Skip to main content
Erschienen in: Clinical Pharmacokinetics 2/2014

01.02.2014 | Review Article

Clinical Pharmacokinetic Drug Interactions Associated with Artemisinin Derivatives and HIV-Antivirals

verfasst von: Tony K. L. Kiang, Kyle J. Wilby, Mary H. H. Ensom

Erschienen in: Clinical Pharmacokinetics | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Management of HIV and malaria co-infection is challenging due to potential drug–drug interactions between antimalarial and HIV-antiviral drugs. Little is known of the clinical significance of these drug interactions, and this review provides a comprehensive summary and critical evaluation of the literature. Specifically, drug interactions between WHO-recommended artemisinin combination therapies (ACT) and HIV-antivirals are discussed. An extensive literature search produced eight articles detailing n = 44 individual pharmacokinetic interactions. Only data pertaining to artemether–lumefantrine and two other artesunate combinations are available, but most of the interactions are characterized on at least two occasions by two different groups. Overall, protease inhibitors (PIs) tended to increase the exposure of lumefantrine and decrease the exposures of artemether and dihydroartemisinin, a pharmacologically active metabolite of artemether. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) tended to decrease the exposures of artemether, dihydroartemisinin, and lumefantrine when co-administered with artemether–lumefantrine. Fewer studies characterized the effects of PIs or NNRTIs on artesunate combinations, but nevirapine increased artesunate exposure and ritonavir decreased dihydroartemisinin exposure. On the other hand, artemether–lumefantrine or artesunate combinations had little effect on the pharmacokinetics of HIV-antivirals, with the exception of decreased nevirapine exposure from artemether–lumefantrine or increased ritonavir exposure from pyronaridine/artesunate co-administration. In general, pharmacokinetic interactions can be explained by the metabolic properties of the co-administered drugs. Despite several limitations to the studies, these data do provide valuable insights into the potential pharmacokinetic perturbations, and the consistently marked elevation or reduction in ACT exposure in some cases cannot be overlooked.
Literatur
3.
Zurück zum Zitat German P, Aweeka FT. Clinical pharmacology of artemisinin-based combination therapies. Clin Pharmacokinet. 2008;47:91–102.PubMedCrossRef German P, Aweeka FT. Clinical pharmacology of artemisinin-based combination therapies. Clin Pharmacokinet. 2008;47:91–102.PubMedCrossRef
5.
Zurück zum Zitat Chalwe V, Van Geertruyden JP, Mukwamataba D, et al. Increased risk for severe malaria in HIV-1-infected adults, Zambia. Emerg Infect Dis. 2009;15:749–55.PubMedCrossRef Chalwe V, Van Geertruyden JP, Mukwamataba D, et al. Increased risk for severe malaria in HIV-1-infected adults, Zambia. Emerg Infect Dis. 2009;15:749–55.PubMedCrossRef
6.
Zurück zum Zitat Grimwade K, French N, Mbatha DD, et al. HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa. AIDS. 2004;18:547–54.PubMedCrossRef Grimwade K, French N, Mbatha DD, et al. HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa. AIDS. 2004;18:547–54.PubMedCrossRef
7.
Zurück zum Zitat Ayisi JG, van Eijk AM, ter Kuile FO, et al. The effect of dual infection with HIV and malaria on pregnancy outcome in western Kenya. AIDS. 2003;17:585–94.PubMedCrossRef Ayisi JG, van Eijk AM, ter Kuile FO, et al. The effect of dual infection with HIV and malaria on pregnancy outcome in western Kenya. AIDS. 2003;17:585–94.PubMedCrossRef
8.
Zurück zum Zitat Bloland PB, Wirima JJ, Steketee RW, et al. Maternal HIV infection and infant mortality in Malawi: evidence for increased mortality due to placental malaria infection. AIDS. 1995;9:721–6.PubMedCrossRef Bloland PB, Wirima JJ, Steketee RW, et al. Maternal HIV infection and infant mortality in Malawi: evidence for increased mortality due to placental malaria infection. AIDS. 1995;9:721–6.PubMedCrossRef
9.
Zurück zum Zitat Van Geertruyden JP, Mulenga M, Mwananyanda L, et al. HIV-1 immune suppression and antimalarial treatment outcome in Zambian adults with uncomplicated malaria. J Infect Dis. 2006;194:917–25.PubMedCrossRef Van Geertruyden JP, Mulenga M, Mwananyanda L, et al. HIV-1 immune suppression and antimalarial treatment outcome in Zambian adults with uncomplicated malaria. J Infect Dis. 2006;194:917–25.PubMedCrossRef
10.
