Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 9/2015

01.12.2015

Panax Notoginseng Saponins Ameliorates Coxsackievirus B3-Induced Myocarditis by Activating the Cystathionine-γ-Lyase/Hydrogen Sulfide Pathway

verfasst von: Lulu Pan, Yuanhai Zhang, Jiacheng Lu, Zhimin Geng, Lianhong Jia, Xing Rong, Zhenquan Wang, Qifeng Zhao, Rongzhou Wu, Maoping Chu, Chunxiang Zhang

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 9/2015

Einloggen, um Zugang zu erhalten

Abstract

This study is to determine the therapeutic effects of Panax notoginseng saponins (PNSs) on coxsackievirus B3 (CVB3)-induced myocarditis, and whether cystathionine-γ-lyase (CSE)/hydrogen sulfide (H2S) pathway is involved. Mouse model of myocarditis was induced by CVB3 infection, and the mice were subjected to vehicle (saline) or drug treatments (sodium bisulfide (NaHS), propargylglycine (PAG), or PNSs). The results showed that there were inflammatory cell infiltrations, interstitial edemas, and elevated inflammatory cytokines, in CVB3-induced myocarditis. PAG administration increased, whereas NaHS treatment decreased the severity of the myocarditis. PNS treatment dramatically alleviated these myocardial injuries and decreased the viral messenger RNA (mRNA) expression by the enhanced expression of CSE/H2S pathway. Moreover, the therapeutic effects of PNSs on myocarditis were stronger than those of NaHS. Finally, the effect of PNSs on CSE/H2S pathway and cardiac cell protection were verified in cultured cardiac cells. PNSs may be a promising medication for viral myocarditis therapy.
Literatur
1.
Zurück zum Zitat Maisch, B., & Pankuweit, S. (2012). Current treatment options in (peri)myocarditis and inflammatory cardiomyopathy. Herz, 37, 644–656.CrossRefPubMed Maisch, B., & Pankuweit, S. (2012). Current treatment options in (peri)myocarditis and inflammatory cardiomyopathy. Herz, 37, 644–656.CrossRefPubMed
2.
Zurück zum Zitat Hendry, R. G., Bilawchuk, L. M., & Marchant, D. J. (2014). Targeting matrix metalloproteinase activity and expression for the treatment of viral myocarditis. Journal of Cardiovascular Translational Research, 7, 212–225.CrossRefPubMed Hendry, R. G., Bilawchuk, L. M., & Marchant, D. J. (2014). Targeting matrix metalloproteinase activity and expression for the treatment of viral myocarditis. Journal of Cardiovascular Translational Research, 7, 212–225.CrossRefPubMed
3.
Zurück zum Zitat Mody, K. P., Takayama, H., Landes, E., Yuzefpolskaya, M., Colombo, P. C., Naka, Y., Jorde, U. P., & Uriel, N. (2014). Acute mechanical circulatory support for fulminant myocarditis complicated by cardiogenic shock. Journal of Cardiovascular Translational Research, 7, 156–164.CrossRefPubMed Mody, K. P., Takayama, H., Landes, E., Yuzefpolskaya, M., Colombo, P. C., Naka, Y., Jorde, U. P., & Uriel, N. (2014). Acute mechanical circulatory support for fulminant myocarditis complicated by cardiogenic shock. Journal of Cardiovascular Translational Research, 7, 156–164.CrossRefPubMed
4.
