Skip to main content
Erschienen in: Drugs 10/2021

01.07.2021 | Leading Article

Current Status of Clinical Trials on Tau Immunotherapies

verfasst von: Changyi Ji, Einar M. Sigurdsson

Erschienen in: Drugs | Ausgabe 10/2021

Einloggen, um Zugang zu erhalten

Abstract

Tau immunotherapies have advanced from proof-of-concept studies to over a dozen clinical trials for Alzheimer’s disease (AD) and other tauopathies. Mechanistic studies in animal and culture models have provided valuable insight into how these therapies may work but multiple pathways are likely involved. Different groups have emphasized the importance of intracellular vs extracellular antibody-mediated clearance of the tau protein and there is no consensus on which pool of tau should ideally be targeted. Likewise, various normal and disease-selective epitopes are being targeted, and the antibody isotypes either favor phagocytosis of the tau-antibody complex or are neutral in that aspect. Most of the clinical trials are in early stages, thus their efficacy is not yet known, but all have been without any major adverse effects and some have reported target engagement. A few have been discontinued. One in phase I, presumably because of a poor pharmacokinetic profile, and three in phase II for a lack of efficacy although this trial stage is not well powered for efficacy measures. In these phase II studies, trials with two antibodies in patients with progressive supranuclear palsy or other primary tauopathies were halted but are continuing in patients with AD, and one antibody trial was stopped in early-stage AD but is continuing in moderate AD. These three antibodies have been reported to only work extracellularly and tau is not increased in the cerebrospinal fluid of primary tauopathies, which may explain the failures of two of them. In the discontinued AD trial, there are some concerns about how much of extracellular tau contains the N-terminal epitope that is being targeted. In addition, extracellular tau is only a small part of total tau, compared to intracellular tau. Targeting only the former may not be sufficient for functional benefits. Given these outcomes, decision makers within the pharmaceutical companies who green light these trials should attempt to target tau not only extracellularly but also intracellularly to increase their chances of success. Hopefully, some of the ongoing trials will provide some functional benefits to the large number of patients with tauopathies.
Literatur
2.
Zurück zum Zitat Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med. 2015;21(6):394–402.PubMedCrossRef Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med. 2015;21(6):394–402.PubMedCrossRef
4.
Zurück zum Zitat Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3 Pt 1):631–9.PubMedCrossRef Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3 Pt 1):631–9.PubMedCrossRef
5.
Zurück zum Zitat Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci. 2010;30(49):16559–66.PubMedPubMedCentralCrossRef Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci. 2010;30(49):16559–66.PubMedPubMedCentralCrossRef
6.
7.
Zurück zum Zitat Rajamohamedsait H, Rasool S, Rajamohamedsait W, et al. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci Rep. 2017;7(1):17034.PubMedPubMedCentralCrossRef Rajamohamedsait H, Rasool S, Rajamohamedsait W, et al. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci Rep. 2017;7(1):17034.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Wu Q, Bai Y, Li W, et al. Increased neuronal activity in motor cortex reveals prominent calcium dyshomeostasis in tauopathy mice. Neurobiol Dis. 2021;147:105165.PubMedCrossRef Wu Q, Bai Y, Li W, et al. Increased neuronal activity in motor cortex reveals prominent calcium dyshomeostasis in tauopathy mice. Neurobiol Dis. 2021;147:105165.PubMedCrossRef
9.
Zurück zum Zitat Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: lessons learned, current status and future considerations. Neuropharmacology. 2020;175:108104.PubMedCrossRefPubMedCentral Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: lessons learned, current status and future considerations. Neuropharmacology. 2020;175:108104.PubMedCrossRefPubMedCentral
10.
Zurück zum Zitat Sigurdsson EM. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis. 2008;15(2):157–68.PubMedPubMedCentralCrossRef Sigurdsson EM. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis. 2008;15(2):157–68.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Sigurdsson EM. Alzheimer’s therapy development: a few points to consider. Prog Mol Biol Transl Sci. 2019;168:205–17.PubMedCrossRef Sigurdsson EM. Alzheimer’s therapy development: a few points to consider. Prog Mol Biol Transl Sci. 2019;168:205–17.PubMedCrossRef
12.
