Skip to main content
Erschienen in: The Cerebellum 1/2012

01.03.2012

Spinocerebellar Ataxia Types 1, 2, 3 and 6: the Clinical Spectrum of Ataxia and Morphometric Brainstem and Cerebellar Findings

verfasst von: Heike Jacobi, Till-Karsten Hauser, Paola Giunti, Christoph Globas, Peter Bauer, Tanja Schmitz-Hübsch, László Baliko, Alessandro Filla, Caterina Mariotti, Maria Rakowicz, Perine Charles, Pascale Ribai, Sandra Szymanski, Jon Infante, Bart P. C. van de Warrenburg, Alexandra Dürr, Dagmar Timmann, Sylvia Boesch, Roberto Fancellu, Rafal Rola, Chantal Depondt, Ludger Schöls, Elzbieta Zdzienicka, Jun-Suk Kang, Susanne Ratzka, Berry Kremer, Dennis A. Stephenson, Béla Melegh, Massimo Pandolfo, Sophie Tezenas du Montcel, Johannes Borkert, Jörg B. Schulz, Thomas Klockgether

Erschienen in: The Cerebellum | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

To assess the clinical spectrum of ataxia and cerebellar oculomotor deficits in the most common spinocerebellar ataxias (SCAs), we analysed the baseline data of the EUROSCA natural history study, a multicentric cohort study of 526 patients with either spinocerebellar ataxia type 1, 2, 3 or 6. To quantify ataxia symptoms, we used the Scale for the Assessment and Rating of Ataxia (SARA). The presence of cerebellar oculomotor signs was assessed using the Inventory of Non-Ataxia Symptoms (INAS). In a subgroup of patients, in which magnetic resonance images (MRIs) were available, we correlated MRI morphometric measures with clinical signs on an exploratory basis. The SARA subscores posture and gait (items 1–3), speech (item 4) and the limb kinetic subscore (items 5–8) did not differ between the genotypes. The scores of SARA item 3 (sitting), 5 (finger chase) and 6 (nose–finger test) differed between the subtypes whereas the scores of the remaining items were not different. In SCA1, ataxia symptoms were correlated with brainstem atrophy and in SCA3 with both brainstem and cerebellar atrophy. Cerebellar oculomotor deficits were most frequent in SCA6 followed by SCA3, whereas these abnormalities were less frequent in SCA1 and SCA2. Our data suggest that vestibulocerebellar, spinocerebellar and pontocerebellar circuits in SCA1, SCA2, SCA3 and SCA6 are functionally impaired to almost the same degree, but at different anatomical levels. The seemingly low prevalence of cerebellar oculomotor deficits in SCA1 and SCA2 is most probably related to the defective saccadic system in these disorders.
Literatur
1.
Zurück zum Zitat Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94.PubMedCrossRef Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94.PubMedCrossRef
3.
Zurück zum Zitat Orr HT, Chung MY, Banfi S, Kwiatkowski Jr TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–6.PubMedCrossRef Orr HT, Chung MY, Banfi S, Kwiatkowski Jr TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–6.PubMedCrossRef
4.
Zurück zum Zitat Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14(3):269–76.PubMedCrossRef Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14(3):269–76.PubMedCrossRef
5.
Zurück zum Zitat Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14(3):285–91.PubMedCrossRef Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14(3):285–91.PubMedCrossRef
6.
Zurück zum Zitat Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8(3):221–8.PubMedCrossRef Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8(3):221–8.PubMedCrossRef
7.
Zurück zum Zitat Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the a1A-voltage-dependent calcium channel. Nat Genet. 1997;15(1):62–9.PubMedCrossRef Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the a1A-voltage-dependent calcium channel. Nat Genet. 1997;15(1):62–9.PubMedCrossRef
8.
9.