Zurück zum Zitat Massilamany, C., Huber, S. A., Cunningham, M. W., & Reddy, J. (2014). Relevance of molecular mimicry in the mediation of infectious myocarditis. Journal of Cardiovascular Translational Research, 7, 165–171.PubMedCentralCrossRefPubMed Massilamany, C., Huber, S. A., Cunningham, M. W., & Reddy, J. (2014). Relevance of molecular mimicry in the mediation of infectious myocarditis. Journal of Cardiovascular Translational Research, 7, 165–171.PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Koenig, A., Sateriale, A., Budd, R. C., Huber, S. A., & Buskiewicz, I. A. (2014). The role of sex differences in autophagy in the heart during coxsackievirus B3-induced myocarditis. Journal of Cardiovascular Translational Research, 7, 182–191.PubMedCentralCrossRefPubMed Koenig, A., Sateriale, A., Budd, R. C., Huber, S. A., & Buskiewicz, I. A. (2014). The role of sex differences in autophagy in the heart during coxsackievirus B3-induced myocarditis. Journal of Cardiovascular Translational Research, 7, 182–191.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Antoniak, S., & Mackman, N. (2014). Coagulation, protease-activated receptors, and viral myocarditis. Journal of Cardiovascular Translational Research, 7, 203–211.PubMedCentralCrossRefPubMed Antoniak, S., & Mackman, N. (2014). Coagulation, protease-activated receptors, and viral myocarditis. Journal of Cardiovascular Translational Research, 7, 203–211.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Cheng, D., Zhu, C., Cao, J., & Jiang, W. (2012). The protective effects of polyphenols from jujube peel (Ziziphus Jujube Mill) on isoproterenol-induced myocardial ischemia and aluminum-induced oxidative damage in rats. Food and Chemical Toxicology, 50, 1302–1308.CrossRefPubMed Cheng, D., Zhu, C., Cao, J., & Jiang, W. (2012). The protective effects of polyphenols from jujube peel (Ziziphus Jujube Mill) on isoproterenol-induced myocardial ischemia and aluminum-induced oxidative damage in rats. Food and Chemical Toxicology, 50, 1302–1308.CrossRefPubMed
8.
Zurück zum Zitat Elsey, D. J., Fowkes, R. C., & Baxter, G. F. (2010). L-cysteine stimulates hydrogen sulfide synthesis in myocardium associated with attenuation of ischemia-reperfusion injury. Journal of Cardiovascular Pharmacology and Therapeutics, 15, 53–59.CrossRefPubMed Elsey, D. J., Fowkes, R. C., & Baxter, G. F. (2010). L-cysteine stimulates hydrogen sulfide synthesis in myocardium associated with attenuation of ischemia-reperfusion injury. Journal of Cardiovascular Pharmacology and Therapeutics, 15, 53–59.CrossRefPubMed
9.
Zurück zum Zitat Geng, B., Yang, J., Qi, Y., Zhao, J., Pang, Y., Du, J., & Tang, C. (2004). H2S generated by heart in rat and its effects on cardiac function. Biochemical and Biophysical Research Communications, 313, 362–368.CrossRefPubMed Geng, B., Yang, J., Qi, Y., Zhao, J., Pang, Y., Du, J., & Tang, C. (2004). H2S generated by heart in rat and its effects on cardiac function. Biochemical and Biophysical Research Communications, 313, 362–368.CrossRefPubMed
10.
Zurück zum Zitat Xie, Y. H., Zhang, N., Li, L. F., Zhang, Q. Z., Xie, L. J., Jiang, H., Li, L. P., Hao, N., & Zhang, J. X. (2014). Hydrogen sulfide reduces regional myocardial ischemia injury through protection of mitochondrial function. Molecular Medicine Reports, 10, 1907–1914.PubMed Xie, Y. H., Zhang, N., Li, L. F., Zhang, Q. Z., Xie, L. J., Jiang, H., Li, L. P., Hao, N., & Zhang, J. X. (2014). Hydrogen sulfide reduces regional myocardial ischemia injury through protection of mitochondrial function. Molecular Medicine Reports, 10, 1907–1914.PubMed
11.
Zurück zum Zitat Chang, L., Geng, B., Yu, F., Zhao, J., Jiang, H., Du, J., & Tang, C. (2008). Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids, 34, 573–585.CrossRefPubMed Chang, L., Geng, B., Yu, F., Zhao, J., Jiang, H., Du, J., & Tang, C. (2008). Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids, 34, 573–585.CrossRefPubMed
12.
