Skip to main content
Erschienen in: The Cerebellum 3/2011

01.09.2011

Modulatory Effects of Theta Burst Stimulation on Cerebellar Nonsomatic Functions

verfasst von: Asli Demirtas-Tatlidede, Catarina Freitas, Alvaro Pascual-Leone, Jeremy D. Schmahmann

Erschienen in: The Cerebellum | Ausgabe 3/2011

Einloggen, um Zugang zu erhalten

Abstract

Clinical and functional imaging studies suggest that the cerebellar vermis is involved in the regulation of a range of nonsomatic functions including cardiovascular control, thirst, feeding behavior, and primal emotions. Cerebello-hypothalamic circuits have been postulated to be a potential neuroanatomical substrate underlying this modulation. We tested this putative relationship between the cerebellar vermis and nonsomatic functions by stimulating the cerebellum noninvasively via neuronavigated transcranial magnetic stimulation. In this randomized, counter-balanced, within-subject study, intermittent theta burst stimulation (TBS) was applied on three different days to the vermis and the right and left cerebellar hemispheres of 12 right-handed normal subjects with the aim of modulating activity in the targeted cerebellar structure. TBS-associated changes were investigated via cardiovascular monitoring, a series of emotionally arousing picture stimuli, subjective analog scales for primal emotions, and the Profile of Mood States test. All 36 sessions of cerebellar stimulation were tolerated well without serious adverse events. Cardiovascular monitoring pointed to a mild but significant decrease in heart rate subsequent to vermal stimulation; no changes were detected in systolic or diastolic blood pressure measurements. Subjective ratings detected a significant increase in Thirst and a trend toward increased Appetite following vermal stimulation. These observations are consistent with existing neurophysiological and neuroimaging data indicating a role for the cerebellum in the regulation of visceral responses. In conjunction with the modulatory function of the cerebellum, our results suggest a role for the vermis in somatovisceral integration likely through cerebello-hypothalamic pathways. Further research is warranted to elucidate the potential mechanisms underlying the cerebellar modulation of nonsomatic functions.
Literatur
1.
Zurück zum Zitat Dow RS. Some novel concepts of cerebellar physiology. Mt Sinai J Med. 1974;41:103–19.PubMed Dow RS. Some novel concepts of cerebellar physiology. Mt Sinai J Med. 1974;41:103–19.PubMed
2.
Zurück zum Zitat Martner J. Cerebellar influences on autonomic mechanisms. Acta Physiol Scand. 1975;425(suppl):1–42. Martner J. Cerebellar influences on autonomic mechanisms. Acta Physiol Scand. 1975;425(suppl):1–42.
4.
Zurück zum Zitat Leiner H, Leiner A, Dow R. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.PubMedCrossRef Leiner H, Leiner A, Dow R. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.PubMedCrossRef
5.
Zurück zum Zitat Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMed Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMed
6.
Zurück zum Zitat Ito M. New concepts in cerebellar function. Rev Neurol. 1993;149:596–9.PubMed Ito M. New concepts in cerebellar function. Rev Neurol. 1993;149:596–9.PubMed
7.
Zurück zum Zitat Schmahmann JD. Rediscovery of an early concept. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41:3–27. Schmahmann JD. Rediscovery of an early concept. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41:3–27.
8.
Zurück zum Zitat Schmahmann JD. The role of cerebellum in affect and psychosis. J Neurolinguist. 2000;13:189–214.CrossRef Schmahmann JD. The role of cerebellum in affect and psychosis. J Neurolinguist. 2000;13:189–214.CrossRef
9.
Zurück zum Zitat Schmahmann JD. Disorders of cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.PubMedCrossRef Schmahmann JD. Disorders of cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.PubMedCrossRef
10.
Zurück zum Zitat Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRef
11.
Zurück zum Zitat Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2125–32. Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2125–32.
12.
Zurück zum Zitat Schoch B, Dimitrova A, Gizewski E, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30:36–51.PubMedCrossRef Schoch B, Dimitrova A, Gizewski E, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30:36–51.PubMedCrossRef
13.
Zurück zum Zitat Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.PubMedCrossRef Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.PubMedCrossRef
14.
Zurück zum Zitat Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.PubMedCrossRef Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.PubMedCrossRef
15.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501.PubMedCrossRef Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501.PubMedCrossRef
16.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedCrossRef Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedCrossRef
17.
Zurück zum Zitat Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMedCrossRef Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMedCrossRef
18.
19.
Zurück zum Zitat Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to the limbic system. J Neurophysiol. 1959;22:451–8.PubMed Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to the limbic system. J Neurophysiol. 1959;22:451–8.PubMed
20.
