Skip to main content
Erschienen in: Clinical Pharmacokinetics 5/2017

12.10.2016 | Review Article

Clinical Pharmacokinetics and Pharmacodynamics of Cabozantinib

verfasst von: Steven A. Lacy, Dale R. Miles, Linh T. Nguyen

Erschienen in: Clinical Pharmacokinetics | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Cabozantinib inhibits receptor tyrosine kinases involved in tumor angiogenesis and metastasis. The capsule formulation (Cometriq®) is approved for the treatment of progressive metastatic medullary thyroid cancer at a 140-mg free base equivalent dose. The tablet formulation (Cabometyx™, 60-mg free base equivalent dose) is approved for the treatment of renal cell carcinoma following anti-angiogenic therapy. Cabozantinib displays a long terminal plasma half-life (~120 h) and accumulates ~fivefold by day 15 following daily dosing based on area under the plasma concentration-time curve (AUC). Four identified inactive metabolites constitute >65 % of total cabozantinib-related AUC following a single 140-mg free base equivalent dose. Cabozantinib AUC was increased by 63–81 % or 7–30 % in subjects with mild/moderate hepatic or renal impairment, respectively; by 34–38 % with concomitant cytochrome P450 3A4 inhibitor ketoconazole; and by 57 % following a high-fat meal. Cabozantinib AUC was decreased by 76–77 % with concomitant cytochrome P450 3A4 inducer rifampin, and was unaffected following administration of proton pump inhibitor esomeprazole. Cabozantinib is a potent in vitro inhibitor of P-glycoprotein, and multidrug and toxin extrusion transporter 1 and 2-K, and is a substrate for multidrug resistance protein 2. No clinically significant covariates affecting cabozantinib pharmacokinetics were identified in a population pharmacokinetic analysis. Patients with medullary thyroid cancer with low model-predicted apparent clearance were more likely to dose hold/reduce cabozantinib early, and had a lower average dose through day 85. However, longitudinal tumor modeling suggests that cabozantinib dose reductions from 140 to 60 mg/day did not markedly reduce tumor growth inhibition in medullary thyroid cancer patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.CrossRefPubMed Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.CrossRefPubMed
2.
Zurück zum Zitat Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10(6):417–27.CrossRefPubMed Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10(6):417–27.CrossRefPubMed
3.
Zurück zum Zitat Trusolino L, Bertotti A, Comoglio PM. MET signaling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11(12):834–48.CrossRefPubMed Trusolino L, Bertotti A, Comoglio PM. MET signaling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11(12):834–48.CrossRefPubMed
4.
Zurück zum Zitat Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.CrossRefPubMed Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.CrossRefPubMed
5.
Zurück zum Zitat Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16.CrossRefPubMed Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16.CrossRefPubMed
6.
Zurück zum Zitat Nickerson ML, Jaeger E, Shi Y, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14(15):4726–34.CrossRefPubMedPubMedCentral Nickerson ML, Jaeger E, Shi Y, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14(15):4726–34.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Rini BI. Metastatic renal cell carcinoma: many treatment options, one patient. J Clin Oncol. 2009;27(19):3225–34.CrossRefPubMed Rini BI. Metastatic renal cell carcinoma: many treatment options, one patient. J Clin Oncol. 2009;27(19):3225–34.CrossRefPubMed
8.
10.
Zurück zum Zitat Cometriq™ (cabozantinib) capsules. US prescribing information. Exelixis, Inc. November 2012. Cometriq™ (cabozantinib) capsules. US prescribing information. Exelixis, Inc. November 2012.
11.
Zurück zum Zitat Choueiri TK, Pal SK, McDermott DF, et al. A phase 1 study of cabozantinib (XL184) in patients with renal cell carcinoma. Ann Oncol. 2014;25(8):1603–8.CrossRefPubMed Choueiri TK, Pal SK, McDermott DF, et al. A phase 1 study of cabozantinib (XL184) in patients with renal cell carcinoma. Ann Oncol. 2014;25(8):1603–8.CrossRefPubMed
12.