Zurück zum Zitat Wu, Z., Peng, H., Du, Q., Lin, W., & Liu, Y. (2015). GYY4137, a hydrogen sulfide-releasing molecule, inhibits the inflammatory response by suppressing the activation of nuclear factor-kappa B and mitogen-activated protein kinases in Coxsackie virus B3-infected rat cardiomyocytes. Molecular Medicine Reports, 11, 1837–1844.PubMed Wu, Z., Peng, H., Du, Q., Lin, W., & Liu, Y. (2015). GYY4137, a hydrogen sulfide-releasing molecule, inhibits the inflammatory response by suppressing the activation of nuclear factor-kappa B and mitogen-activated protein kinases in Coxsackie virus B3-infected rat cardiomyocytes. Molecular Medicine Reports, 11, 1837–1844.PubMed
13.
Zurück zum Zitat Ng, T. B. (2006). Pharmacological activity of sanchi ginseng (Panax notoginseng). Journal of Pharmacy and Pharmacology, 58, 1007–1019.CrossRefPubMed Ng, T. B. (2006). Pharmacological activity of sanchi ginseng (Panax notoginseng). Journal of Pharmacy and Pharmacology, 58, 1007–1019.CrossRefPubMed
14.
Zurück zum Zitat Fan, J. S., Liu, D. N., Huang, G., Xu, Z. Z., Jia, Y., Zhang, H. G., Li, X. H., & He, F. T. (2012). Panax notoginseng saponins attenuate atherosclerosis via reciprocal regulation of lipid metabolism and inflammation by inducing liver X receptor alpha expression. Journal of Ethnopharmacology, 142(3), 732–8.CrossRefPubMed Fan, J. S., Liu, D. N., Huang, G., Xu, Z. Z., Jia, Y., Zhang, H. G., Li, X. H., & He, F. T. (2012). Panax notoginseng saponins attenuate atherosclerosis via reciprocal regulation of lipid metabolism and inflammation by inducing liver X receptor alpha expression. Journal of Ethnopharmacology, 142(3), 732–8.CrossRefPubMed
15.
Zurück zum Zitat Chen, S., Liu, J., Liu, X., Fu, Y., Zhang, M., Lin, Q., Zhu, J., Mai, L., Shan, Z., Yu, X., Yang, M., & Lin, S. (2011). Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes. Journal of Ethnopharmacology, 137, 263–270.CrossRefPubMed Chen, S., Liu, J., Liu, X., Fu, Y., Zhang, M., Lin, Q., Zhu, J., Mai, L., Shan, Z., Yu, X., Yang, M., & Lin, S. (2011). Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes. Journal of Ethnopharmacology, 137, 263–270.CrossRefPubMed
16.
Zurück zum Zitat Yang, Q., Wang, X., Cui, J., Wang, P., Xiong, M., Jia, C., Liu, L., Ning, B., Li, L., Wang, W., Chen, Y., & Zhang, T. (2014). Bidirectional regulation of angiogenesis and miR-18a expression by PNS in the mouse model of tumor complicated by myocardial ischemia. BMC Complementary and Alternative Medicine, 14, 183.PubMedCentralCrossRefPubMed Yang, Q., Wang, X., Cui, J., Wang, P., Xiong, M., Jia, C., Liu, L., Ning, B., Li, L., Wang, W., Chen, Y., & Zhang, T. (2014). Bidirectional regulation of angiogenesis and miR-18a expression by PNS in the mouse model of tumor complicated by myocardial ischemia. BMC Complementary and Alternative Medicine, 14, 183.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., Wang, D., Krall, T. J., Delphin, E. S., & Zhang, C. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284, 29514–29525.PubMedCentralCrossRefPubMed Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., Wang, D., Krall, T. J., Delphin, E. S., & Zhang, C. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284, 29514–29525.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Ding, R. B., Tian, K., Cao, Y. W., Bao, J. L., Wang, M., He, C., Hu, Y., Su, H., & Wan, J. B. (2015). Protective effect of panax notoginseng saponins on acute ethanol-induced liver injury is associated with ameliorating hepatic lipid accumulation and reducing ethanol-mediated oxidative stress. Journal of Agricultural and Food Chemistry, 63, 2413–2422.CrossRefPubMed Ding, R. B., Tian, K., Cao, Y. W., Bao, J. L., Wang, M., He, C., Hu, Y., Su, H., & Wan, J. B. (2015). Protective effect of panax notoginseng saponins on acute ethanol-induced liver injury is associated with ameliorating hepatic lipid accumulation and reducing ethanol-mediated oxidative stress. Journal of Agricultural and Food Chemistry, 63, 2413–2422.CrossRefPubMed
19.
