Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 5/2012

01.10.2012

The Hypoxic Epicardial and Subepicardial Microenvironment

verfasst von: Fatih Kocabas, Ahmed I. Mahmoud, Drazen Sosic, Enzo R. Porrello, Rui Chen, Joseph A. Garcia, Ralph J. DeBerardinis, Hesham A. Sadek

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 5/2012

Einloggen, um Zugang zu erhalten

Abstract

Recent reports indicate that the adult mammalian heart is capable of limited, but measurable, cardiomyocyte turnover. While the lineage origin of the newly formed cardiomyocytes is not entirely understood, mounting evidence suggest that the epicardium and subepicardium may represent an important source of cardiac stem or progenitor cells. Stem cell niches are characterized by low oxygen tension, where stem cells preferentially utilize cytoplasmic glycolysis to meet their energy demands. However, it is unclear if the heart harbors similar hypoxic regions, or whether these regions house metabolically distinct cardiac progenitor populations. Here we identify the epicardium and subepicardium as the cardiac hypoxic niche-based capillary density quantification, and localization of Hif-1α in the uninjured heart. We further demonstrate that this hypoxic microenvironment houses a metabolically distinct population of glycolytic progenitor cells. Finally, we show that Hif-1α regulates the glycolytic phenotype and progenitor properties of these cells. These findings highlight important anatomical and functional properties of the epicardial and subepicardial microenvironment, and the potential role of hypoxia signaling in regulation of cardiac progenitors.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451, 937–942.PubMedCrossRef Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451, 937–942.PubMedCrossRef
3.
Zurück zum Zitat Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B. A., Druid, H., Jovinge, S., & Frisen, J. (2009). Evidence for cardiomyocyte renewal in humans. Science (New York, N.Y.), 324, 98–102.CrossRef Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B. A., Druid, H., Jovinge, S., & Frisen, J. (2009). Evidence for cardiomyocyte renewal in humans. Science (New York, N.Y.), 324, 98–102.CrossRef
4.
Zurück zum Zitat Laflamme, M. A., Myerson, D., Saffitz, J. E., & Murry, C. E. (2002). Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circulation Research, 90, 634–640.PubMedCrossRef Laflamme, M. A., Myerson, D., Saffitz, J. E., & Murry, C. E. (2002). Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circulation Research, 90, 634–640.PubMedCrossRef
5.
Zurück zum Zitat Loffredo, F. S., Steinhauser, M. L., Gannon, J., & Lee, R. T. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell, 8, 389–398.PubMedCrossRef Loffredo, F. S., Steinhauser, M. L., Gannon, J., & Lee, R. T. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell, 8, 389–398.PubMedCrossRef
6.
Zurück zum Zitat Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., Pocius, J., Michael, L. H., Behringer, R. R., Garry, D. J., Entman, M. L., & Schneider, M. D. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.PubMedCrossRef Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., Pocius, J., Michael, L. H., Behringer, R. R., Garry, D. J., Entman, M. L., & Schneider, M. D. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.PubMedCrossRef
7.
Zurück zum Zitat Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., Sano, M., Toko, H., Akazawa, H., Sato, T., Nakaya, H., Kasanuki, H., & Komuro, I. (2004). Adult cardiac sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279, 11384–11391.PubMedCrossRef Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., Sano, M., Toko, H., Akazawa, H., Sato, T., Nakaya, H., Kasanuki, H., & Komuro, I. (2004). Adult cardiac sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279, 11384–11391.PubMedCrossRef