Zurück zum Zitat Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–97.CrossRefPubMed Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–97.CrossRefPubMed
13.
Zurück zum Zitat Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, et al. It’s all about tau. Prog Neurobiol. 2019;175:54–76.PubMedCrossRef Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, et al. It’s all about tau. Prog Neurobiol. 2019;175:54–76.PubMedCrossRef
14.
Zurück zum Zitat Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609–22.PubMedCrossRef Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609–22.PubMedCrossRef
16.
Zurück zum Zitat Gong CX, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm (Vienna). 2005;112(6):813–38.CrossRef Gong CX, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm (Vienna). 2005;112(6):813–38.CrossRef
17.
Zurück zum Zitat Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58(4):458–71.PubMedCrossRef Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58(4):458–71.PubMedCrossRef
18.
Zurück zum Zitat Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986;83(13):4913–7.PubMedPubMedCentralCrossRef Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986;83(13):4913–7.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12(1):15–27.CrossRefPubMed Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12(1):15–27.CrossRefPubMed
20.
Zurück zum Zitat Hoover BR, Reed MN, Su J, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–81.PubMedPubMedCentralCrossRef Hoover BR, Reed MN, Su J, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–81.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Zempel H, Thies E, Mandelkow E, et al. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30(36):11938–50.PubMedPubMedCentralCrossRef Zempel H, Thies E, Mandelkow E, et al. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30(36):11938–50.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Xia D, Li C, Gotz J. Pseudophosphorylation of tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein tau to dendritic spines. Biochim Biophys Acta. 2015;1852(5):913–24.PubMedCrossRef Xia D, Li C, Gotz J. Pseudophosphorylation of tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein tau to dendritic spines. Biochim Biophys Acta. 2015;1852(5):913–24.PubMedCrossRef
23.
Zurück zum Zitat Li C, Gotz J. Somatodendritic accumulation of Tau in Alzheimer’s disease is promoted by Fyn-mediated local protein translation. Embo J. 2017;36(21):3120–38.PubMedPubMedCentralCrossRef Li C, Gotz J. Somatodendritic accumulation of Tau in Alzheimer’s disease is promoted by Fyn-mediated local protein translation. Embo J. 2017;36(21):3120–38.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36(2):693–709.PubMedCrossRef Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36(2):693–709.PubMedCrossRef
26.
Zurück zum Zitat Yamada K, Cirrito JR, Stewart FR, et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci. 2011;31(37):13110–7.PubMedPubMedCentralCrossRef Yamada K, Cirrito JR, Stewart FR, et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci. 2011;31(37):13110–7.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019;363:880–4.PubMedPubMedCentralCrossRef Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019;363:880–4.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Chai X, Dage JL, Citron M. Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis. 2012;48(3):356–66.PubMedCrossRef Chai X, Dage JL, Citron M. Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis. 2012;48(3):356–66.PubMedCrossRef
29.
Zurück zum Zitat Han P, Serrano G, Beach TG, et al. A quantitative analysis of brain soluble tau and the tau secretion factor. J Neuropathol Exp Neurol. 2017;76(1):44–51.PubMedPubMedCentral Han P, Serrano G, Beach TG, et al. A quantitative analysis of brain soluble tau and the tau secretion factor. J Neuropathol Exp Neurol. 2017;76(1):44–51.PubMedPubMedCentral
30.
Zurück zum Zitat Barthelemy NR, Gabelle A, Hirtz C, et al. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with Lewy bodies. J Alzheimers Dis. 2016;51(4):1033–43.PubMedCrossRef Barthelemy NR, Gabelle A, Hirtz C, et al. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with Lewy bodies. J Alzheimers Dis. 2016;51(4):1033–43.PubMedCrossRef
31.