Zurück zum Zitat Kong, Q., Xue, Y., Wu, W., Yang, F., Liu, Y., Gao, M., Lai, W., & Pan, X. (2013). IL-22 exacerbates the severity of CVB3-induced acute viral myocarditis in IL-17A-deficient mice. Molecular Medicine Reports, 7, 1329–1335.PubMed Kong, Q., Xue, Y., Wu, W., Yang, F., Liu, Y., Gao, M., Lai, W., & Pan, X. (2013). IL-22 exacerbates the severity of CVB3-induced acute viral myocarditis in IL-17A-deficient mice. Molecular Medicine Reports, 7, 1329–1335.PubMed
20.
Zurück zum Zitat Tang-Feldman, Y. J., Lochhead, S. R., Lochhead, G. R., Yu, C., George, M., Villablanca, A. C., & Pomeroy, C. (2013). Murine cytomegalovirus (MCMV) infection upregulates P38 MAP kinase in aortas of Apo E KO mice: a molecular mechanism for MCMV-induced acceleration of atherosclerosis. Journal of Cardiovascular Translational Research, 6, 54–64.PubMedCentralCrossRefPubMed Tang-Feldman, Y. J., Lochhead, S. R., Lochhead, G. R., Yu, C., George, M., Villablanca, A. C., & Pomeroy, C. (2013). Murine cytomegalovirus (MCMV) infection upregulates P38 MAP kinase in aortas of Apo E KO mice: a molecular mechanism for MCMV-induced acceleration of atherosclerosis. Journal of Cardiovascular Translational Research, 6, 54–64.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Kirvan, C. A., Galvin, J. E., Hilt, S., Kosanke, S., & Cunningham, M. W. (2014). Identification of streptococcal m-protein cardiopathogenic epitopes in experimental autoimmune valvulitis. Journal of Cardiovascular Translational Research, 7, 172–181.PubMedCentralCrossRefPubMed Kirvan, C. A., Galvin, J. E., Hilt, S., Kosanke, S., & Cunningham, M. W. (2014). Identification of streptococcal m-protein cardiopathogenic epitopes in experimental autoimmune valvulitis. Journal of Cardiovascular Translational Research, 7, 172–181.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Seong, I. W., Choe, S. C., & Jeon, E. S. (2001). Fulminant coxsackieviral myocarditis. New England Journal of Medicine, 345, 379.CrossRefPubMed Seong, I. W., Choe, S. C., & Jeon, E. S. (2001). Fulminant coxsackieviral myocarditis. New England Journal of Medicine, 345, 379.CrossRefPubMed
23.
Zurück zum Zitat Wallace, J. L., Caliendo, G., Santagada, V., Cirino, G., & Fiorucci, S. (2007). Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology, 132, 261–271.CrossRefPubMed Wallace, J. L., Caliendo, G., Santagada, V., Cirino, G., & Fiorucci, S. (2007). Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology, 132, 261–271.CrossRefPubMed
24.
Zurück zum Zitat Wallace, J. L., Caliendo, G., Santagada, V., & Cirino, G. (2010). Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). British Journal of Pharmacology, 159, 1236–1246.PubMedCentralCrossRefPubMed Wallace, J. L., Caliendo, G., Santagada, V., & Cirino, G. (2010). Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). British Journal of Pharmacology, 159, 1236–1246.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Wang, R. (2010). Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxidants & Redox Signaling, 12, 1061–1064.CrossRef Wang, R. (2010). Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxidants & Redox Signaling, 12, 1061–1064.CrossRef
26.
Zurück zum Zitat Wang, M. J., Cai, W. J., & Zhu, Y. C. (2010). Mechanisms of angiogenesis: role of hydrogen sulphide. Clinical and Experimental Pharmacology and Physiology, 37, 764–771.CrossRefPubMed Wang, M. J., Cai, W. J., & Zhu, Y. C. (2010). Mechanisms of angiogenesis: role of hydrogen sulphide. Clinical and Experimental Pharmacology and Physiology, 37, 764–771.CrossRefPubMed
27.