8.
Zurück zum Zitat Barile, L., Messina, E., Giacomello, A., & Marban, E. (2007). Endogenous cardiac stem cells. Progress in Cardiovascular Diseases, 50, 31–48.PubMedCrossRef Barile, L., Messina, E., Giacomello, A., & Marban, E. (2007). Endogenous cardiac stem cells. Progress in Cardiovascular Diseases, 50, 31–48.PubMedCrossRef
9.
Zurück zum Zitat Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.PubMedCrossRef Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.PubMedCrossRef
10.
11.
Zurück zum Zitat Chong, J. J., Chandrakanthan, V., Xaymardan, M., Asli, N. S., Li, J., Ahmed, I., Heffernan, C., Menon, M. K., Scarlett, C. J., Rashidianfar, A., Biben, C., Zoellner, H., Colvin, E. K., Pimanda, J. E., Biankin, A. V., Zhou, B., Pu, W. T., Prall, O. W., & Harvey, R. P. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9, 527–540.PubMedCrossRef Chong, J. J., Chandrakanthan, V., Xaymardan, M., Asli, N. S., Li, J., Ahmed, I., Heffernan, C., Menon, M. K., Scarlett, C. J., Rashidianfar, A., Biben, C., Zoellner, H., Colvin, E. K., Pimanda, J. E., Biankin, A. V., Zhou, B., Pu, W. T., Prall, O. W., & Harvey, R. P. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9, 527–540.PubMedCrossRef
12.
Zurück zum Zitat Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G., & Poss, K. D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 127, 607–619.PubMedCrossRef Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G., & Poss, K. D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 127, 607–619.PubMedCrossRef
13.
Zurück zum Zitat Kikuchi, K., Holdway, J. E., Werdich, A. A., Anderson, R. M., Fang, Y., Egnaczyk, G. F., Evans, T., Macrae, C. A., Stainier, D. Y., & Poss, K. D. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature, 464, 601–605.PubMedCrossRef Kikuchi, K., Holdway, J. E., Werdich, A. A., Anderson, R. M., Fang, Y., Egnaczyk, G. F., Evans, T., Macrae, C. A., Stainier, D. Y., & Poss, K. D. (2010). Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature, 464, 601–605.PubMedCrossRef
14.
Zurück zum Zitat Zhou, B., Honor, L. B., He, H., Ma, Q., Oh, J. H., Butterfield, C., Lin, R. Z., Melero-Martin, J. M., Dolmatova, E., Duffy, H. S., Gise, A., Zhou, P., Hu, Y. W., Wang, G., Zhang, B., Wang, L., Hall, J. L., Moses, M. A., McGowan, F. X., & Pu, W. T. (2011). Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. The Journal of Clinical Investigation, 121, 1894–1904.PubMedCrossRef Zhou, B., Honor, L. B., He, H., Ma, Q., Oh, J. H., Butterfield, C., Lin, R. Z., Melero-Martin, J. M., Dolmatova, E., Duffy, H. S., Gise, A., Zhou, P., Hu, Y. W., Wang, G., Zhang, B., Wang, L., Hall, J. L., Moses, M. A., McGowan, F. X., & Pu, W. T. (2011). Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. The Journal of Clinical Investigation, 121, 1894–1904.PubMedCrossRef
15.
Zurück zum Zitat Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S., Yellon, D., Riegler, J., Price, A. N., Lythgoe, M. F., Pu, W. T., & Riley, P. R. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474, 640–644.PubMedCrossRef Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S., Yellon, D., Riegler, J., Price, A. N., Lythgoe, M. F., Pu, W. T., & Riley, P. R. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474, 640–644.PubMedCrossRef
16.
Zurück zum Zitat Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., Bearzi, C., Boni, A., Bolli, R., Kajstura, J., Anversa, P., & Leri, A. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103, 9226–9231.PubMedCrossRef Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., Bearzi, C., Boni, A., Bolli, R., Kajstura, J., Anversa, P., & Leri, A. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103, 9226–9231.PubMedCrossRef
17.