Zurück zum Zitat Kublin JG, Patnaik P, Jere CS, et al. Effect of Plasmodium falciparum malaria on concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study. Lancet. 2005;365:233–40.PubMed Kublin JG, Patnaik P, Jere CS, et al. Effect of Plasmodium falciparum malaria on concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study. Lancet. 2005;365:233–40.PubMed
11.
Zurück zum Zitat Khoo S, Back D, Winstanley P. The potential for interactions between antimalarial and antiretroviral drugs. AIDS. 2005;19:995–1005.PubMedCrossRef Khoo S, Back D, Winstanley P. The potential for interactions between antimalarial and antiretroviral drugs. AIDS. 2005;19:995–1005.PubMedCrossRef
13.
Zurück zum Zitat Byakika-Kibwika P, Lamorde M, Mayanja-Kizza H, et al. Update on the efficacy, effectiveness and safety of artemether–lumefantrine combination therapy for treatment of uncomplicated malaria. Ther Clin Risk Manag. 2010;6:11–20.PubMedCentralPubMed Byakika-Kibwika P, Lamorde M, Mayanja-Kizza H, et al. Update on the efficacy, effectiveness and safety of artemether–lumefantrine combination therapy for treatment of uncomplicated malaria. Ther Clin Risk Manag. 2010;6:11–20.PubMedCentralPubMed
14.
Zurück zum Zitat Giao PT, de Vries PJ. Pharmacokinetic interactions of antimalarial agents. Clin Pharmacokinet. 2001;40:343–73.PubMedCrossRef Giao PT, de Vries PJ. Pharmacokinetic interactions of antimalarial agents. Clin Pharmacokinet. 2001;40:343–73.PubMedCrossRef
15.
Zurück zum Zitat Medhi B, Patyar S, Rao RS, et al. Pharmacokinetic and toxicological profile of artemisinin compounds: an update. Pharmacology. 2009;84:323–32.PubMedCrossRef Medhi B, Patyar S, Rao RS, et al. Pharmacokinetic and toxicological profile of artemisinin compounds: an update. Pharmacology. 2009;84:323–32.PubMedCrossRef
16.
Zurück zum Zitat Nsanzabana C, Rosenthal P. In vitro activity of antiretroviral drugs against Plasmodium falciparum. Antimicrob Agents Chemother. 2011;55:5073–7.PubMedCentralPubMedCrossRef Nsanzabana C, Rosenthal P. In vitro activity of antiretroviral drugs against Plasmodium falciparum. Antimicrob Agents Chemother. 2011;55:5073–7.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat German P, Parikh S, Lawrence J, et al. Lopinavir/ritonavir affects pharmacokinetic exposure of artemether/lumefantrine in HIV-uninfected healthy volunteers. J Acquir Immune Defic Syndr. 2009;51:424–9.PubMedCrossRef German P, Parikh S, Lawrence J, et al. Lopinavir/ritonavir affects pharmacokinetic exposure of artemether/lumefantrine in HIV-uninfected healthy volunteers. J Acquir Immune Defic Syndr. 2009;51:424–9.PubMedCrossRef
18.
Zurück zum Zitat Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, et al. Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67:1217–23.PubMedCrossRef Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, et al. Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67:1217–23.PubMedCrossRef
19.
Zurück zum Zitat Kakuda T, Demasi R, van Delft Y, et al. Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. HIV Med. 2013;14:421–9.PubMedCrossRef Kakuda T, Demasi R, van Delft Y, et al. Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. HIV Med. 2013;14:421–9.PubMedCrossRef
20.
Zurück zum Zitat Wyen C, Fuhr U, Frank D, et al. Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther. 2008;84:75–82.PubMedCrossRef Wyen C, Fuhr U, Frank D, et al. Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther. 2008;84:75–82.PubMedCrossRef
21.
Zurück zum Zitat McKeage K, Perry CM, Keam SJ. Darunavir: a review of its use in the management of HIV infection in adults. Drugs. 2009;69:477–503.PubMedCrossRef McKeage K, Perry CM, Keam SJ. Darunavir: a review of its use in the management of HIV infection in adults. Drugs. 2009;69:477–503.PubMedCrossRef
22.