21.
22.
Zurück zum Zitat Batini C, Buisseret-Delmas C, Corvisier J, Hardy O, Jassik-Gerschenfeld. Brain stem nuclei giving fibers to lobules VI and VII of the cerebellar vermis. Brain Res. 1978;153:241–61.PubMedCrossRef Batini C, Buisseret-Delmas C, Corvisier J, Hardy O, Jassik-Gerschenfeld. Brain stem nuclei giving fibers to lobules VI and VII of the cerebellar vermis. Brain Res. 1978;153:241–61.PubMedCrossRef
23.
Zurück zum Zitat Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.PubMedCrossRef Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.PubMedCrossRef
24.
Zurück zum Zitat Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17:438–58.PubMed Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17:438–58.PubMed
25.
Zurück zum Zitat Schmahmann JD, Pandya DN. The cerebrocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41:31–60. Schmahmann JD, Pandya DN. The cerebrocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41:31–60.
26.
Zurück zum Zitat Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.PubMedCrossRef Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.PubMedCrossRef
27.
Zurück zum Zitat Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.PubMedCrossRef Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.PubMedCrossRef
28.
Zurück zum Zitat Kelly R, Strick P. Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci. 2003;23:8432–44.PubMed Kelly R, Strick P. Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci. 2003;23:8432–44.PubMed
29.
Zurück zum Zitat Kandel ER, Schwartz JH, Jessel TM. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. Kandel ER, Schwartz JH, Jessel TM. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000.
30.
Zurück zum Zitat Dietrichs E. Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science. 1984;223:591–3.PubMedCrossRef Dietrichs E. Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science. 1984;223:591–3.PubMedCrossRef
31.
Zurück zum Zitat Dietrichs E, Haines DE. Demonstration of hypothalamocerebellar and cerebellohypothalamic fibers in a prosimian primate (Galago crassicaudatus). Anat Embryol. 1984;170:313–8.PubMedCrossRef Dietrichs E, Haines DE. Demonstration of hypothalamocerebellar and cerebellohypothalamic fibers in a prosimian primate (Galago crassicaudatus). Anat Embryol. 1984;170:313–8.PubMedCrossRef
32.
Zurück zum Zitat Haines DE, Dietrichs E. An HRP study of hypothalamocerebellar and cerebellohypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol. 1984;229:559–75.PubMedCrossRef Haines DE, Dietrichs E. An HRP study of hypothalamocerebellar and cerebellohypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol. 1984;229:559–75.PubMedCrossRef
33.
Zurück zum Zitat Haines DE, Dietrichs E, Sowa TE. Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affective behavior. Brain Behav Evol. 1984;24:198–220.PubMedCrossRef Haines DE, Dietrichs E, Sowa TE. Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affective behavior. Brain Behav Evol. 1984;24:198–220.PubMedCrossRef
34.
Zurück zum Zitat Çavdar S, San T, Aker R, Sehirli U, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198:37–45.PubMedCrossRef Çavdar S, San T, Aker R, Sehirli U, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198:37–45.PubMedCrossRef
35.
Zurück zum Zitat Çavdar S, Ona F, Aker R, Sehirli U, San T, Yananli HR. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat. 2001;198:463–72.PubMedCrossRef Çavdar S, Ona F, Aker R, Sehirli U, San T, Yananli HR. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat. 2001;198:463–72.PubMedCrossRef
36.
37.
Zurück zum Zitat Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990;299:106–22.PubMedCrossRef Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990;299:106–22.PubMedCrossRef
38.
Zurück zum Zitat Dietrichs E, Haines DE. Do hypothalamo-cerebellar fibres terminate in all layers of the cerebellar cortex? Anat Embryol. 1985;173:279–84.PubMedCrossRef Dietrichs E, Haines DE. Do hypothalamo-cerebellar fibres terminate in all layers of the cerebellar cortex? Anat Embryol. 1985;173:279–84.PubMedCrossRef
39.
Zurück zum Zitat Haines DE, Sowa TE, Dietrichs E. Connections between the cerebellum and hypothalamus in tree shrew (Tupain glis). Brain Res. 1985;328:367–73.PubMedCrossRef Haines DE, Sowa TE, Dietrichs E. Connections between the cerebellum and hypothalamus in tree shrew (Tupain glis). Brain Res. 1985;328:367–73.PubMedCrossRef
40.
Zurück zum Zitat Whiteside JA, Snider RS. Relation to upper brain stem. J Neurophysiol. 1953;16:397–413.PubMed Whiteside JA, Snider RS. Relation to upper brain stem. J Neurophysiol. 1953;16:397–413.PubMed
41.