Zurück zum Zitat Walker, M. R., Patel, K. K., & Stappenbeck, T. S. (2009). The stem cell niche. The Journal of Pathology, 217, 169–180.PubMedCrossRef Walker, M. R., Patel, K. K., & Stappenbeck, T. S. (2009). The stem cell niche. The Journal of Pathology, 217, 169–180.PubMedCrossRef
18.
Zurück zum Zitat Popescu, L. M., Gherghiceanu, M., Manole, C. G., & Faussone-Pellegrini, M. S. (2009). Cardiac renewing: Interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. Journal of Cellular and Molecular Medicine, 13, 866–886.PubMedCrossRef Popescu, L. M., Gherghiceanu, M., Manole, C. G., & Faussone-Pellegrini, M. S. (2009). Cardiac renewing: Interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. Journal of Cellular and Molecular Medicine, 13, 866–886.PubMedCrossRef
19.
Zurück zum Zitat Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., Bearzi, C., Boni, A., Bolli, R., Kajstura, J., Anversa, P., & Leri, A. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103, 9226–9231.PubMedCrossRef Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., Bearzi, C., Boni, A., Bolli, R., Kajstura, J., Anversa, P., & Leri, A. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103, 9226–9231.PubMedCrossRef
20.
Zurück zum Zitat Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132, 598–611.PubMedCrossRef Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132, 598–611.PubMedCrossRef
21.
Zurück zum Zitat Nakada, D., Levi, B. P., & Morrison, S. J. (2011). Integrating physiological regulation with stem cell and tissue homeostasis. Neuron, 70, 703–718.PubMedCrossRef Nakada, D., Levi, B. P., & Morrison, S. J. (2011). Integrating physiological regulation with stem cell and tissue homeostasis. Neuron, 70, 703–718.PubMedCrossRef
22.
Zurück zum Zitat Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R., & Down, J. D. (2007). Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 104, 5431–5436.PubMedCrossRef Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R., & Down, J. D. (2007). Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 104, 5431–5436.PubMedCrossRef
23.
Zurück zum Zitat Mohyeldin, A., Garzon-Muvdi, T., & Quinones-Hinojosa, A. (2010). Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell, 7, 150–161.PubMedCrossRef Mohyeldin, A., Garzon-Muvdi, T., & Quinones-Hinojosa, A. (2010). Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell, 7, 150–161.PubMedCrossRef
24.
Zurück zum Zitat Simsek, T., Kocabas, F., Zheng, J., Deberardinis, R. J., Mahmoud, A. I., Olson, E. N., et al. (2010). The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 7, 380–390.PubMedCrossRef Simsek, T., Kocabas, F., Zheng, J., Deberardinis, R. J., Mahmoud, A. I., Olson, E. N., et al. (2010). The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 7, 380–390.PubMedCrossRef
25.
Zurück zum Zitat Cai, C. L., Martin, J. C., Sun, Y., Cui, L., Wang, L., Ouyang, K., Yang, L., Bu, L., Liang, X., Zhang, X., Stallcup, W. B., Denton, C. P., McCulloch, A., Chen, J., & Evans, S. M. (2008). A myocardial lineage derives from Tbx18 epicardial cells. Nature, 454, 104–108.PubMedCrossRef Cai, C. L., Martin, J. C., Sun, Y., Cui, L., Wang, L., Ouyang, K., Yang, L., Bu, L., Liang, X., Zhang, X., Stallcup, W. B., Denton, C. P., McCulloch, A., Chen, J., & Evans, S. M. (2008). A myocardial lineage derives from Tbx18 epicardial cells. Nature, 454, 104–108.PubMedCrossRef
26.
Zurück zum Zitat Smart, N., Risebro, C. A., Melville, A. A., Moses, K., Schwartz, R. J., Chien, K. R., & Riley, P. R. (2007). Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature, 445, 177–182.PubMedCrossRef Smart, N., Risebro, C. A., Melville, A. A., Moses, K., Schwartz, R. J., Chien, K. R., & Riley, P. R. (2007). Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature, 445, 177–182.PubMedCrossRef
27.