Zurück zum Zitat Lefevre G, Carpenter P, Souppart C, et al. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether–lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol. 2002;54:485–92.PubMedCrossRef Lefevre G, Carpenter P, Souppart C, et al. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether–lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol. 2002;54:485–92.PubMedCrossRef
23.
Zurück zum Zitat van Agtmael MA, Cheng-Qi S, Qing JX, et al. Multiple dose pharmacokinetics of artemether in Chinese patients with uncomplicated falciparum malaria. Int J Antimicrob Agents. 1999;12:151–8.PubMedCrossRef van Agtmael MA, Cheng-Qi S, Qing JX, et al. Multiple dose pharmacokinetics of artemether in Chinese patients with uncomplicated falciparum malaria. Int J Antimicrob Agents. 1999;12:151–8.PubMedCrossRef
24.
Zurück zum Zitat Yeh RF, Gaver VE, Patterson KB, et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006;42:52–60.PubMed Yeh RF, Gaver VE, Patterson KB, et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006;42:52–60.PubMed
25.
Zurück zum Zitat Foisy MM, Yakiwchuk EM, Hughes CA. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother. 2008;42:1048–59.PubMedCrossRef Foisy MM, Yakiwchuk EM, Hughes CA. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother. 2008;42:1048–59.PubMedCrossRef
26.
Zurück zum Zitat Ilett KF, Ethell BT, Maggs JL, et al. Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos. 2002;30:1005–12.PubMedCrossRef Ilett KF, Ethell BT, Maggs JL, et al. Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos. 2002;30:1005–12.PubMedCrossRef
27.
Zurück zum Zitat Zhang D, Chando TJ, Everett DW, et al. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos. 2005;33:1729–39.PubMedCrossRef Zhang D, Chando TJ, Everett DW, et al. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos. 2005;33:1729–39.PubMedCrossRef
28.
Zurück zum Zitat Price RN, Uhlemann AC, van Vugt M, et al. Molecular and pharmacological determinants of the therapeutic response to artemether–lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis. 2006;42:1570–7.PubMedCrossRef Price RN, Uhlemann AC, van Vugt M, et al. Molecular and pharmacological determinants of the therapeutic response to artemether–lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis. 2006;42:1570–7.PubMedCrossRef
29.
Zurück zum Zitat Byakika-Kibwika P, Lamorde M, Lwabi P, et al. Cardiac conduction safety during coadministration of artemether–lumefantrine and lopinavir/ritonavir in HIV-infected Ugandan adults. Chemother Res Pract. 2011;2011:1–4.CrossRef Byakika-Kibwika P, Lamorde M, Lwabi P, et al. Cardiac conduction safety during coadministration of artemether–lumefantrine and lopinavir/ritonavir in HIV-infected Ugandan adults. Chemother Res Pract. 2011;2011:1–4.CrossRef
30.
Zurück zum Zitat Byakika-Kibwika P, Lamorde M, Mayito J, et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;69:2213–21.CrossRef Byakika-Kibwika P, Lamorde M, Mayito J, et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;69:2213–21.CrossRef
31.
Zurück zum Zitat Huang L, Parikh S, Rosenthal PJ, et al. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether–lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr. 2012;61:310–6.PubMedCentralPubMedCrossRef Huang L, Parikh S, Rosenthal PJ, et al. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether–lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr. 2012;61:310–6.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Kredo T, Mauff K, Van der Walt JS, et al. Interaction between artemether–lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55:5616–23.PubMedCentralPubMedCrossRef Kredo T, Mauff K, Van der Walt JS, et al. Interaction between artemether–lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55:5616–23.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Hariparsad N, Nallani SC, Sane RS, et al. Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital. J Clin Pharmacol. 2004;44:1273–81.PubMedCrossRef Hariparsad N, Nallani SC, Sane RS, et al. Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital. J Clin Pharmacol. 2004;44:1273–81.PubMedCrossRef
34.
Zurück zum Zitat Faucette SR, Zhang TC, Moore R, et al. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J Pharmacol Exp Ther. 2007;320:72–80.PubMedCrossRef Faucette SR, Zhang TC, Moore R, et al. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J Pharmacol Exp Ther. 2007;320:72–80.PubMedCrossRef
35.
Zurück zum Zitat Yanakakis LJ, Bumpus NN. Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab Dispos. 2012;40:803–14.PubMedCrossRef Yanakakis LJ, Bumpus NN. Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab Dispos. 2012;40:803–14.PubMedCrossRef
36.