Zurück zum Zitat Zhang, Y., Tang, Z. H., Ren, Z., Qu, S. L., Liu, M. H., Liu, L. S., & Jiang, Z. S. (2013). Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Molecular and Cellular Biology, 33, 1104–1113.PubMedCentralCrossRefPubMed Zhang, Y., Tang, Z. H., Ren, Z., Qu, S. L., Liu, M. H., Liu, L. S., & Jiang, Z. S. (2013). Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Molecular and Cellular Biology, 33, 1104–1113.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Faller, S., Ryter, S. W., Choi, A. M., Loop, T., Schmidt, R., & Hoetzel, A. (2010). Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology, 113, 104–115.CrossRefPubMed Faller, S., Ryter, S. W., Choi, A. M., Loop, T., Schmidt, R., & Hoetzel, A. (2010). Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology, 113, 104–115.CrossRefPubMed
29.
30.
Zurück zum Zitat Kimura, H. (2011). Hydrogen sulfide: its production, release and functions. Amino Acids, 41, 113–121.CrossRefPubMed Kimura, H. (2011). Hydrogen sulfide: its production, release and functions. Amino Acids, 41, 113–121.CrossRefPubMed
31.
Zurück zum Zitat Kimura, H. (2014). Production and physiological effects of hydrogen sulfide. Antioxidants & Redox Signaling, 20, 783–793.CrossRef Kimura, H. (2014). Production and physiological effects of hydrogen sulfide. Antioxidants & Redox Signaling, 20, 783–793.CrossRef
32.
Zurück zum Zitat Lavu, M., Bhushan, S., & Lefer, D. J. (2011). Hydrogen sulfide-mediated cardioprotection: mechanisms and therapeutic potential. Clinical Science (London), 120, 219–229.CrossRef Lavu, M., Bhushan, S., & Lefer, D. J. (2011). Hydrogen sulfide-mediated cardioprotection: mechanisms and therapeutic potential. Clinical Science (London), 120, 219–229.CrossRef
33.
Zurück zum Zitat Fox, B., Schantz, J. T., Haigh, R., Wood, M. E., Moore, P. K., Viner, N., Spencer, J. P., Winyard, P. G., & Whiteman, M. (2012). Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? Journal of Cellular and Molecular Medicine, 16, 896–910.PubMedCentralCrossRefPubMed Fox, B., Schantz, J. T., Haigh, R., Wood, M. E., Moore, P. K., Viner, N., Spencer, J. P., Winyard, P. G., & Whiteman, M. (2012). Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? Journal of Cellular and Molecular Medicine, 16, 896–910.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Mustafa, A. K., Mu, W., Zhang, S., Snyder, S. H., & Wang, R. (2008). H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science, 322, 587–590.PubMedCentralCrossRefPubMed Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Mustafa, A. K., Mu, W., Zhang, S., Snyder, S. H., & Wang, R. (2008). H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science, 322, 587–590.PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Hsieh, Y. S., Kuo, W. H., Lin, T. W., Chang, H. R., Lin, T. H., Chen, P. N., & Chu, S. C. (2007). Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. Journal of Agricultural and Food Chemistry, 55, 10437–10445.CrossRefPubMed Hsieh, Y. S., Kuo, W. H., Lin, T. W., Chang, H. R., Lin, T. H., Chen, P. N., & Chu, S. C. (2007). Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. Journal of Agricultural and Food Chemistry, 55, 10437–10445.CrossRefPubMed
36.
Zurück zum Zitat Zhu, X., Tang, Z., Cong, B., Du, J., Wang, C., Wang, L., Ni, X., & Lu, J. (2013). Estrogens increase cystathionine-gamma-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. Menopause, 20, 1084–1091.CrossRefPubMed Zhu, X., Tang, Z., Cong, B., Du, J., Wang, C., Wang, L., Ni, X., & Lu, J. (2013). Estrogens increase cystathionine-gamma-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. Menopause, 20, 1084–1091.CrossRefPubMed
37.