Zurück zum Zitat Olivey, H. E., & Svensson, E. C. (2010). Epicardial-myocardial signaling directing coronary vasculogenesis. Circulation Research, 106, 818–832.PubMedCrossRef Olivey, H. E., & Svensson, E. C. (2010). Epicardial-myocardial signaling directing coronary vasculogenesis. Circulation Research, 106, 818–832.PubMedCrossRef
28.
Zurück zum Zitat Limana, F., Zacheo, A., Mocini, D., Mangoni, A., Borsellino, G., Diamantini, A., De Mori, R., Battistini, L., Vigna, E., Santini, M., Loiaconi, V., Pompilio, G., Germani, A., & Capogrossi, M. C. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101, 1255–1265.PubMedCrossRef Limana, F., Zacheo, A., Mocini, D., Mangoni, A., Borsellino, G., Diamantini, A., De Mori, R., Battistini, L., Vigna, E., Santini, M., Loiaconi, V., Pompilio, G., Germani, A., & Capogrossi, M. C. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101, 1255–1265.PubMedCrossRef
29.
Zurück zum Zitat Zhou, B., Honor, L. B., He, H., Ma, Q., Oh, J. H., Butterfield, C., Lin, R. Z., Melero-Martin, J. M., Dolmatova, E., Duffy, H. S., Gise, A., Zhou, P., Hu, Y. W., Wang, G., Zhang, B., Wang, L., Hall, J. L., Moses, M. A., McGowan, F. X., & Pu, W. T. (2011). Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. The Journal of Clinical Investigation, 121, 1894–1904.PubMedCrossRef Zhou, B., Honor, L. B., He, H., Ma, Q., Oh, J. H., Butterfield, C., Lin, R. Z., Melero-Martin, J. M., Dolmatova, E., Duffy, H. S., Gise, A., Zhou, P., Hu, Y. W., Wang, G., Zhang, B., Wang, L., Hall, J. L., Moses, M. A., McGowan, F. X., & Pu, W. T. (2011). Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. The Journal of Clinical Investigation, 121, 1894–1904.PubMedCrossRef
30.
Zurück zum Zitat Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174, 221–232.PubMedCrossRef Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174, 221–232.PubMedCrossRef
31.
Zurück zum Zitat Dettman, R. W., Denetclaw, W., Jr., Ordahl, C. P., & Bristow, J. (1998). Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Developmental Biology, 193, 169–181.PubMedCrossRef Dettman, R. W., Denetclaw, W., Jr., Ordahl, C. P., & Bristow, J. (1998). Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Developmental Biology, 193, 169–181.PubMedCrossRef
32.
Zurück zum Zitat Reimer, K. A., Lowe, J. E., Rasmussen, M. M., & Jennings, R. B. (1977). The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation, 56, 786–794.PubMedCrossRef Reimer, K. A., Lowe, J. E., Rasmussen, M. M., & Jennings, R. B. (1977). The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation, 56, 786–794.PubMedCrossRef
33.
Zurück zum Zitat Semenza, G. L. (2007). Hypoxia-inducible factor 1 (HIF-1) pathway. Science's STKE, 2007, cm8.PubMedCrossRef Semenza, G. L. (2007). Hypoxia-inducible factor 1 (HIF-1) pathway. Science's STKE, 2007, cm8.PubMedCrossRef
34.
Zurück zum Zitat Qi, J., Nakayama, K., Gaitonde, S., Goydos, J. S., Krajewski, S., Eroshkin, A., Bar-Sagi, D., Bowtell, D., & Ronai, Z. (2008). The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 105, 16713–16718.PubMedCrossRef Qi, J., Nakayama, K., Gaitonde, S., Goydos, J. S., Krajewski, S., Eroshkin, A., Bar-Sagi, D., Bowtell, D., & Ronai, Z. (2008). The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 105, 16713–16718.PubMedCrossRef
35.
Zurück zum Zitat Nakayama, K., Frew, I. J., Hagensen, M., Skals, M., Habelhah, H., Bhoumik, A., Kadoya, T., Erdjument-Bromage, H., Tempst, P., Frappell, P. B., Bowtell, D. D., & Ronai, Z. (2004). Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell, 117, 941–952.PubMedCrossRef Nakayama, K., Frew, I. J., Hagensen, M., Skals, M., Habelhah, H., Bhoumik, A., Kadoya, T., Erdjument-Bromage, H., Tempst, P., Frappell, P. B., Bowtell, D. D., & Ronai, Z. (2004). Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell, 117, 941–952.PubMedCrossRef
36.
Zurück zum Zitat Li, Z., Wang, D., Messing, E. M., & Wu, G. (2005). VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Reports, 6, 373–378.PubMedCrossRef Li, Z., Wang, D., Messing, E. M., & Wu, G. (2005). VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Reports, 6, 373–378.PubMedCrossRef