Zurück zum Zitat Dubourg O, Dürr A, Cancel G, Stevanin G, Chneiweiss H, Penet C, et al. Analysis of the SCA1 CAG repeat in a large number of families with dominant ataxia: clinical and molecular correlations. Ann Neurol. 1995;37:176–80.PubMedCrossRef Dubourg O, Dürr A, Cancel G, Stevanin G, Chneiweiss H, Penet C, et al. Analysis of the SCA1 CAG repeat in a large number of families with dominant ataxia: clinical and molecular correlations. Ann Neurol. 1995;37:176–80.PubMedCrossRef
10.
Zurück zum Zitat Orozco-Diaz G, Nodarse-Fleites A, Cordoves-Sagaz R, Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology. 1990;40:1369–75.PubMed Orozco-Diaz G, Nodarse-Fleites A, Cordoves-Sagaz R, Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology. 1990;40:1369–75.PubMed
11.
Zurück zum Zitat Schöls L, Gispert S, Vorgerd M, Menezes Vieira-Saecker AM, Blanke P, Auburger G, et al. Spinocerebellar ataxia type 2—genotype and phenotype in German kindreds. Arch Neurol. 1997;54(9):1073–80.PubMedCrossRef Schöls L, Gispert S, Vorgerd M, Menezes Vieira-Saecker AM, Blanke P, Auburger G, et al. Spinocerebellar ataxia type 2—genotype and phenotype in German kindreds. Arch Neurol. 1997;54(9):1073–80.PubMedCrossRef
12.
Zurück zum Zitat Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, et al. Spinocerebellar ataxia 3 and Machado–Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol. 1996;39:490–9.PubMedCrossRef Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, et al. Spinocerebellar ataxia 3 and Machado–Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol. 1996;39:490–9.PubMedCrossRef
13.
Zurück zum Zitat Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I—clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(5):1497–505.PubMedCrossRef Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I—clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(5):1497–505.PubMedCrossRef
14.
Zurück zum Zitat Filla A, De Michele G, Campanella G, Perretti A, Santoro L, Serlenga L, et al. Autosomal dominant cerebellar ataxia type I. Clinical and molecular study in 36 Italian families including a comparison between SCA1 and SCA2 phenotypes. J Neurol Sci. 1996;142(1–2):140–7.PubMedCrossRef Filla A, De Michele G, Campanella G, Perretti A, Santoro L, Serlenga L, et al. Autosomal dominant cerebellar ataxia type I. Clinical and molecular study in 36 Italian families including a comparison between SCA1 and SCA2 phenotypes. J Neurol Sci. 1996;142(1–2):140–7.PubMedCrossRef
15.
Zurück zum Zitat Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42(6):924–32.PubMedCrossRef Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42(6):924–32.PubMedCrossRef
16.
Zurück zum Zitat Schöls L, Krüger R, Amoiridis G, Przuntek H, Epplen JT, Riess O. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry. 1998;64(1):67–73.PubMedCrossRef Schöls L, Krüger R, Amoiridis G, Przuntek H, Epplen JT, Riess O. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry. 1998;64(1):67–73.PubMedCrossRef
17.
Zurück zum Zitat Matsumura R, Futamura N, Fujimoto Y, Yanagimoto S, Horikawa H, Suzumura A, et al. Spinocerebellar ataxia type 6—molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology. 1997;49(5):1238–43.PubMed Matsumura R, Futamura N, Fujimoto Y, Yanagimoto S, Horikawa H, Suzumura A, et al. Spinocerebellar ataxia type 6—molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology. 1997;49(5):1238–43.PubMed
18.
Zurück zum Zitat Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.PubMedCrossRef Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.PubMedCrossRef
19.
Zurück zum Zitat Weyer A, Abele M, Schmitz-Hubsch T, Schoch B, Frings M, Timmann D, et al. Reliability and validity of the scale for the assessment and rating of ataxia: a study in 64 ataxia patients. Mov Disord. 2007;22:1633–7.PubMedCrossRef Weyer A, Abele M, Schmitz-Hubsch T, Schoch B, Frings M, Timmann D, et al. Reliability and validity of the scale for the assessment and rating of ataxia: a study in 64 ataxia patients. Mov Disord. 2007;22:1633–7.PubMedCrossRef