Zurück zum Zitat Sen, U., Givvimani, S., Abe, O. A., Lederer, E. D., & Tyagi, S. C. (2011). Cystathionine beta-synthase and cystathionine gamma-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. American Journal of Physiology - Cellular Physiology, 300, C155–163.CrossRef Sen, U., Givvimani, S., Abe, O. A., Lederer, E. D., & Tyagi, S. C. (2011). Cystathionine beta-synthase and cystathionine gamma-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. American Journal of Physiology - Cellular Physiology, 300, C155–163.CrossRef
38.
Zurück zum Zitat Jackson-Weaver, O., Paredes, D. A., Gonzalez Bosc, L. V., Walker, B. R., & Kanagy, N. L. (2011). Intermittent hypoxia in rats increases myogenic tone through loss of hydrogen sulfide activation of large-conductance Ca(2+)-activated potassium channels. Circulation Research, 108, 1439–1447.PubMedCentralCrossRefPubMed Jackson-Weaver, O., Paredes, D. A., Gonzalez Bosc, L. V., Walker, B. R., & Kanagy, N. L. (2011). Intermittent hypoxia in rats increases myogenic tone through loss of hydrogen sulfide activation of large-conductance Ca(2+)-activated potassium channels. Circulation Research, 108, 1439–1447.PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Hua, W., Chen, Q., Gong, F., Xie, C., Zhou, S., & Gao, L. (2013). Cardioprotection of H2S by downregulating iNOS and upregulating HO-1 expression in mice with CVB3-induced myocarditis. Life Sciences, 93, 949–954.CrossRefPubMed Hua, W., Chen, Q., Gong, F., Xie, C., Zhou, S., & Gao, L. (2013). Cardioprotection of H2S by downregulating iNOS and upregulating HO-1 expression in mice with CVB3-induced myocarditis. Life Sciences, 93, 949–954.CrossRefPubMed
40.
Zurück zum Zitat Luo, H., Yanagawa, B., Zhang, J., Luo, Z., Zhang, M., Esfandiarei, M., Carthy, C., Wilson, J. E., Yang, D., & McManus, B. M. (2002). Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. Journal of Virology, 76, 3365–3373.PubMedCentralCrossRefPubMed Luo, H., Yanagawa, B., Zhang, J., Luo, Z., Zhang, M., Esfandiarei, M., Carthy, C., Wilson, J. E., Yang, D., & McManus, B. M. (2002). Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. Journal of Virology, 76, 3365–3373.PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Esfandiarei, M., Luo, H., Yanagawa, B., Suarez, A., Dabiri, D., Zhang, J. H., & McManus, B. M. (2004). Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. Journal of Virology, 78, 4289–4298.PubMedCentralCrossRefPubMed Esfandiarei, M., Luo, H., Yanagawa, B., Suarez, A., Dabiri, D., Zhang, J. H., & McManus, B. M. (2004). Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. Journal of Virology, 78, 4289–4298.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Xu, L., Liu, J. T., Liu, N., Lu, P. P., & Pang, X. M. (2011). Effects of Panax notoginseng saponins on proliferation and apoptosis of vascular smooth muscle cells. Journal of Ethnopharmacology, 137, 226–230.CrossRefPubMed Xu, L., Liu, J. T., Liu, N., Lu, P. P., & Pang, X. M. (2011). Effects of Panax notoginseng saponins on proliferation and apoptosis of vascular smooth muscle cells. Journal of Ethnopharmacology, 137, 226–230.CrossRefPubMed
43.
Zurück zum Zitat Yuan, Z., Liao, Y., Tian, G., Li, H., Jia, Y., Zhang, H., Tan, Z., Li, X., Deng, W., Liu, K., & Zhang, Y. (2011). Panax notoginseng saponins inhibit Zymosan A induced atherosclerosis by suppressing integrin expression, FAK activation and NF-kappaB translocation. Journal of Ethnopharmacology, 138, 150–155.CrossRefPubMed Yuan, Z., Liao, Y., Tian, G., Li, H., Jia, Y., Zhang, H., Tan, Z., Li, X., Deng, W., Liu, K., & Zhang, Y. (2011). Panax notoginseng saponins inhibit Zymosan A induced atherosclerosis by suppressing integrin expression, FAK activation and NF-kappaB translocation. Journal of Ethnopharmacology, 138, 150–155.CrossRefPubMed
44.