Zurück zum Zitat Colin M, Dujardin S, Schraen-Maschke S, et al. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol. 2020;139(1):3–25.PubMedCrossRef Colin M, Dujardin S, Schraen-Maschke S, et al. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol. 2020;139(1):3–25.PubMedCrossRef
33.
Zurück zum Zitat Hales CM, Hu WT. From frontotemporal lobar degeneration pathology to frontotemporal lobar degeneration biomarkers. Int Rev Psychiatry. 2013;25(2):210–20.PubMedCrossRef Hales CM, Hu WT. From frontotemporal lobar degeneration pathology to frontotemporal lobar degeneration biomarkers. Int Rev Psychiatry. 2013;25(2):210–20.PubMedCrossRef
34.
Zurück zum Zitat Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84.PubMedCrossRef Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84.PubMedCrossRef
35.
Zurück zum Zitat Sigurdsson EM. Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. J Alzheimers Dis. 2018;64(s1):S555–65.PubMedPubMedCentralCrossRef Sigurdsson EM. Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. J Alzheimers Dis. 2018;64(s1):S555–65.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology. 2008;70(19 Pt 2):1827–35.PubMedCrossRef Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology. 2008;70(19 Pt 2):1827–35.PubMedCrossRef
38.
Zurück zum Zitat Grossman M, Farmer J, Leight S, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol. 2005;57(5):721–9.PubMedCrossRef Grossman M, Farmer J, Leight S, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol. 2005;57(5):721–9.PubMedCrossRef
39.
Zurück zum Zitat Wagshal D, Sankaranarayanan S, Guss V, et al. Divergent CSF τ alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2015;86(3):244–50.PubMedCrossRef Wagshal D, Sankaranarayanan S, Guss V, et al. Divergent CSF τ alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2015;86(3):244–50.PubMedCrossRef
40.
Zurück zum Zitat Congdon EE, Chukwu JE, Shamir DB, et al. Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy. EBioMedicine. 2019;42:157–73.PubMedPubMedCentralCrossRef Congdon EE, Chukwu JE, Shamir DB, et al. Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy. EBioMedicine. 2019;42:157–73.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Cicognola C, Brinkmalm G, Wahlgren J, et al. Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol. 2019;137(2):279–96.PubMedCrossRef Cicognola C, Brinkmalm G, Wahlgren J, et al. Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol. 2019;137(2):279–96.PubMedCrossRef
42.
Zurück zum Zitat Meredith JE Jr, Sankaranarayanan S, Guss V, et al. Characterization of novel CSF tau and ptau biomarkers for Alzheimer’s disease. PLoS ONE. 2013;8(10):e76523.PubMedCrossRef Meredith JE Jr, Sankaranarayanan S, Guss V, et al. Characterization of novel CSF tau and ptau biomarkers for Alzheimer’s disease. PLoS ONE. 2013;8(10):e76523.PubMedCrossRef
43.
44.
Zurück zum Zitat Sengupta U, Portelius E, Hansson O, et al. Tau oligomers in cerebrospinal fluid in Alzheimer’s disease. Ann Clin Transl Neurol. 2017;4(4):226–35.PubMedPubMedCentralCrossRef Sengupta U, Portelius E, Hansson O, et al. Tau oligomers in cerebrospinal fluid in Alzheimer’s disease. Ann Clin Transl Neurol. 2017;4(4):226–35.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Gerson JE, Sengupta U, Lasagna-Reeves CA, et al. Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol Commun. 2014;2:73.PubMedPubMedCentralCrossRef Gerson JE, Sengupta U, Lasagna-Reeves CA, et al. Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol Commun. 2014;2:73.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Clavaguera F, Bolmont T, Crowther RA, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11(7):909–13.PubMedPubMedCentralCrossRef Clavaguera F, Bolmont T, Crowther RA, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11(7):909–13.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Goedert M, Spillantini MG. Propagation of tau aggregates. Mol. Brain. 2017;10(1):18. Goedert M, Spillantini MG. Propagation of tau aggregates. Mol. Brain. 2017;10(1):18.