Zurück zum Zitat Zanchetti A, Zoccolini A. Autonomic hypothalamic outburst elicited by cerebellar stimulation. J Neurophysiol. 1954;17:475–83.PubMed Zanchetti A, Zoccolini A. Autonomic hypothalamic outburst elicited by cerebellar stimulation. J Neurophysiol. 1954;17:475–83.PubMed
42.
Zurück zum Zitat Zhu JN, Yung WH, Kwok-Chong CB, Chan YS, Wang JJ. The cerebellar–hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic–visceral integration. Brain Res Rev. 2006;52:93–106.PubMedCrossRef Zhu JN, Yung WH, Kwok-Chong CB, Chan YS, Wang JJ. The cerebellar–hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic–visceral integration. Brain Res Rev. 2006;52:93–106.PubMedCrossRef
43.
Zurück zum Zitat Mahler JM. An unexpected role of the cerebellum: involvement in nutritional organization. Physiol Behav. 1993;54:1063–7.PubMedCrossRef Mahler JM. An unexpected role of the cerebellum: involvement in nutritional organization. Physiol Behav. 1993;54:1063–7.PubMedCrossRef
44.
Zurück zum Zitat Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA. 1999;96:4569–74.PubMedCrossRef Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA. 1999;96:4569–74.PubMedCrossRef
45.
Zurück zum Zitat Liu YJ, Gao JH, Liu HL, Fox PT. The temporal response of the brain after eating revealed by functional MRI. Nature. 2000;405:1058–61.PubMedCrossRef Liu YJ, Gao JH, Liu HL, Fox PT. The temporal response of the brain after eating revealed by functional MRI. Nature. 2000;405:1058–61.PubMedCrossRef
46.
Zurück zum Zitat Colombel C, Lalonde R, Caston J. The effects of unilateral removal of the cerebellar hemispheres on motor functions and weight gain in rats. Brain Res. 2002;950:231–8.PubMedCrossRef Colombel C, Lalonde R, Caston J. The effects of unilateral removal of the cerebellar hemispheres on motor functions and weight gain in rats. Brain Res. 2002;950:231–8.PubMedCrossRef
47.
Zurück zum Zitat Teves D, Videen TO, Cryer PE, Powers WJ. Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci USA. 2004;101:6217–21.PubMedCrossRef Teves D, Videen TO, Cryer PE, Powers WJ. Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci USA. 2004;101:6217–21.PubMedCrossRef
48.
Zurück zum Zitat Liu HZ, Li XY, Tong JJ, Qiu ZY, Zhan HC, Sha JN, et al. Duck cerebellum participates in regulation of food intake via the neurotransmitters serotonin and neuropeptide Y. Nutr Neurosci. 2008;11:200–6.PubMedCrossRef Liu HZ, Li XY, Tong JJ, Qiu ZY, Zhan HC, Sha JN, et al. Duck cerebellum participates in regulation of food intake via the neurotransmitters serotonin and neuropeptide Y. Nutr Neurosci. 2008;11:200–6.PubMedCrossRef
49.
Zurück zum Zitat Coletta M, Platek S, Mohamed FB, van Steenburgh JJ, Green D, Lowe MR. Brain activation in restrained and unrestrained eaters: an fMRI study. J Abnorm Psychol. 2009;118:598–609.PubMedCrossRef Coletta M, Platek S, Mohamed FB, van Steenburgh JJ, Green D, Lowe MR. Brain activation in restrained and unrestrained eaters: an fMRI study. J Abnorm Psychol. 2009;118:598–609.PubMedCrossRef
50.
Zurück zum Zitat Miller JL, Couch J, Schwenk K, Long M, Towler S, Theriaque DW, et al. Early childhood obesity is associated with compromised cerebellar development. Dev Neuropsychol. 2009;34:272–83.PubMedCrossRef Miller JL, Couch J, Schwenk K, Long M, Towler S, Theriaque DW, et al. Early childhood obesity is associated with compromised cerebellar development. Dev Neuropsychol. 2009;34:272–83.PubMedCrossRef
51.
Zurück zum Zitat Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2008;28:469–78.PubMedCrossRef Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2008;28:469–78.PubMedCrossRef
52.
Zurück zum Zitat Parsons LM, Denton D, Egan G, McKinley M, Shade R, Lancaster J, et al. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci USA. 2000;97:2332–6.PubMedCrossRef Parsons LM, Denton D, Egan G, McKinley M, Shade R, Lancaster J, et al. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci USA. 2000;97:2332–6.PubMedCrossRef
53.