37.
Zurück zum Zitat Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., & Ratcliffe, P. J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271–275.PubMedCrossRef Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R., & Ratcliffe, P. J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271–275.PubMedCrossRef
38.
Zurück zum Zitat Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R. C., & Conaway, J. W. (2000). Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proceedings of the National Academy of Sciences of the United States of America, 97, 10430–10435.PubMedCrossRef Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R. C., & Conaway, J. W. (2000). Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proceedings of the National Academy of Sciences of the United States of America, 97, 10430–10435.PubMedCrossRef
39.
Zurück zum Zitat Hagg, M., & Wennstrom, S. (2005). Activation of hypoxia-induced transcription in normoxia. Experimental Cell Research, 306, 180–191.PubMedCrossRef Hagg, M., & Wennstrom, S. (2005). Activation of hypoxia-induced transcription in normoxia. Experimental Cell Research, 306, 180–191.PubMedCrossRef
40.
Zurück zum Zitat Maxwell, P. J., Gallagher, R., Seaton, A., Wilson, C., Scullin, P., Pettigrew, J., Stratford, I. J., Williams, K. J., Johnston, P. G., & Waugh, D. J. (2007). HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene, 26, 7333–7345.PubMedCrossRef Maxwell, P. J., Gallagher, R., Seaton, A., Wilson, C., Scullin, P., Pettigrew, J., Stratford, I. J., Williams, K. J., Johnston, P. G., & Waugh, D. J. (2007). HIF-1 and NF-kappaB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene, 26, 7333–7345.PubMedCrossRef
41.
Zurück zum Zitat Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., Giacomello, A., Abraham, M. R., & Marban, E. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896–908.PubMedCrossRef Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., Giacomello, A., Abraham, M. R., & Marban, E. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896–908.PubMedCrossRef
42.
Zurück zum Zitat Zhou, B., Ma, Q., Rajagopal, S., Wu, S. M., Domian, I., Rivera-Feliciano, J., Jiang, D., von Gise, A., Ikeda, S., Chien, K. R., & Pu, W. T. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454, 109–113.PubMedCrossRef Zhou, B., Ma, Q., Rajagopal, S., Wu, S. M., Domian, I., Rivera-Feliciano, J., Jiang, D., von Gise, A., Ikeda, S., Chien, K. R., & Pu, W. T. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454, 109–113.PubMedCrossRef
43.
Zurück zum Zitat Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., & Anversa, P. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.PubMedCrossRef Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., & Anversa, P. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.PubMedCrossRef
44.
Zurück zum Zitat Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L. Z., Cai, C. L., Lu, M. M., Reth, M., Platoshyn, O., Yuan, J. X., Evans, S., & Chien, K. R. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.PubMedCrossRef Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L. Z., Cai, C. L., Lu, M. M., Reth, M., Platoshyn, O., Yuan, J. X., Evans, S., & Chien, K. R. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.PubMedCrossRef
45.
Zurück zum Zitat Martin-Puig, S., Wang, Z., & Chien, K. R. (2008). Lives of a heart cell: Tracing the origins of cardiac progenitors. Cell Stem Cell, 2, 320–331.PubMedCrossRef Martin-Puig, S., Wang, Z., & Chien, K. R. (2008). Lives of a heart cell: Tracing the origins of cardiac progenitors. Cell Stem Cell, 2, 320–331.PubMedCrossRef
46.