13.
Zurück zum Zitat Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomized, open-label phase 3 trial. Lancet Oncol. 2016;17(7):917–27.CrossRefPubMed Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomized, open-label phase 3 trial. Lancet Oncol. 2016;17(7):917–27.CrossRefPubMed
14.
Zurück zum Zitat Cabometyx™ (cabozantinib) tablets. US prescribing information. Exelixis, Inc. April 2016. Cabometyx™ (cabozantinib) tablets. US prescribing information. Exelixis, Inc. April 2016.
15.
Zurück zum Zitat Cabometyx™ (cabozantinib) tablets. Summary of product characteristics. Ipsen Pharma. September 2016. Cabometyx™ (cabozantinib) tablets. Summary of product characteristics. Ipsen Pharma. September 2016.
17.
Zurück zum Zitat Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29:2660–6.CrossRefPubMedPubMedCentral Kurzrock R, Sherman SI, Ball DW, et al. Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29:2660–6.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Nguyen L, Holland J, Miles D, et al. Pharmacokinetic (PK) drug interaction studies of cabozantinib: effect of CYP3A4 inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK, and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol. 2015;55(9):1012–23.CrossRefPubMed Nguyen L, Holland J, Miles D, et al. Pharmacokinetic (PK) drug interaction studies of cabozantinib: effect of CYP3A4 inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK, and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol. 2015;55(9):1012–23.CrossRefPubMed
19.
Zurück zum Zitat Nguyen L, Benrimoh N, Xie Y, Lacy S. Pharmacokinetics of cabozantinib tablet and capsule formulations in healthy adult subjects. Anticancer Drugs. 2016;27(7):669–78.CrossRefPubMed Nguyen L, Benrimoh N, Xie Y, Lacy S. Pharmacokinetics of cabozantinib tablet and capsule formulations in healthy adult subjects. Anticancer Drugs. 2016;27(7):669–78.CrossRefPubMed
20.
Zurück zum Zitat Nguyen L, Holland J, Ramies D, et al. Effect of renal and hepatic impairment on the pharmacokinetics of cabozantinib. J Clin Pharmacol. 2016;56(9):1130–40.CrossRefPubMed Nguyen L, Holland J, Ramies D, et al. Effect of renal and hepatic impairment on the pharmacokinetics of cabozantinib. J Clin Pharmacol. 2016;56(9):1130–40.CrossRefPubMed
21.
Zurück zum Zitat Nguyen L, Holland J, Mamelock R, et al. Evaluation of the effect of food and gastric pH on the single-dose plasma pharmacokinetics of cabozantinib in healthy adult subjects. J Clin Pharmacol. 2015;55:1293–302.CrossRefPubMed Nguyen L, Holland J, Mamelock R, et al. Evaluation of the effect of food and gastric pH on the single-dose plasma pharmacokinetics of cabozantinib in healthy adult subjects. J Clin Pharmacol. 2015;55:1293–302.CrossRefPubMed
22.
Zurück zum Zitat Lacy S, Hsu B, Miles D, et al. Metabolism and disposition of cabozantinib in healthy male volunteers and pharmacologic characterization of its major metabolites. Drug Metab Dispos. 2015;43:1190–207.CrossRefPubMed Lacy S, Hsu B, Miles D, et al. Metabolism and disposition of cabozantinib in healthy male volunteers and pharmacologic characterization of its major metabolites. Drug Metab Dispos. 2015;43:1190–207.CrossRefPubMed
23.
Zurück zum Zitat Miles D, Jumbe S, Lacy S, Nguyen L. Population pharmacokinetic model of cabozantinib in patients with medullary thyroid carcinoma and its application to an exposure-response analysis. Clin Pharmacokinet. 2016;55(1):93–105.CrossRefPubMed Miles D, Jumbe S, Lacy S, Nguyen L. Population pharmacokinetic model of cabozantinib in patients with medullary thyroid carcinoma and its application to an exposure-response analysis. Clin Pharmacokinet. 2016;55(1):93–105.CrossRefPubMed
24.