Zurück zum Zitat Egan G, Silk T, Zamarripa F, Williams J, Federico P, Cunnington R, et al. Neural correlates of the emergence of consciousness of thirst. Proc Natl Acad Sci USA. 2003;100:15241–6.PubMedCrossRef Egan G, Silk T, Zamarripa F, Williams J, Federico P, Cunnington R, et al. Neural correlates of the emergence of consciousness of thirst. Proc Natl Acad Sci USA. 2003;100:15241–6.PubMedCrossRef
54.
Zurück zum Zitat Bradley DJ, Pascoe JP, Paton JE, Spyer KM. Cardiovascular and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol. 1987;393:107–21.PubMed Bradley DJ, Pascoe JP, Paton JE, Spyer KM. Cardiovascular and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol. 1987;393:107–21.PubMed
55.
Zurück zum Zitat Bradley DJ, Ghelarducci B, Spyer KM. The role of the posterior cerebellar vermis in cardiovascular control. Neurosci Res. 1991;12:45–56.PubMedCrossRef Bradley DJ, Ghelarducci B, Spyer KM. The role of the posterior cerebellar vermis in cardiovascular control. Neurosci Res. 1991;12:45–56.PubMedCrossRef
56.
Zurück zum Zitat Reis DJ, Golanov EV. Autonomic and vasomotor regulation. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41:121–49. Reis DJ, Golanov EV. Autonomic and vasomotor regulation. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol. 1997;41:121–49.
57.
Zurück zum Zitat Critchley HD, Corfield DR, Chandler MP, Mathias CJ, Dolan RJ. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol. 2000;523:259–70.PubMedCrossRef Critchley HD, Corfield DR, Chandler MP, Mathias CJ, Dolan RJ. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol. 2000;523:259–70.PubMedCrossRef
58.
Zurück zum Zitat Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FP, Diener HC, et al. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72:116–8.PubMedCrossRef Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FP, Diener HC, et al. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72:116–8.PubMedCrossRef
59.
60.
Zurück zum Zitat Holstege G, Georgiadis JR. The emotional brain: neural correlates of cat sexual behavior and human male ejaculation. Prog Brain Res. 2004;143:39–45.PubMedCrossRef Holstege G, Georgiadis JR. The emotional brain: neural correlates of cat sexual behavior and human male ejaculation. Prog Brain Res. 2004;143:39–45.PubMedCrossRef
61.
62.
Zurück zum Zitat Georgiadis JR, Kortekaas R, Kuipers R, Nieuwenburg A, Pruim J, Reinders AA, et al. Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women. Eur J Neurosci. 2006;24:3305–16.PubMedCrossRef Georgiadis JR, Kortekaas R, Kuipers R, Nieuwenburg A, Pruim J, Reinders AA, et al. Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women. Eur J Neurosci. 2006;24:3305–16.PubMedCrossRef
63.
Zurück zum Zitat Manzo J, Miquel M, Toledo R, Mayor-Mar JA, Garcia LI, Aranda-Abreu GE, et al. Fos expression at the cerebellum following non-contact arousal and mating behavior in male rats. Physiol Behav. 2008;93:357–63.PubMedCrossRef Manzo J, Miquel M, Toledo R, Mayor-Mar JA, Garcia LI, Aranda-Abreu GE, et al. Fos expression at the cerebellum following non-contact arousal and mating behavior in male rats. Physiol Behav. 2008;93:357–63.PubMedCrossRef
64.
Zurück zum Zitat Huh J, Park K, Hwang IS, Jung SI, Kim HJ, Chung TW, et al. Brain activation areas of sexual arousal with olfactory stimulation in men: a preliminary study using functional MRI. J Sex Med. 2008;5:619–25.PubMedCrossRef Huh J, Park K, Hwang IS, Jung SI, Kim HJ, Chung TW, et al. Brain activation areas of sexual arousal with olfactory stimulation in men: a preliminary study using functional MRI. J Sex Med. 2008;5:619–25.PubMedCrossRef
65.
Zurück zum Zitat Jung JH, Kam SC, Choi SM, Jae SU, Lee SH, Hyun JS. Sexual dysfunction in male stroke patients: correlation between brain lesions and sexual function. Urology. 2008;71:99–103.PubMedCrossRef Jung JH, Kam SC, Choi SM, Jae SU, Lee SH, Hyun JS. Sexual dysfunction in male stroke patients: correlation between brain lesions and sexual function. Urology. 2008;71:99–103.PubMedCrossRef
66.