Zurück zum Zitat Dou, L., Lu, Y., Shen, T., Huang, X., Man, Y., Wang, S., & Li, J. (2012). Panax notogingseng saponins suppress RAGE/MAPK signaling and NF-kappaB activation in apolipoprotein-E-deficient atherosclerosis-prone mice. Cellular Physiology and Biochemistry, 29, 875–882.CrossRefPubMed Dou, L., Lu, Y., Shen, T., Huang, X., Man, Y., Wang, S., & Li, J. (2012). Panax notogingseng saponins suppress RAGE/MAPK signaling and NF-kappaB activation in apolipoprotein-E-deficient atherosclerosis-prone mice. Cellular Physiology and Biochemistry, 29, 875–882.CrossRefPubMed
45.
Zurück zum Zitat Luan, H. F., Zhao, Z. B., Zhao, Q. H., Zhu, P., Xiu, M. Y., & Ji, Y. (2012). Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Brazilian Journal of Medical and Biological Research, 45, 898–905.PubMedCentralPubMed Luan, H. F., Zhao, Z. B., Zhao, Q. H., Zhu, P., Xiu, M. Y., & Ji, Y. (2012). Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Brazilian Journal of Medical and Biological Research, 45, 898–905.PubMedCentralPubMed
46.
Zurück zum Zitat Hu, Y., Chen, X., Pan, T. T., Neo, K. L., Lee, S. W., Khin, E. S., Moore, P. K., & Bian, J. S. (2008). Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflügers Archiv, 455, 607–616.CrossRefPubMed Hu, Y., Chen, X., Pan, T. T., Neo, K. L., Lee, S. W., Khin, E. S., Moore, P. K., & Bian, J. S. (2008). Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflügers Archiv, 455, 607–616.CrossRefPubMed
47.
Zurück zum Zitat Hu, L. F., Wong, P. T., Moore, P. K., & Bian, J. S. (2007). Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. Journal of Neurochemistry, 100, 1121–1128.CrossRefPubMed Hu, L. F., Wong, P. T., Moore, P. K., & Bian, J. S. (2007). Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. Journal of Neurochemistry, 100, 1121–1128.CrossRefPubMed
48.
Zurück zum Zitat Wang, T., Wang, L., Zaidi, S. R., Sammani, S., Siegler, J., Moreno-Vinasco, L., Mathew, B., Natarajan, V., & Garcia, J. G. (2012). Hydrogen sulfide attenuates particulate matter-induced human lung endothelial barrier disruption via combined reactive oxygen species scavenging and Akt activation. American Journal of Respiratory Cell and Molecular Biology, 47, 491–496.PubMedCentralCrossRefPubMed Wang, T., Wang, L., Zaidi, S. R., Sammani, S., Siegler, J., Moreno-Vinasco, L., Mathew, B., Natarajan, V., & Garcia, J. G. (2012). Hydrogen sulfide attenuates particulate matter-induced human lung endothelial barrier disruption via combined reactive oxygen species scavenging and Akt activation. American Journal of Respiratory Cell and Molecular Biology, 47, 491–496.PubMedCentralCrossRefPubMed
Metadaten
Titel
Panax Notoginseng Saponins Ameliorates Coxsackievirus B3-Induced Myocarditis by Activating the Cystathionine-γ-Lyase/Hydrogen Sulfide Pathway
verfasst von
Lulu Pan
Yuanhai Zhang
Jiacheng Lu
Zhimin Geng
Lianhong Jia
Xing Rong
Zhenquan Wang
Qifeng Zhao
Rongzhou Wu
Maoping Chu
Chunxiang Zhang
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 9/2015
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-015-9659-8

Weitere Artikel der Ausgabe 9/2015

Journal of Cardiovascular Translational Research 9/2015 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.