AD, Weinstein SP, Roth SO, Conant EF. Digital breast tomosynthesis: lessons learned from early clinical implementation. Radiographics. 2014;34:E89–E102.CrossRef
5.
Zurück zum Zitat Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138(3):168–75.CrossRef Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138(3):168–75.CrossRef
6.
Zurück zum Zitat Niklason LT, Christian BT, Niklason LE, et al. Digital tomosynthesis in breast imaging. Radiology. 1997;205(2):399–406.CrossRef Niklason LT, Christian BT, Niklason LE, et al. Digital tomosynthesis in breast imaging. Radiology. 1997;205(2):399–406.CrossRef
7.
Zurück zum Zitat Rafferty EA, Park JM, Philpotts LE, et al. Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology. 2016;266(1):104–13.CrossRef Rafferty EA, Park JM, Philpotts LE, et al. Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology. 2016;266(1):104–13.CrossRef
8.
Zurück zum Zitat Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56.CrossRef Skaane P, Bandos AI, Gullien R, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267(1):47–56.CrossRef
9.
Zurück zum Zitat Gur D, Abrams GS, Chough DM, et al. Digital breast tomosynthesis: observer performance study. AJR Am J Roentgenol. 2009;193(2):586–91.CrossRef Gur D, Abrams GS, Chough DM, et al. Digital breast tomosynthesis: observer performance study. AJR Am J Roentgenol. 2009;193(2):586–91.CrossRef
10.
Zurück zum Zitat Gennaro G, Toledano A, di Maggio C, et al. Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol. 2010;20(7):1545–53.CrossRef Gennaro G, Toledano A, di Maggio C, et al. Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol. 2010;20(7):1545–53.CrossRef
11.
Zurück zum Zitat John M. Core-needle biopsy for breast abnormalities. AHRQ Pub. No.14(16)-EHC040-3-EF; 2016. John M. Core-needle biopsy for breast abnormalities. AHRQ Pub. No.14(16)-EHC040-3-EF; 2016.
12.
Zurück zum Zitat Bhattacharyya D, Bandyopadhyay S, Kim T. Diagnosis of breast cancer by tissue analysis. Chin J Cancer Res. 2013;25(1):39–45.PubMedPubMedCentral Bhattacharyya D, Bandyopadhyay S, Kim T. Diagnosis of breast cancer by tissue analysis. Chin J Cancer Res. 2013;25(1):39–45.PubMedPubMedCentral
13.
Zurück zum Zitat Yamazaki M, Teramoto A, Fujita H. A hybrid detection scheme of architectural distortion in mammograms using iris filter and Gabor filter. Lect Comput Sci. 2016;9699:174–82. Yamazaki M, Teramoto A, Fujita H. A hybrid detection scheme of architectural distortion in mammograms using iris filter and Gabor filter. Lect Comput Sci. 2016;9699:174–82.
14.
Zurück zum Zitat Jiang Y, Jiang Y, Nishikawa RM, et al. Improving breast cancer diagnosis with computer-aided diagnosis. Acad Radiol. 1999;6(1):22–33.CrossRef Jiang Y, Jiang Y, Nishikawa RM, et al. Improving breast cancer diagnosis with computer-aided diagnosis. Acad Radiol. 1999;6(1):22–33.CrossRef
15.
Zurück zum Zitat Christoyianni I, Koutras A, Dermatas E, Kokkinakis G. Computer aided diagnosis of breast cancer in digitized mammograms. Comput Med Imaging Gr. 2002;26(5):309–19.CrossRef Christoyianni I, Koutras A, Dermatas E, Kokkinakis G. Computer aided diagnosis of breast cancer in digitized mammograms. Comput Med Imaging Gr. 2002;26(5):309–19.CrossRef
16.
Zurück zum Zitat Eltoukhy M, Faye I, Samir B. A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. Comput Biol Med. 2012;42(1):123–8.CrossRef Eltoukhy M, Faye I, Samir B. A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation. Comput Biol Med. 2012;42(1):123–8.CrossRef
17.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef
18.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neurol. 2012;25(6):1106–14. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neurol. 2012;25(6):1106–14.
19.
Zurück zum Zitat Ragab D, Sharkas M, Marshall S, Ren J. Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ. 2019;7(2601):1–23. Ragab D, Sharkas M, Marshall S, Ren J. Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ. 2019;7(2601):1–23.
20.
Zurück zum Zitat Arevalo J, González F, Ramos-Pollán R. Convolutional neural networks for mammography mass lesion classification. In: 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2015, pp 797–800. Arevalo J, González F, Ramos-Pollán R. Convolutional neural networks for mammography mass lesion classification. In: 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2015, pp 797–800.
21.
Zurück zum Zitat Tian J, Dong D, Liu Z et al. Radiomics in medical imaging-detection, extraction and segmentation. In: Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging. Intelligent Systems Reference Library, vol 140; 2018. Tian J, Dong D, Liu Z et al. Radiomics in medical imaging-detection, extraction and segmentation. In: Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging. Intelligent Systems Reference Library, vol 140; 2018.
22.
Zurück zum Zitat Parmar C, Velazquez E, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE. 2014;9(7):1–8.CrossRef Parmar C, Velazquez E, Leijenaar R, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE. 2014;9(7):1–8.CrossRef
23.
Zurück zum Zitat Ma J, Wang Q, Ren Y, et al. Automatic lung nodule classification with radiomics approach. In: Proceedings of SPIE 9789, medical imaging 2016: PACS and imaging informatics: next generation and innovations, 978906; 2016. Ma J, Wang Q, Ren Y, et al. Automatic lung nodule classification with radiomics approach. In: Proceedings of SPIE 9789, medical imaging 2016: PACS and imaging informatics: next generation and innovations, 978906; 2016.
