Skip to main content
Erschienen in: Tumor Biology 5/2015

01.05.2015 | Research Article

The circadian gene CRY2 is associated with breast cancer aggressiveness possibly via epigenomic modifications

verfasst von: Yingying Mao, Alan Fu, Aaron E. Hoffman, Daniel I. Jacobs, Mingjuan Jin, Kun Chen, Yong Zhu

Erschienen in: Tumor Biology | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Abstract

Although the role of core circadian gene cryptochrome 2 (CRY2) in breast tumorigenesis has been demonstrated, the correlations of CRY2 with clinical parameters in breast cancer patients and its involvement in epigenetic processes such as DNA methylation remain relatively unexplored. In the current study, we first queried the Oncomine database and the Gene Expression-Based Outcome for Breast Cancer Online (GOBO) database to identify associations between CRY2 expression levels and clinical parameters in breast cancer patients. We then silenced CRY2 in vitro and performed a genome-wide methylation array to determine the epigenetic impact of CRY2 silencing. The Ingenuity Pathway Analysis software was used to further explore the genes exhibiting altered methylation identified using the array. We found that CRY2 was frequently down-regulated in breast cancer tissue compared to adjacent normal tissue or breast tissue from healthy controls. Lower CRY2 expression was associated with estrogen receptor (ER)-negativity (P < 0.0001), higher tumor grade (P < 0.0001), and shorter overall survival time in breast cancer patients (HR = 1.44, 95 % confidence interval (CI) 1.09–1.91). Genome-wide methylation analysis showed that a total of 515 CpG sites were hypermethylated following CRY2 knockdown, while 730 sites were hypomethylated. The pathway analysis revealed several cancer-relevant networks with genes exhibiting significantly altered methylation following CRY2 silencing. These findings suggest that the core circadian gene CRY2 is associated with breast cancer progression and prognosis, and that knockdown of CRY2 causes the epigenetic dysregulation of genes involved in cancer-relevant pathways, which provide further evidence supporting a role of the circadian system in breast tumorigenesis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kondratov RV, Gorbacheva VY, Antoch MP. The role of mammalian circadian proteins in normal physiology and genotoxic stress responses. Curr Top Dev Biol. 2007;78:173–216.CrossRefPubMed Kondratov RV, Gorbacheva VY, Antoch MP. The role of mammalian circadian proteins in normal physiology and genotoxic stress responses. Curr Top Dev Biol. 2007;78:173–216.CrossRefPubMed
2.
Zurück zum Zitat Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.CrossRefPubMed Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.CrossRefPubMed
3.
Zurück zum Zitat Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 2002;12:551–7.CrossRefPubMed Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 2002;12:551–7.CrossRefPubMed
4.
Zurück zum Zitat Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer. 2003;3:350–61.CrossRefPubMed Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer. 2003;3:350–61.CrossRefPubMed
5.
Zurück zum Zitat Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, et al. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science. 1998;282:1490–4.CrossRefPubMed Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, et al. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science. 1998;282:1490–4.CrossRefPubMed
6.
Zurück zum Zitat van der Spek PJ, Kobayashi K, Bootsma D, Takao M, Eker AP, Yasui A. Cloning, tissue expression, and mapping of a human photolyase homolog with similarity to plant blue-light receptors. Genomics. 1996;37:177–82.CrossRefPubMed van der Spek PJ, Kobayashi K, Bootsma D, Takao M, Eker AP, Yasui A. Cloning, tissue expression, and mapping of a human photolyase homolog with similarity to plant blue-light receptors. Genomics. 1996;37:177–82.CrossRefPubMed
7.
Zurück zum Zitat Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A. Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol. 2005;25:3109–16.CrossRefPubMedPubMedCentral Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A. Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol. 2005;25:3109–16.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Gauger MA, Sancar A. Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 2005;65:6828–34.CrossRefPubMed Gauger MA, Sancar A. Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 2005;65:6828–34.CrossRefPubMed
9.
Zurück zum Zitat Zhu Y, Stevens RG, Hoffman AE, Fitzgerald LM, Kwon EM, Ostrander EA, et al. Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. Cancer Res. 2009;69:9315–22.CrossRefPubMedPubMedCentral Zhu Y, Stevens RG, Hoffman AE, Fitzgerald LM, Kwon EM, Ostrander EA, et al. Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. Cancer Res. 2009;69:9315–22.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Hoffman AE, Zheng T, Stevens RG, Ba Y, Zhang Y, Leaderer D, et al. Clock-cancer connection in non-Hodgkin’s lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. Cancer Res. 2009;69:3605–13.CrossRefPubMedPubMedCentral Hoffman AE, Zheng T, Stevens RG, Ba Y, Zhang Y, Leaderer D, et al. Clock-cancer connection in non-Hodgkin’s lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. Cancer Res. 2009;69:3605–13.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Hoffman AE, Zheng T, Yi CH, Stevens RG, Ba Y, Zhang Y, et al. The core circadian gene cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prevent Res (Philadelphia, Pa). 2010;3:539–48.CrossRef Hoffman AE, Zheng T, Yi CH, Stevens RG, Ba Y, Zhang Y, et al. The core circadian gene cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prevent Res (Philadelphia, Pa). 2010;3:539–48.CrossRef