Zurück zum Zitat Fischer H, Andersson JL, Furmark T, Fredrikson M. Fear conditioning and brain activity: a positron emission tomography study in humans. Behav Neurosci. 2000;114:671–80.PubMedCrossRef Fischer H, Andersson JL, Furmark T, Fredrikson M. Fear conditioning and brain activity: a positron emission tomography study in humans. Behav Neurosci. 2000;114:671–80.PubMedCrossRef
67.
Zurück zum Zitat Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci USA. 2002;99:8406–11.PubMedCrossRef Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci USA. 2002;99:8406–11.PubMedCrossRef
68.
Zurück zum Zitat Sacchetti B, Scelfo B, Strata P. The cerebellum: synaptic changes and fear conditioning. Neuroscientist. 2005;11:217–27.PubMedCrossRef Sacchetti B, Scelfo B, Strata P. The cerebellum: synaptic changes and fear conditioning. Neuroscientist. 2005;11:217–27.PubMedCrossRef
69.
Zurück zum Zitat Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.PubMedCrossRef Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.PubMedCrossRef
70.
Zurück zum Zitat Frings M, Maschke M, Erichsen M, Jentzen W, Müller SP, Kolb FP, et al. Involvement of the human cerebellum in fear-conditioned potentiation of the acoustic startle response: a PET study. NeuroReport. 2002;13:1275–8.PubMedCrossRef Frings M, Maschke M, Erichsen M, Jentzen W, Müller SP, Kolb FP, et al. Involvement of the human cerebellum in fear-conditioned potentiation of the acoustic startle response: a PET study. NeuroReport. 2002;13:1275–8.PubMedCrossRef
72.
Zurück zum Zitat Zhu L, Scelfo B, Hartell NA, Strata P, Sacchetti B. The effects of fear conditioning on cerebellar LTP and LTD. Eur J Neurosci. 2007;26:219–27.PubMedCrossRef Zhu L, Scelfo B, Hartell NA, Strata P, Sacchetti B. The effects of fear conditioning on cerebellar LTP and LTD. Eur J Neurosci. 2007;26:219–27.PubMedCrossRef
73.
Zurück zum Zitat Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.PubMedCrossRef Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.PubMedCrossRef
74.
Zurück zum Zitat Saab CY, Willis WD. Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res. 2001;140:122–6.PubMedCrossRef Saab CY, Willis WD. Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res. 2001;140:122–6.PubMedCrossRef
75.
Zurück zum Zitat Borsook D, Moulton EA, Tully S, Schmahmann JD, Becerra L. Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects. Cerebellum. 2008;7:252–72.PubMedCrossRef Borsook D, Moulton EA, Tully S, Schmahmann JD, Becerra L. Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects. Cerebellum. 2008;7:252–72.PubMedCrossRef
76.
Zurück zum Zitat Moulton EA, Schmahmann JD, Becerra L, Borsook D. The cerebellum and pain: passive integrator or active participator? Brain Res Rev. 2010;65:14–27. Moulton EA, Schmahmann JD, Becerra L, Borsook D. The cerebellum and pain: passive integrator or active participator? Brain Res Rev. 2010;65:14–27.
77.
Zurück zum Zitat Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2:145–56.PubMedCrossRef Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2:145–56.PubMedCrossRef
78.
Zurück zum Zitat Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.PubMedCrossRef Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.PubMedCrossRef
79.
Zurück zum Zitat Stefan K, Gentner R, Zeller D, Dang S, Classen J. Theta-burst stimulation: remote physiological and local behavioral after-effects. Neuroimage. 2008;40:265–74.PubMedCrossRef Stefan K, Gentner R, Zeller D, Dang S, Classen J. Theta-burst stimulation: remote physiological and local behavioral after-effects. Neuroimage. 2008;40:265–74.PubMedCrossRef
80.
Zurück zum Zitat Huang YZ, Chen RS, Rothwell JC, Wen HY. The after effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118:1028–32.PubMedCrossRef Huang YZ, Chen RS, Rothwell JC, Wen HY. The after effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118:1028–32.PubMedCrossRef
81.
Zurück zum Zitat Koch G, Mori F, Marconi B, Codeca C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119:2559–69.PubMedCrossRef Koch G, Mori F, Marconi B, Codeca C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119:2559–69.PubMedCrossRef
82.
Zurück zum Zitat Koch G, Brusa L, Carrillo F, Lo Gerfo E, Torriero S, Oliveri M, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73:113–9.PubMedCrossRef Koch G, Brusa L, Carrillo F, Lo Gerfo E, Torriero S, Oliveri M, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73:113–9.PubMedCrossRef
83.