Zurück zum Zitat Martin, C. M., Ferdous, A., Gallardo, T., Humphries, C., Sadek, H., Caprioli, A., Garcia, J. A., Szweda, L. I., Garry, M. G., & Garry, D. J. (2008). Hypoxia-inducible factor-2alpha transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circulation Research, 102, 1075–1081.PubMedCrossRef Martin, C. M., Ferdous, A., Gallardo, T., Humphries, C., Sadek, H., Caprioli, A., Garcia, J. A., Szweda, L. I., Garry, M. G., & Garry, D. J. (2008). Hypoxia-inducible factor-2alpha transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circulation Research, 102, 1075–1081.PubMedCrossRef
47.
Zurück zum Zitat Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., Goetsch, S. C., Gallardo, T. D., & Garry, D. J. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265, 262–275.PubMedCrossRef Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., Goetsch, S. C., Gallardo, T. D., & Garry, D. J. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265, 262–275.PubMedCrossRef
48.
Zurück zum Zitat Zhang, C. C., & Lodish, H. F. (2005). Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood, 105, 4314–4320.PubMedCrossRef Zhang, C. C., & Lodish, H. F. (2005). Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood, 105, 4314–4320.PubMedCrossRef
49.
Zurück zum Zitat O'Connell, T. D., Rodrigo, M. C., & Simpson, P. C. (2007). Isolation and culture of adult mouse cardiac myocytes. Methods in Molecular Biology, 357, 271–296.PubMed O'Connell, T. D., Rodrigo, M. C., & Simpson, P. C. (2007). Isolation and culture of adult mouse cardiac myocytes. Methods in Molecular Biology, 357, 271–296.PubMed
50.
Zurück zum Zitat Arminan, A., Gandia, C., Garcia-Verdugo, J. M., Lledo, E., Mullor, J. L., Montero, J. A., & Sepulveda, P. (2010). Cardiac transcription factors driven lineage-specification of adult stem cells. Journal of Cardiovascular Translational Research, 3, 61–65.PubMedCrossRef Arminan, A., Gandia, C., Garcia-Verdugo, J. M., Lledo, E., Mullor, J. L., Montero, J. A., & Sepulveda, P. (2010). Cardiac transcription factors driven lineage-specification of adult stem cells. Journal of Cardiovascular Translational Research, 3, 61–65.PubMedCrossRef
51.
Zurück zum Zitat Qian, Q., Qian, H., Zhang, X., Zhu, W., Yan, Y., Ye, S., et al. (2012). 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells and Development, 21, 67–75.PubMedCrossRef Qian, Q., Qian, H., Zhang, X., Zhu, W., Yan, Y., Ye, S., et al. (2012). 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells and Development, 21, 67–75.PubMedCrossRef
Metadaten
Titel
The Hypoxic Epicardial and Subepicardial Microenvironment
verfasst von
Fatih Kocabas
Ahmed I. Mahmoud
Drazen Sosic
Enzo R. Porrello
Rui Chen
Joseph A. Garcia
Ralph J. DeBerardinis
Hesham A. Sadek
Publikationsdatum
01.10.2012
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 5/2012
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9366-7

Weitere Artikel der Ausgabe 5/2012

Journal of Cardiovascular Translational Research 5/2012 Zur Ausgabe

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Chronisches Koronarsyndrom: Gefahr von Hospitalisierung wegen Herzinsuffizienz

06.05.2024 Herzinsuffizienz Nachrichten

Obwohl ein rezidivierender Herzinfarkt bei chronischem Koronarsyndrom wahrscheinlich die Hauptsorge sowohl der Patienten als auch der Ärzte ist, sind andere Ereignisse womöglich gefährlicher. Laut einer französischen Studie stellt eine Hospitalisation wegen Herzinsuffizienz eine größere Gefahr dar.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

VHF-Ablation nützt wohl nur bei reduzierter Auswurfleistung

02.05.2024 Ablationstherapie Nachrichten

Ob die Katheterablation von Vorhofflimmern bei Patienten mit Herzinsuffizienz die Komplikationsraten senkt, scheint davon abzuhängen, ob die Auswurfleistung erhalten ist oder nicht. Das legen die Ergebnisse einer Metaanalyse nahe.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.