50.
51.
Zurück zum Zitat Falcon B, Zhang W, Murzin AG, et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature. 2018;561(7721):137–40.PubMedPubMedCentralCrossRef Falcon B, Zhang W, Murzin AG, et al. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature. 2018;561(7721):137–40.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Falcon B, Zivanov J, Zhang W, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019;568(7752):420–3.PubMedPubMedCentralCrossRef Falcon B, Zivanov J, Zhang W, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019;568(7752):420–3.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Arakhamia T, Lee CE, Carlomagno Y, et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell. 2020;180(4):633-44.e12.PubMedPubMedCentralCrossRef Arakhamia T, Lee CE, Carlomagno Y, et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell. 2020;180(4):633-44.e12.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Kametani F, Yoshida M, Matsubara T, et al. Comparison of common and disease-specific post-translational modifications of pathological tau associated with a wide range of tauopathies. Front Neurosci. 2020;14:581936.PubMedPubMedCentralCrossRef Kametani F, Yoshida M, Matsubara T, et al. Comparison of common and disease-specific post-translational modifications of pathological tau associated with a wide range of tauopathies. Front Neurosci. 2020;14:581936.PubMedPubMedCentralCrossRef
55.
56.
Zurück zum Zitat Congdon EE, Lin Y, Rajamohamedsait HB, et al. Affinity of tau antibodies for solubilized pathological tau species but not their immunogen or insoluble tau aggregates predicts in vivo and ex vivo efficacy. Mol Neurodegener. 2016;11(1):62.PubMedPubMedCentralCrossRef Congdon EE, Lin Y, Rajamohamedsait HB, et al. Affinity of tau antibodies for solubilized pathological tau species but not their immunogen or insoluble tau aggregates predicts in vivo and ex vivo efficacy. Mol Neurodegener. 2016;11(1):62.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Sebastian-Serrano A, de Diego-Garcia L, Diaz-Hernandez M. The neurotoxic role of extracellular tau protein. Int J Mol Sci. 2018;19(4):998.PubMedCentralCrossRef Sebastian-Serrano A, de Diego-Garcia L, Diaz-Hernandez M. The neurotoxic role of extracellular tau protein. Int J Mol Sci. 2018;19(4):998.PubMedCentralCrossRef
58.
Zurück zum Zitat Asuni AA, Boutajangout A, Quartermain D, et al. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007;27(34):9115–29.PubMedPubMedCentralCrossRef Asuni AA, Boutajangout A, Quartermain D, et al. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007;27(34):9115–29.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Congdon EE, Gu J, Sait HB, et al. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcgamma receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem. 2013;288(49):35452–65.PubMedPubMedCentralCrossRef Congdon EE, Gu J, Sait HB, et al. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcgamma receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem. 2013;288(49):35452–65.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Gu J, Congdon EE, Sigurdsson EM. Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J Biol Chem. 2013;288(46):33081–95.PubMedPubMedCentralCrossRef Gu J, Congdon EE, Sigurdsson EM. Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J Biol Chem. 2013;288(46):33081–95.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Krishnamurthy PK, Deng Y, Sigurdsson EM. Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front Psychiatry. 2011;2:59.PubMedPubMedCentralCrossRef Krishnamurthy PK, Deng Y, Sigurdsson EM. Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front Psychiatry. 2011;2:59.PubMedPubMedCentralCrossRef
62.
63.
Zurück zum Zitat Shamir DB, Deng Y, Sigurdsson EM. Live imaging of pathological tau protein and tau antibodies in a neuron-like cellular model. Methods Mol Biol. 2018;1779:371–9.PubMedCrossRef Shamir DB, Deng Y, Sigurdsson EM. Live imaging of pathological tau protein and tau antibodies in a neuron-like cellular model. Methods Mol Biol. 2018;1779:371–9.PubMedCrossRef
64.