Zurück zum Zitat Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar I, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124:91–100. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar I, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124:91–100.
84.
Zurück zum Zitat D’Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J Neurophysiol. 1999;81:277–87.PubMed D’Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J Neurophysiol. 1999;81:277–87.PubMed
85.
Zurück zum Zitat Ito M. The molecular organization of cerebellar long-term depression. Nat Rev Neurosci. 2002;3:896–902.PubMedCrossRef Ito M. The molecular organization of cerebellar long-term depression. Nat Rev Neurosci. 2002;3:896–902.PubMedCrossRef
86.
Zurück zum Zitat Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108:1–16.PubMedCrossRef Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108:1–16.PubMedCrossRef
87.
Zurück zum Zitat Rossi S, Hallett M, Rossini PM. The Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120:2008–39.PubMedCrossRef Rossi S, Hallett M, Rossini PM. The Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120:2008–39.PubMedCrossRef
88.
Zurück zum Zitat Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage. 1999;10:233–60.PubMedCrossRef Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage. 1999;10:233–60.PubMedCrossRef
89.
Zurück zum Zitat Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego: Academic; 2000. Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego: Academic; 2000.
90.
Zurück zum Zitat Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical report A-8. Gainesville: University of Florida; 2008. Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical report A-8. Gainesville: University of Florida; 2008.
91.
Zurück zum Zitat Smith JC, Bradley MM, Lang PJ. State anxiety and affective physiology: effects of sustained exposure to affective pictures. Biol Psychol. 2005;69:247–60.PubMedCrossRef Smith JC, Bradley MM, Lang PJ. State anxiety and affective physiology: effects of sustained exposure to affective pictures. Biol Psychol. 2005;69:247–60.PubMedCrossRef
92.
Zurück zum Zitat Siegel S, Castellan NJ. Non-parametric statistics for the behavioural sciences. New York: McGraw-Hill; 1988. Siegel S, Castellan NJ. Non-parametric statistics for the behavioural sciences. New York: McGraw-Hill; 1988.
93.
Zurück zum Zitat Ghelarducci B, Sebastiani L. Contribution of the cerebellar vermis to cardiovascular control. J Auton Nerv Syst. 1996;56:149–56.PubMedCrossRef Ghelarducci B, Sebastiani L. Contribution of the cerebellar vermis to cardiovascular control. J Auton Nerv Syst. 1996;56:149–56.PubMedCrossRef
94.
Zurück zum Zitat Kondo M, Sears TA, Sadakane K, Nisimaru N. Vagal afferent projections to lobule VIIa of the rabbit cerebellar vermis related to cardiovascular control. Neurosci Res. 1998;30:111–7.PubMedCrossRef Kondo M, Sears TA, Sadakane K, Nisimaru N. Vagal afferent projections to lobule VIIa of the rabbit cerebellar vermis related to cardiovascular control. Neurosci Res. 1998;30:111–7.PubMedCrossRef
95.
Zurück zum Zitat Holmes MJ, Cotter LA, Arendt HE, Cass SP, Yates BJ. Effects of lesions of the caudal cerebellar vermis on cardiovascular regulation in awake cats. Brain Res. 2002;938:62–72.PubMedCrossRef Holmes MJ, Cotter LA, Arendt HE, Cass SP, Yates BJ. Effects of lesions of the caudal cerebellar vermis on cardiovascular regulation in awake cats. Brain Res. 2002;938:62–72.PubMedCrossRef
96.
Zurück zum Zitat Supple WF, Leaton RN. Cerebellar vermis: essential for classically conditioned bradycardia in the rat. Brain Res. 1990;409:17–23.CrossRef Supple WF, Leaton RN. Cerebellar vermis: essential for classically conditioned bradycardia in the rat. Brain Res. 1990;409:17–23.CrossRef
97.
Zurück zum Zitat Sebastiani L, LaNoce A, Paton JF, Ghelarducci B. Influence of the cerebellar posterior vermis on the acquisition of the classically conditioned bradycardia response in the rabbit. Exp Brain Res. 1992;88:193–8.PubMedCrossRef Sebastiani L, LaNoce A, Paton JF, Ghelarducci B. Influence of the cerebellar posterior vermis on the acquisition of the classically conditioned bradycardia response in the rabbit. Exp Brain Res. 1992;88:193–8.PubMedCrossRef
98.