Zurück zum Zitat Lamorde M, Byakika-Kibwika P, Mayito J, et al. Lower artemether, dihydroartemisinin and lumefantrine concentrations during rifampicin-based tuberculosis treatment. AIDS. 2013;27:961–5.PubMedCrossRef Lamorde M, Byakika-Kibwika P, Mayito J, et al. Lower artemether, dihydroartemisinin and lumefantrine concentrations during rifampicin-based tuberculosis treatment. AIDS. 2013;27:961–5.PubMedCrossRef
37.
Zurück zum Zitat Fehintola FA, Scarsi KK, Ma Q, et al. Nevirapine-based antiretroviral therapy impacts artesunate and dihydroartemisinin disposition in HIV-infected Nigerian adults. AIDS Res Treat. 2012;2012:1–6.CrossRef Fehintola FA, Scarsi KK, Ma Q, et al. Nevirapine-based antiretroviral therapy impacts artesunate and dihydroartemisinin disposition in HIV-infected Nigerian adults. AIDS Res Treat. 2012;2012:1–6.CrossRef
38.
Zurück zum Zitat Morris CA, Lopez-Lazaro L, Jung D, et al. Drug–drug interaction analysis of pyronaridine/artesunate and ritonavir in healthy volunteers. Am J Trop Med Hyg. 2012;86:489–95.PubMedCrossRef Morris CA, Lopez-Lazaro L, Jung D, et al. Drug–drug interaction analysis of pyronaridine/artesunate and ritonavir in healthy volunteers. Am J Trop Med Hyg. 2012;86:489–95.PubMedCrossRef
39.
Zurück zum Zitat Li XQ, Bjorkman A, Andersson TB, et al. Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003;59:429–42.PubMedCrossRef Li XQ, Bjorkman A, Andersson TB, et al. Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003;59:429–42.PubMedCrossRef
40.
Zurück zum Zitat Lamson M, MacGregor T, Riska P, et al. Nevirapine induces both CYP3A4 and CYP2B6 metabolic pathways. Clin Pharmacol Ther. 1999;65:137.CrossRef Lamson M, MacGregor T, Riska P, et al. Nevirapine induces both CYP3A4 and CYP2B6 metabolic pathways. Clin Pharmacol Ther. 1999;65:137.CrossRef
41.
Zurück zum Zitat Aarnoutse RE, Kleinnijenhuis J, Koopmans PP, et al. Effect of low-dose ritonavir (100 mg twice daily) on the activity of cytochrome P450 2D6 in healthy volunteers. Clin Pharmacol Ther. 2005;78:664–74.PubMedCrossRef Aarnoutse RE, Kleinnijenhuis J, Koopmans PP, et al. Effect of low-dose ritonavir (100 mg twice daily) on the activity of cytochrome P450 2D6 in healthy volunteers. Clin Pharmacol Ther. 2005;78:664–74.PubMedCrossRef
42.
Zurück zum Zitat Croft SL, Duparc S, Arbe-Barnes SJ, et al. Review of pyronaridine anti-malarial properties and product characteristics. Malar J. 2012;11:270–98.PubMedCentralPubMedCrossRef Croft SL, Duparc S, Arbe-Barnes SJ, et al. Review of pyronaridine anti-malarial properties and product characteristics. Malar J. 2012;11:270–98.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Teja-Isavadharm P, Watt G, Eamsila C, et al. Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65:717–21.PubMed Teja-Isavadharm P, Watt G, Eamsila C, et al. Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65:717–21.PubMed
44.
Zurück zum Zitat Dickinson L, Khoo S, Back D, et al. Differences in the pharmacokinetics of protease inhibitors between healthy volunteers and HIV-infected persons. Curr Opin HIV AIDS. 2008;3:296–305.PubMedCrossRef Dickinson L, Khoo S, Back D, et al. Differences in the pharmacokinetics of protease inhibitors between healthy volunteers and HIV-infected persons. Curr Opin HIV AIDS. 2008;3:296–305.PubMedCrossRef
Metadaten
Titel
Clinical Pharmacokinetic Drug Interactions Associated with Artemisinin Derivatives and HIV-Antivirals
verfasst von
Tony K. L. Kiang
Kyle J. Wilby
Mary H. H. Ensom
Publikationsdatum
01.02.2014
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 2/2014
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-013-0110-5

Weitere Artikel der Ausgabe 2/2014

Clinical Pharmacokinetics 2/2014 Zur Ausgabe