20.
Zurück zum Zitat Schmitz-Hübsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia type 1, 2, 3, and 6. Disease severity and nonataxia symptoms. Neurology. 2008;71:982–9.PubMedCrossRef Schmitz-Hübsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia type 1, 2, 3, and 6. Disease severity and nonataxia symptoms. Neurology. 2008;71:982–9.PubMedCrossRef
21.
Zurück zum Zitat Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49(1):158–68.PubMedCrossRef Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49(1):158–68.PubMedCrossRef
22.
Zurück zum Zitat Brandauer B, Hermsdorfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, et al. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol. 2008;119(11):2528–37.PubMedCrossRef Brandauer B, Hermsdorfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, et al. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol. 2008;119(11):2528–37.PubMedCrossRef
23.
Zurück zum Zitat Luft AR, Skalej M, Welte D, Kolb R, Bürk K, Schulz JB, et al. A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med. 1998;40(1):143–51.PubMedCrossRef Luft AR, Skalej M, Welte D, Kolb R, Bürk K, Schulz JB, et al. A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med. 1998;40(1):143–51.PubMedCrossRef
24.
Zurück zum Zitat Eritaia J, Wood SJ, Stuart GW, Bridle N, Dudgeon P, Maruff P, et al. An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med. 2000;44(6):973–7.PubMedCrossRef Eritaia J, Wood SJ, Stuart GW, Bridle N, Dudgeon P, Maruff P, et al. An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med. 2000;44(6):973–7.PubMedCrossRef
25.
Zurück zum Zitat Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42(6):933–50.PubMedCrossRef Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42(6):933–50.PubMedCrossRef
26.
Zurück zum Zitat Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol. 1998;55(10):1353–7.PubMedCrossRef Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol. 1998;55(10):1353–7.PubMedCrossRef
27.
Zurück zum Zitat Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246(9):789–97.PubMedCrossRef Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246(9):789–97.PubMedCrossRef
28.
Zurück zum Zitat Yabe I, Sasaki H, Takeichi N, Takei A, Hamada T, Fukushima K, et al. Positional vertigo and macroscopic downbeat positioning nystagmus in spinocerebellar ataxia type 6 (SCA6). J Neurol. 2003;250(4):440–3.PubMedCrossRef Yabe I, Sasaki H, Takeichi N, Takei A, Hamada T, Fukushima K, et al. Positional vertigo and macroscopic downbeat positioning nystagmus in spinocerebellar ataxia type 6 (SCA6). J Neurol. 2003;250(4):440–3.PubMedCrossRef
29.
Zurück zum Zitat Ying SH, Choi SI, Lee M, Perlman SL, Baloh RW, Toga AW, et al. Relative atrophy of the flocculus and ocular motor dysfunction in SCA2 and SCA6. Ann N Y Acad Sci. 2005;1039:430–5.PubMedCrossRef Ying SH, Choi SI, Lee M, Perlman SL, Baloh RW, Toga AW, et al. Relative atrophy of the flocculus and ocular motor dysfunction in SCA2 and SCA6. Ann N Y Acad Sci. 2005;1039:430–5.PubMedCrossRef
30.
Zurück zum Zitat Dichgans J, Fetter M. Compartmentalized cerebellar functions upon the stabilization of body posture. Rev Neurol (Paris). 1993;149(11):654–64. Dichgans J, Fetter M. Compartmentalized cerebellar functions upon the stabilization of body posture. Rev Neurol (Paris). 1993;149(11):654–64.
31.
Zurück zum Zitat Timmann D, Diener HC. Coordination and ataxia. In: Goetz CG, Pappert EJ, editors. Textbook of clinical neurology. 3rd ed. Philadelphia: Saunders Elsevier; 2007. p. 307–25.CrossRef Timmann D, Diener HC. Coordination and ataxia. In: Goetz CG, Pappert EJ, editors. Textbook of clinical neurology. 3rd ed. Philadelphia: Saunders Elsevier; 2007. p. 307–25.CrossRef
32.
Zurück zum Zitat Dietrichs E. Clinical manifestation of focal cerebellar disease as related to the organization of neural pathways. Acta Neurol Scand Suppl. 2008;188:6–11.PubMedCrossRef Dietrichs E. Clinical manifestation of focal cerebellar disease as related to the organization of neural pathways. Acta Neurol Scand Suppl. 2008;188:6–11.PubMedCrossRef