Zurück zum Zitat Ghelarducci B, Salamone D, Simoni A, Sebastiani L. Effects of early cerebellar removal on the classically conditioned bradycardia of adult rabbits. Exp Brain Res. 1996;111:417–23.PubMedCrossRef Ghelarducci B, Salamone D, Simoni A, Sebastiani L. Effects of early cerebellar removal on the classically conditioned bradycardia of adult rabbits. Exp Brain Res. 1996;111:417–23.PubMedCrossRef
99.
Zurück zum Zitat Del Bo A, Rosina A. Potential disynaptic pathways connecting the fastigial pressor area and the paraventricular nucleus of the hypothalamus in the rat. Neurosci Lett. 1986;71:37–42.PubMedCrossRef Del Bo A, Rosina A. Potential disynaptic pathways connecting the fastigial pressor area and the paraventricular nucleus of the hypothalamus in the rat. Neurosci Lett. 1986;71:37–42.PubMedCrossRef
100.
Zurück zum Zitat Bi M, Oomura Y, Katafuchi T. Responses of the rat lateral hypothalamic neuronal activity to the fastigial nucleus stimulation. J Neurophysiol. 1989;61:1178–84. Bi M, Oomura Y, Katafuchi T. Responses of the rat lateral hypothalamic neuronal activity to the fastigial nucleus stimulation. J Neurophysiol. 1989;61:1178–84.
101.
Zurück zum Zitat Katafuchi T, Koizumi K. Fastigial inputs to paraventricular neurosecretory neurones studied by extra- and intracellular recordings in rats. J Physiol. 1990;421:535–51.PubMed Katafuchi T, Koizumi K. Fastigial inputs to paraventricular neurosecretory neurones studied by extra- and intracellular recordings in rats. J Physiol. 1990;421:535–51.PubMed
102.
Zurück zum Zitat Zhu JN, Zhang YP, Song YN, Wang JJ. Cerebellar interpositus nuclear and gastric vagal afferent inputs could reach and converge onto glycemia-sensitive neurons of the ventromedial hypothalamic nucleus in rats. Neurosci Res. 2004;48:405–17.PubMedCrossRef Zhu JN, Zhang YP, Song YN, Wang JJ. Cerebellar interpositus nuclear and gastric vagal afferent inputs could reach and converge onto glycemia-sensitive neurons of the ventromedial hypothalamic nucleus in rats. Neurosci Res. 2004;48:405–17.PubMedCrossRef
103.
Zurück zum Zitat Wen YQ, Zhu JN, Zhang YP, Wang JJ. Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett. 2004;370:25–9.PubMedCrossRef Wen YQ, Zhu JN, Zhang YP, Wang JJ. Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett. 2004;370:25–9.PubMedCrossRef
104.
Zurück zum Zitat Dietrichs E, Haines DE, Røste GK, Røste LS. Hypothalamocerebellar and cerebellohypothalamic projections—circuits for regulating nonsomatic cerebellar activity? Histol Histopathol. 1994;9:603–14.PubMed Dietrichs E, Haines DE, Røste GK, Røste LS. Hypothalamocerebellar and cerebellohypothalamic projections—circuits for regulating nonsomatic cerebellar activity? Histol Histopathol. 1994;9:603–14.PubMed
105.
Zurück zum Zitat Ito M. Functional roles of neuropeptides in cerebellar circuits. Neuroscience. 2009;162:666–72.PubMedCrossRef Ito M. Functional roles of neuropeptides in cerebellar circuits. Neuroscience. 2009;162:666–72.PubMedCrossRef
106.
Zurück zum Zitat Ferguson AV, Washburn DLS. Angiotensin II: a peptidergic neurotransmitter in central autonomic pathways. Prog Neurobiol. 1998;54:169–92.PubMedCrossRef Ferguson AV, Washburn DLS. Angiotensin II: a peptidergic neurotransmitter in central autonomic pathways. Prog Neurobiol. 1998;54:169–92.PubMedCrossRef
107.
Zurück zum Zitat Li DP, Pan HL. Angiotensin II attenuates synaptic GABA release and excites paraventricular–rostral ventrolateral medulla output neurons. J Pharmacol Exp Ther. 2005;313:1035–45.PubMedCrossRef Li DP, Pan HL. Angiotensin II attenuates synaptic GABA release and excites paraventricular–rostral ventrolateral medulla output neurons. J Pharmacol Exp Ther. 2005;313:1035–45.PubMedCrossRef
108.