Zurück zum Zitat Miles DR, Wada DR, Jumbe NL, et al. Population pharmacokinetic/pharmacodynamic modeling of tumor growth kinetics in medullary thyroid cancer patients receiving cabozantinib. Anticancer Drugs. 2016;27(4):328–41.CrossRefPubMed Miles DR, Wada DR, Jumbe NL, et al. Population pharmacokinetic/pharmacodynamic modeling of tumor growth kinetics in medullary thyroid cancer patients receiving cabozantinib. Anticancer Drugs. 2016;27(4):328–41.CrossRefPubMed
26.
Zurück zum Zitat Bentzien F, Zuzow M, Heald N, et al. In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer. Thyroid. 2013;23(12):1569–77.CrossRefPubMedPubMedCentral Bentzien F, Zuzow M, Heald N, et al. In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer. Thyroid. 2013;23(12):1569–77.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Zhou L, Liu X-D, Sun M, et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene. 2016;35(21):2687–97.CrossRefPubMed Zhou L, Liu X-D, Sun M, et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene. 2016;35(21):2687–97.CrossRefPubMed
28.
Zurück zum Zitat Xiang Q, Chen W, Ren M, et al. Cabozantinib suppresses tumor growth and metastasis in hepatocellular carcinoma by dual blockade of VEGFR2 and MET. Clin Cancer Res. 2014;20(11):2959–70.CrossRefPubMed Xiang Q, Chen W, Ren M, et al. Cabozantinib suppresses tumor growth and metastasis in hepatocellular carcinoma by dual blockade of VEGFR2 and MET. Clin Cancer Res. 2014;20(11):2959–70.CrossRefPubMed
29.
Zurück zum Zitat Sameni M, Tovar EA, Essenburg CJ, et al. Cabozantinib (XL184) inhibits growth and invasion of preclinical TNBC models. Clin Cancer Res. 2016;22(4):923–34.CrossRefPubMed Sameni M, Tovar EA, Essenburg CJ, et al. Cabozantinib (XL184) inhibits growth and invasion of preclinical TNBC models. Clin Cancer Res. 2016;22(4):923–34.CrossRefPubMed
30.
Zurück zum Zitat Zhang L, Scorsone K, Woodfield SE, Page PE. Sensitivity of neuroblastoma to the novel kinase inhibitor cabozantinib is mediated by ERK inhibition. Cancer Chemother Pharmacol. 2015;76(5):977–87.CrossRefPubMed Zhang L, Scorsone K, Woodfield SE, Page PE. Sensitivity of neuroblastoma to the novel kinase inhibitor cabozantinib is mediated by ERK inhibition. Cancer Chemother Pharmacol. 2015;76(5):977–87.CrossRefPubMed
31.
Zurück zum Zitat Song EK, Tai WM, Messersmith WA, et al. Potent antitumor activity of cabozantinib, a c-MET and VEGFR2 inhibitor, in colorectal cancer patient-derived tumor explant model. Int J Cancer. 2015;136(8):1967–75.CrossRefPubMed Song EK, Tai WM, Messersmith WA, et al. Potent antitumor activity of cabozantinib, a c-MET and VEGFR2 inhibitor, in colorectal cancer patient-derived tumor explant model. Int J Cancer. 2015;136(8):1967–75.CrossRefPubMed
32.