33.
Zurück zum Zitat Solomon DH, Barohn RJ, Bazan C, Grissom J. The thalamic ataxia syndrome. Neurology. 1994;44(5):810–4.PubMed Solomon DH, Barohn RJ, Bazan C, Grissom J. The thalamic ataxia syndrome. Neurology. 1994;44(5):810–4.PubMed
34.
Zurück zum Zitat Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Gait disturbances in patients with pontine medial tegmental lesions: clinical characteristics and gait analysis. Arch Neurol. 2000;57(7):1048–57.PubMedCrossRef Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Gait disturbances in patients with pontine medial tegmental lesions: clinical characteristics and gait analysis. Arch Neurol. 2000;57(7):1048–57.PubMedCrossRef
35.
Zurück zum Zitat Marx JJ, Iannetti GD, Thömke F, Fitzek S, Galeotti F, Truini A, et al. Topodiagnostic implications of hemiataxia: an MRI-based brainstem mapping analysis. Neuroimage. 2008;39(4):1625–32.PubMedCrossRef Marx JJ, Iannetti GD, Thömke F, Fitzek S, Galeotti F, Truini A, et al. Topodiagnostic implications of hemiataxia: an MRI-based brainstem mapping analysis. Neuroimage. 2008;39(4):1625–32.PubMedCrossRef
37.
Zurück zum Zitat Wang X, Wang H, Xia Y, Jiang H, Shen L, Wang S et al. Spinocerebellar ataxia type 6: systematic patho-anatomical study reveals different phylogenetically defined regions of the cerebellum and neural pathways undergo different evolutions of the degenerative process. Neuropathology 2010. doi:10.1111/j.1440-1789.2009.01094.x. Wang X, Wang H, Xia Y, Jiang H, Shen L, Wang S et al. Spinocerebellar ataxia type 6: systematic patho-anatomical study reveals different phylogenetically defined regions of the cerebellum and neural pathways undergo different evolutions of the degenerative process. Neuropathology 2010. doi:10.​1111/​j.​1440-1789.​2009.​01094.​x.
38.
Zurück zum Zitat Genis D, Matilla T, Volpini V, Rosell J, Dávalos A, Ferrer I, et al. Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology. 1995;45:24–30.PubMed Genis D, Matilla T, Volpini V, Rosell J, Dávalos A, Ferrer I, et al. Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology. 1995;45:24–30.PubMed
39.
Zurück zum Zitat Orozco G, Estrada R, Perry TL, Araña J, Fernandez R, Gonzalez-Quevedo A, et al. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological, and biochemical findings. J Neurol Sci. 1989;93:37–50.PubMedCrossRef Orozco G, Estrada R, Perry TL, Araña J, Fernandez R, Gonzalez-Quevedo A, et al. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological, and biochemical findings. J Neurol Sci. 1989;93:37–50.PubMedCrossRef
40.
Zurück zum Zitat Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain. 1998;121(Pt 9):1687–93.PubMedCrossRef Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain. 1998;121(Pt 9):1687–93.PubMedCrossRef
Metadaten
Titel
Spinocerebellar Ataxia Types 1, 2, 3 and 6: the Clinical Spectrum of Ataxia and Morphometric Brainstem and Cerebellar Findings
verfasst von
Heike Jacobi
Till-Karsten Hauser
Paola Giunti
Christoph Globas
Peter Bauer
Tanja Schmitz-Hübsch
László Baliko
Alessandro Filla
Caterina Mariotti
Maria Rakowicz
Perine Charles
Pascale Ribai
Sandra Szymanski
Jon Infante
Bart P. C. van de Warrenburg
Alexandra Dürr
Dagmar Timmann
Sylvia Boesch
Roberto Fancellu
Rafal Rola
Chantal Depondt
Ludger Schöls
Elzbieta Zdzienicka
Jun-Suk Kang
Susanne Ratzka
Berry Kremer
Dennis A. Stephenson
Béla Melegh
Massimo Pandolfo
Sophie Tezenas du Montcel
Johannes Borkert
Jörg B. Schulz
Thomas Klockgether
Publikationsdatum
01.03.2012
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 1/2012
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-011-0292-z

Weitere Artikel der Ausgabe 1/2012

The Cerebellum 1/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.