Zurück zum Zitat Shamir DB, Deng Y, Wu Q, et al. Dynamics of internalization and intracellular interaction of tau antibodies and human pathological tau protein in a human neuron-like model. Front Neurol. 2020;11:602292.PubMedPubMedCentralCrossRef Shamir DB, Deng Y, Wu Q, et al. Dynamics of internalization and intracellular interaction of tau antibodies and human pathological tau protein in a human neuron-like model. Front Neurol. 2020;11:602292.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Shamir DB, Rosenqvist N, Rasool S, et al. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement. 2016;12(10):1098–107.PubMedPubMedCentralCrossRef Shamir DB, Rosenqvist N, Rasool S, et al. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement. 2016;12(10):1098–107.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Wu Q, Lin Y, Gu J, et al. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. EBioMedicine. 2018;35:270–8.PubMedPubMedCentralCrossRef Wu Q, Lin Y, Gu J, et al. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. EBioMedicine. 2018;35:270–8.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Collin L, Bohrmann B, Gopfert U, et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain. 2014;137(Pt 10):2834–46.PubMedCrossRef Collin L, Bohrmann B, Gopfert U, et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain. 2014;137(Pt 10):2834–46.PubMedCrossRef
68.
Zurück zum Zitat Yanamandra K, Jiang H, Mahan TE, et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol. 2015;2(3):278–88.PubMedPubMedCentralCrossRef Yanamandra K, Jiang H, Mahan TE, et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol. 2015;2(3):278–88.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, et al. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci. 2014;34(12):4260–72.PubMedPubMedCentralCrossRef Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, et al. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci. 2014;34(12):4260–72.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat d’Abramo C, Acker CM, Jimenez H, et al. Passive Immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies. PLoS ONE. 2015;10(8):e0135774.PubMedPubMedCentralCrossRef d’Abramo C, Acker CM, Jimenez H, et al. Passive Immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies. PLoS ONE. 2015;10(8):e0135774.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat McEwan WA, Falcon B, Vaysburd M, et al. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci U S A. 2017;114(3):574–9.PubMedPubMedCentralCrossRef McEwan WA, Falcon B, Vaysburd M, et al. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci U S A. 2017;114(3):574–9.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Andersson CR, Falsig J, Stavenhagen JB, et al. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci Rep. 2019;9(1):4658.PubMedPubMedCentralCrossRef Andersson CR, Falsig J, Stavenhagen JB, et al. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci Rep. 2019;9(1):4658.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Funk KE, Mirbaha H, Jiang H, et al. Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J Biol Chem. 2015;290(35):21652–62.PubMedPubMedCentralCrossRef Funk KE, Mirbaha H, Jiang H, et al. Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J Biol Chem. 2015;290(35):21652–62.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Luo W, Liu W, Hu X, et al. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 2015;5:11161.PubMedPubMedCentralCrossRef Luo W, Liu W, Hu X, et al. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 2015;5:11161.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Castillo-Carranza DL, Gerson JE, Sengupta U, et al. Specific targeting of tau oligomers in tau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis. 2014;40(Suppl. 1):S97-111.PubMedCrossRef Castillo-Carranza DL, Gerson JE, Sengupta U, et al. Specific targeting of tau oligomers in tau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis. 2014;40(Suppl. 1):S97-111.PubMedCrossRef
76.
Zurück zum Zitat Chai X, Wu S, Murray TK, et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem. 2011;286(39):34457–67.PubMedPubMedCentralCrossRef Chai X, Wu S, Murray TK, et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem. 2011;286(39):34457–67.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Dai CL, Chen X, Kazim SF, et al. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. J Neural Transm (Vienna). 2015;122(4):607–17.CrossRef Dai CL, Chen X, Kazim SF, et al. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. J Neural Transm (Vienna). 2015;122(4):607–17.CrossRef
78.
79.