Zurück zum Zitat Sharpe LG, Swanson LW. Drinking induced by injections of angiotensin into forebrain and mid-brain sites of the monkey. J Physiol. 1974;239:595–622.PubMed Sharpe LG, Swanson LW. Drinking induced by injections of angiotensin into forebrain and mid-brain sites of the monkey. J Physiol. 1974;239:595–622.PubMed
109.
Zurück zum Zitat Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78:583–686.PubMed Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78:583–686.PubMed
110.
Zurück zum Zitat Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW. Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Res. 2005;1060:108–17.PubMedCrossRef Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW. Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Res. 2005;1060:108–17.PubMedCrossRef
111.
Zurück zum Zitat Gautier JF, Chen K, Uecker A, Bandy D, Frost J, Salbe AD, et al. Regions of the human brain affected during a liquid-meal taste perception in the fasting state: a positron emission tomography study. Am J Clin Nutr. 1999;70:806–10.PubMed Gautier JF, Chen K, Uecker A, Bandy D, Frost J, Salbe AD, et al. Regions of the human brain affected during a liquid-meal taste perception in the fasting state: a positron emission tomography study. Am J Clin Nutr. 1999;70:806–10.PubMed
112.
Zurück zum Zitat Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, et al. Differential brain responses to satiation in obese and lean men. Diabetes. 2000;49:838–46.PubMedCrossRef Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, et al. Differential brain responses to satiation in obese and lean men. Diabetes. 2000;49:838–46.PubMedCrossRef
113.
Zurück zum Zitat Gautier JF, Del Parigi A, Chen K, Salbe AD, Bandy D, Pratley RE, et al. Effect of satiation on brain activity in obese and lean women. Obes Res. 2001;9:676–84.PubMedCrossRef Gautier JF, Del Parigi A, Chen K, Salbe AD, Bandy D, Pratley RE, et al. Effect of satiation on brain activity in obese and lean women. Obes Res. 2001;9:676–84.PubMedCrossRef
114.
Zurück zum Zitat Scalera G. Effects of corticocerebellar lesions on taste preferences, body weight gain, food and fluid intake in the rat. J Physiol. 1991;85:214–22. Scalera G. Effects of corticocerebellar lesions on taste preferences, body weight gain, food and fluid intake in the rat. J Physiol. 1991;85:214–22.
115.
Zurück zum Zitat DiLeone RJ, Georgescu D, Nestler EJ. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 2003;73:759–68.PubMedCrossRef DiLeone RJ, Georgescu D, Nestler EJ. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 2003;73:759–68.PubMedCrossRef
116.
Zurück zum Zitat Tolbert DL, Bantli H. An HRP and autoradiographic study of cerebellar corticonuclear–nucleocortical reciprocity in the monkey. Exp Brain Res. 1979;36:563–71.PubMedCrossRef Tolbert DL, Bantli H. An HRP and autoradiographic study of cerebellar corticonuclear–nucleocortical reciprocity in the monkey. Exp Brain Res. 1979;36:563–71.PubMedCrossRef
117.
Zurück zum Zitat Tolbert DL, Bantli H, Bloedel JR. Organizational features of the cat and monkey cerebellar nucleocortical projection. J Comp Neurol. 1978;182:39–56.PubMedCrossRef Tolbert DL, Bantli H, Bloedel JR. Organizational features of the cat and monkey cerebellar nucleocortical projection. J Comp Neurol. 1978;182:39–56.PubMedCrossRef
118.
Zurück zum Zitat Hess DT. Cerebellar nucleo-cortical neurons projecting to the vermis of lobule VII in the rat. Brain Res. 1982;248:361–6.PubMedCrossRef Hess DT. Cerebellar nucleo-cortical neurons projecting to the vermis of lobule VII in the rat. Brain Res. 1982;248:361–6.PubMedCrossRef
119.
Zurück zum Zitat He Y, Zang Y, Jiang T, Liang M, Gong G. Detecting functional connectivity of the cerebellum using low frequency fluctuations. LNCS. 2004;3217:907–15. He Y, Zang Y, Jiang T, Liang M, Gong G. Detecting functional connectivity of the cerebellum using low frequency fluctuations. LNCS. 2004;3217:907–15.
120.
Zurück zum Zitat Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedCrossRef Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedCrossRef
Metadaten
Titel
Modulatory Effects of Theta Burst Stimulation on Cerebellar Nonsomatic Functions
verfasst von
Asli Demirtas-Tatlidede
Catarina Freitas
Alvaro Pascual-Leone
Jeremy D. Schmahmann
Publikationsdatum
01.09.2011
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 3/2011
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-010-0230-5

Weitere Artikel der Ausgabe 3/2011

The Cerebellum 3/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.