12.
Zurück zum Zitat Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166–80.CrossRefPubMedPubMedCentral Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166–80.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer. 2007;7:55.CrossRefPubMedPubMedCentral Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer. 2007;7:55.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.CrossRefPubMed Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.CrossRefPubMed
15.
Zurück zum Zitat Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 2006;9:121–32.CrossRefPubMed Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 2006;9:121–32.CrossRefPubMed
16.
Zurück zum Zitat Gluck S, Ross JS, Royce M, McKenna Jr EF, Perou CM, Avisar E, et al. Tp53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine +/− trastuzumab. Breast Cancer Res Treat. 2012;132:781–91.CrossRefPubMed Gluck S, Ross JS, Royce M, McKenna Jr EF, Perou CM, Avisar E, et al. Tp53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine +/− trastuzumab. Breast Cancer Res Treat. 2012;132:781–91.CrossRefPubMed
17.
Zurück zum Zitat Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11:R7.CrossRefPubMedPubMedCentral Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11:R7.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Radvanyi L, Singh-Sandhu D, Gallichan S, Lovitt C, Pedyczak A, Mallo G, et al. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc Natl Acad Sci U S A. 2005;102:11005–10.CrossRefPubMedPubMedCentral Radvanyi L, Singh-Sandhu D, Gallichan S, Lovitt C, Pedyczak A, Mallo G, et al. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc Natl Acad Sci U S A. 2005;102:11005–10.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell. 2004;15:2523–36.CrossRefPubMedPubMedCentral Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell. 2004;15:2523–36.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.CrossRefPubMed Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.CrossRefPubMed
22.
23.
Zurück zum Zitat Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437:1032–7.CrossRefPubMed Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437:1032–7.CrossRefPubMed
24.
Zurück zum Zitat Hoffman AE, Zheng T, Ba Y, Stevens RG, Yi CH, Leaderer D, et al. Phenotypic effects of the circadian gene cryptochrome 2 on cancer-related pathways. BMC Cancer. 2010;10:110.CrossRefPubMedPubMedCentral Hoffman AE, Zheng T, Ba Y, Stevens RG, Yi CH, Leaderer D, et al. Phenotypic effects of the circadian gene cryptochrome 2 on cancer-related pathways. BMC Cancer. 2010;10:110.CrossRefPubMedPubMedCentral
25.
26.
Zurück zum Zitat Bourguignon LY, Singleton PA, Zhu H, Diedrich F. Hyaluronan-mediated cd44 interaction with rhogef and rho kinase promotes grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem. 2003;278:29420–34.CrossRefPubMed Bourguignon LY, Singleton PA, Zhu H, Diedrich F. Hyaluronan-mediated cd44 interaction with rhogef and rho kinase promotes grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem. 2003;278:29420–34.CrossRefPubMed
27.
Zurück zum Zitat Orian-Rousseau V, Morrison H, Matzke A, Kastilan T, Pace G, Herrlich P, et al. Hepatocyte growth factor-induced ras activation requires erm proteins linked to both cd44v6 and f-actin. Mol Biol Cell. 2007;18:76–83.CrossRefPubMedPubMedCentral Orian-Rousseau V, Morrison H, Matzke A, Kastilan T, Pace G, Herrlich P, et al. Hepatocyte growth factor-induced ras activation requires erm proteins linked to both cd44v6 and f-actin. Mol Biol Cell. 2007;18:76–83.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Bourguignon LY, Wong G, Earle C, Krueger K, Spevak CC. Hyaluronan-cd44 interaction promotes c-src-mediated twist signaling, microrna-10b expression, and rhoa/rhoc up-regulation, leading to rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285:36721–35.CrossRefPubMedPubMedCentral Bourguignon LY, Wong G, Earle C, Krueger K, Spevak CC. Hyaluronan-cd44 interaction promotes c-src-mediated twist signaling, microrna-10b expression, and rhoa/rhoc up-regulation, leading to rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285:36721–35.CrossRefPubMedPubMedCentral
29.
30.
Zurück zum Zitat Marhaba R, Zoller M. Cd44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35:211–31.CrossRefPubMed Marhaba R, Zoller M. Cd44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35:211–31.CrossRefPubMed
31.
Zurück zum Zitat Louderbough JM, Schroeder JA. Understanding the dual nature of cd44 in breast cancer progression. Mol Cancer Res. 2011;9:1573–86.CrossRefPubMed Louderbough JM, Schroeder JA. Understanding the dual nature of cd44 in breast cancer progression. Mol Cancer Res. 2011;9:1573–86.CrossRefPubMed
32.
Zurück zum Zitat Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, et al. Targeting bcl-2 with the bh3 mimetic abt-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24:120–9.CrossRefPubMed Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, et al. Targeting bcl-2 with the bh3 mimetic abt-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24:120–9.CrossRefPubMed
Metadaten
Titel
The circadian gene CRY2 is associated with breast cancer aggressiveness possibly via epigenomic modifications
verfasst von
Yingying Mao
Alan Fu
Aaron E. Hoffman
Daniel I. Jacobs
Mingjuan Jin
Kun Chen
Yong Zhu
Publikationsdatum
01.05.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 5/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2989-3

Weitere Artikel der Ausgabe 5/2015

Tumor Biology 5/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.