24.
Zurück zum Zitat Song Q, Zhao L, Luo X, et al. Using deep learning for classification of lung nodules on computed tomography images. J Healthc Eng. 2017;2017:7.CrossRef Song Q, Zhao L, Luo X, et al. Using deep learning for classification of lung nodules on computed tomography images. J Healthc Eng. 2017;2017:7.CrossRef
26.
Zurück zum Zitat American College of Radiology. Breast imaging reporting and data system (BI-RADS®). 3rd ed. Reston: American College of Radiology; 1998. American College of Radiology. Breast imaging reporting and data system (BI-RADS®). 3rd ed. Reston: American College of Radiology; 1998.
27.
Zurück zum Zitat Rangayyan RM, Ayres FJ. Gabor filter and phase portraits for the detection of architectural distortion in mammograms. Med Biol Eng Comput. 2006;44(10):883–94.CrossRef Rangayyan RM, Ayres FJ. Gabor filter and phase portraits for the detection of architectural distortion in mammograms. Med Biol Eng Comput. 2006;44(10):883–94.CrossRef
28.
Zurück zum Zitat Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two and three-dimensional CT scans. Med Phys. 2003;30(8):2040–51.CrossRef Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two and three-dimensional CT scans. Med Phys. 2003;30(8):2040–51.CrossRef
29.
Zurück zum Zitat Teramoto A, Fujita H, Yamamuro O, Tamaki T. Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys. 2016;43(6):2821–7.CrossRef Teramoto A, Fujita H, Yamamuro O, Tamaki T. Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys. 2016;43(6):2821–7.CrossRef
30.
Zurück zum Zitat Teramoto A, Tsujimoto M, Inoue T, et al. Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy. Asia Ocean J Nucl Med Biol. 2018;7(1):29–37. Teramoto A, Tsujimoto M, Inoue T, et al. Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy. Asia Ocean J Nucl Med Biol. 2018;7(1):29–37.
31.
Zurück zum Zitat Yoshikawa R, Teramoto A, Matsubara T, Fujita H. Automated detection of architectural distortion using improved adaptive Gabor filter. International workshop on digital mammography. Cham: Springer; 2014. p. 606–611. Yoshikawa R, Teramoto A, Matsubara T, Fujita H. Automated detection of architectural distortion using improved adaptive Gabor filter. International workshop on digital mammography. Cham: Springer; 2014. p. 606–611.
32.
Zurück zum Zitat Selvarajah S, Kodituwakku S. Analysis and comparison of texture features for content based image retrieval. Int J Latest Trends Comput. 2011;2(1):108–13. Selvarajah S, Kodituwakku S. Analysis and comparison of texture features for content based image retrieval. Int J Latest Trends Comput. 2011;2(1):108–13.
34.
Zurück zum Zitat Zhou Y, He L, Huang Y, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol. 2017;42(6):1695–704.CrossRef Zhou Y, He L, Huang Y, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol. 2017;42(6):1695–704.CrossRef
35.
Zurück zum Zitat Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.CrossRef Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.CrossRef
36.
Zurück zum Zitat Filzmoser P, Liebmann B, Varmuza K. Repeated double cross validation. J Cemometrics. 2009;23:160–71.CrossRef Filzmoser P, Liebmann B, Varmuza K. Repeated double cross validation. J Cemometrics. 2009;23:160–71.CrossRef
37.
Zurück zum Zitat Leijenaar RTH, Carvalho S, Velazquez ER, van Elmpt WJC, Parmar C, Hoekstra OS, Hoekstra CJ, Boellaard R, Dekker ALAJ, Gillies RJ, Aerts HJWL, Lambin P. Stability of FDGPET radiomics features: an integrated analysis of test–retest and inter-observer variability. Acta Oncol. 2013;52(7):1391–7.CrossRef Leijenaar RTH, Carvalho S, Velazquez ER, van Elmpt WJC, Parmar C, Hoekstra OS, Hoekstra CJ, Boellaard R, Dekker ALAJ, Gillies RJ, Aerts HJWL, Lambin P. Stability of FDGPET radiomics features: an integrated analysis of test–retest and inter-observer variability. Acta Oncol. 2013;52(7):1391–7.CrossRef
38.
Zurück zum Zitat Teramoto A, Yamada A, Kiriyama Y, Tsukamoto T, Yan K, Zhang L, Imaizumi K, Saito K, Fujita H. Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network. Informatics in Medicine Unlocked. 2019;16:100205.CrossRef Teramoto A, Yamada A, Kiriyama Y, Tsukamoto T, Yan K, Zhang L, Imaizumi K, Saito K, Fujita H. Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network. Informatics in Medicine Unlocked. 2019;16:100205.CrossRef
39.
Zurück zum Zitat Onishi Y, Teramoto A, Tsujimoto M, et al. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. BioMed Res Int. 2019;2019:1–9 (Article ID 6051939). Onishi Y, Teramoto A, Tsujimoto M, et al. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. BioMed Res Int. 2019;2019:1–9 (Article ID 6051939).
Metadaten
Titel
A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features
verfasst von
Ayaka Sakai
Yuya Onishi
Misaki Matsui
Hidetoshi Adachi
Atsushi Teramoto
Kuniaki Saito
Hiroshi Fujita
Publikationsdatum
04.11.2019
Verlag
Springer Singapore
Erschienen in
Radiological Physics and Technology / Ausgabe 1/2020
Print ISSN: 1865-0333
Elektronische ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-019-00543-5

Weitere Artikel der Ausgabe 1/2020

Radiological Physics and Technology 1/2020 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.