Zurück zum Zitat Cohen NA, Zeng S, Seifert AM, et al. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res. 2015;75(10):2061–70.CrossRefPubMedPubMedCentral Cohen NA, Zeng S, Seifert AM, et al. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res. 2015;75(10):2061–70.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Sennino B, Ishiguro-Oonuma T, Wei Y, et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2012;2(3):270–87.CrossRefPubMedPubMedCentral Sennino B, Ishiguro-Oonuma T, Wei Y, et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2012;2(3):270–87.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Dai J, Zhang H, Karatsinides A, et al. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions. Clin Cancer Res. 2014;20(3):617–30.CrossRefPubMed Dai J, Zhang H, Karatsinides A, et al. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions. Clin Cancer Res. 2014;20(3):617–30.CrossRefPubMed
36.
Zurück zum Zitat European Medicines Agency. Guideline on the investigation of bioequivalence. CPMP/EWP/QWP/1401/98 Rev. 1/Corr. London: European Medicines Agency; January 2010. European Medicines Agency. Guideline on the investigation of bioequivalence. CPMP/EWP/QWP/1401/98 Rev. 1/Corr. London: European Medicines Agency; January 2010.
37.
Zurück zum Zitat US Food and Drug Administration. Guidance for Industry. Bioavailability and bioequivalence studies for orally administered drug products: general considerations; revision 1. Rockville, MD: US Department of Health and Human Services, Food and Drug Administration; 2003. US Food and Drug Administration. Guidance for Industry. Bioavailability and bioequivalence studies for orally administered drug products: general considerations; revision 1. Rockville, MD: US Department of Health and Human Services, Food and Drug Administration; 2003.
38.
Zurück zum Zitat US Food and Drug Administration. Guidance for industry. Bioavailability and bioequivalence studies submitted in NDAs and INDs: general considerations. Rockville, MD: US Department of Health and Human Services, Food and Drug Administration; 2014. US Food and Drug Administration. Guidance for industry. Bioavailability and bioequivalence studies submitted in NDAs and INDs: general considerations. Rockville, MD: US Department of Health and Human Services, Food and Drug Administration; 2014.
39.
Zurück zum Zitat Foxx-Lupo WT, Sing S, Alwan L, Tykodi SS. A drug interaction between cabozantinib and warfarin in a patient with renal cell carcinoma. Clin Genitourin Cancer. 2016;14(1):119–21.CrossRef Foxx-Lupo WT, Sing S, Alwan L, Tykodi SS. A drug interaction between cabozantinib and warfarin in a patient with renal cell carcinoma. Clin Genitourin Cancer. 2016;14(1):119–21.CrossRef
40.
Zurück zum Zitat European Medicines Agency. Guideline on the investigation of drug interactions. London: European Medicines Agency; 2012. European Medicines Agency. Guideline on the investigation of drug interactions. London: European Medicines Agency; 2012.
41.
Zurück zum Zitat US Food and Drug Administration. Guidance for industry. Drug interactions studies: study design, data analysis, implications for dosing, and labeling recommendations. Rockville, MD: US Food and Drug Administration; 2012. US Food and Drug Administration. Guidance for industry. Drug interactions studies: study design, data analysis, implications for dosing, and labeling recommendations. Rockville, MD: US Food and Drug Administration; 2012.
42.
Zurück zum Zitat Xiang QF, Zhang DM, Wang JN, et al. Cabozantinib reverses multidrug resistance of human hepatoma HepG2/adr cells by modulating the function of P-glycoprotein. Liver Int. 2015;35(3):110–23.CrossRef Xiang QF, Zhang DM, Wang JN, et al. Cabozantinib reverses multidrug resistance of human hepatoma HepG2/adr cells by modulating the function of P-glycoprotein. Liver Int. 2015;35(3):110–23.CrossRef
Metadaten
Titel
Clinical Pharmacokinetics and Pharmacodynamics of Cabozantinib
verfasst von
Steven A. Lacy
Dale R. Miles
Linh T. Nguyen
Publikationsdatum
12.10.2016
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 5/2017
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-016-0461-9

Weitere Artikel der Ausgabe 5/2017

Clinical Pharmacokinetics 5/2017 Zur Ausgabe