Zurück zum Zitat Davtyan H, Chen WW, Zagorski K, et al. MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine. 2017;35(16):2015–24.PubMedPubMedCentralCrossRef Davtyan H, Chen WW, Zagorski K, et al. MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine. 2017;35(16):2015–24.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Kondo A, Shahpasand K, Mannix R, et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015;523(7561):431–6.PubMedPubMedCentralCrossRef Kondo A, Shahpasand K, Mannix R, et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015;523(7561):431–6.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Nobuhara CK, DeVos SL, Commins C, et al. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro. Am J Pathol. 2017;187(6):1399–412.PubMedPubMedCentralCrossRef Nobuhara CK, DeVos SL, Commins C, et al. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro. Am J Pathol. 2017;187(6):1399–412.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Sankaranarayanan S, Barten DM, Vana L, et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE. 2015;10(5):e0125614.PubMedPubMedCentralCrossRef Sankaranarayanan S, Barten DM, Vana L, et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE. 2015;10(5):e0125614.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Subramanian S, Savanur G, Madhavadas S. Passive immunization targeting the N-terminal region of phosphorylated tau (residues 68–71) improves spatial memory in okadaic acid induced tauopathy model rats. Biochem Biophys Res Commun. 2017;483(1):585–9.PubMedCrossRef Subramanian S, Savanur G, Madhavadas S. Passive immunization targeting the N-terminal region of phosphorylated tau (residues 68–71) improves spatial memory in okadaic acid induced tauopathy model rats. Biochem Biophys Res Commun. 2017;483(1):585–9.PubMedCrossRef
84.
Zurück zum Zitat Troquier L, Caillierez R, Burnouf S, et al. Targeting phospho-Ser422 by active tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res. 2012;9(4):397–405.PubMedPubMedCentralCrossRef Troquier L, Caillierez R, Burnouf S, et al. Targeting phospho-Ser422 by active tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res. 2012;9(4):397–405.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Umeda T, Eguchi H, Kunori Y, et al. Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol. 2015;2(3):241–55.PubMedPubMedCentralCrossRef Umeda T, Eguchi H, Kunori Y, et al. Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol. 2015;2(3):241–55.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Walls KC, Ager RR, Vasilevko V, et al. P-tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neurosci Lett. 2014;575:96–100.PubMedPubMedCentralCrossRef Walls KC, Ager RR, Vasilevko V, et al. P-tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neurosci Lett. 2014;575:96–100.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Yanamandra K, Kfoury N, Jiang H, et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 2013;80(2):402–14.PubMedPubMedCentralCrossRef Yanamandra K, Kfoury N, Jiang H, et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 2013;80(2):402–14.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Yanamandra K, Patel TK, Jiang H, et al. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med. 2017;9(386):eaal2029.PubMedPubMedCentralCrossRef Yanamandra K, Patel TK, Jiang H, et al. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med. 2017;9(386):eaal2029.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Modak SR, Sigurdsson EM. Antibodies targeting truncated Asp421 tau protein clear human Alzheimer’s tau and prevent its toxicity in primary neuronal and mixed cortical cultures. Soc Neurosci Abstract. 2017; p. 478.19. Modak SR, Sigurdsson EM. Antibodies targeting truncated Asp421 tau protein clear human Alzheimer’s tau and prevent its toxicity in primary neuronal and mixed cortical cultures. Soc Neurosci Abstract. 2017; p. 478.19.
90.
Zurück zum Zitat Modak SR, Solesio M, Krishnaswamy S, et al. Antibodies targeting truncated tau protein reduce tau pathology in primary and mixed cortical cultures. Soc Neurosci Abstract. 2015; p. 579.14. Modak SR, Solesio M, Krishnaswamy S, et al. Antibodies targeting truncated tau protein reduce tau pathology in primary and mixed cortical cultures. Soc Neurosci Abstract. 2015; p. 579.14.
91.
Zurück zum Zitat Bi M, Ittner A, Ke YD, et al. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE. 2011;6(12):e26860.PubMedPubMedCentralCrossRef Bi M, Ittner A, Ke YD, et al. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE. 2011;6(12):e26860.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Ittner A, Bertz J, Suh LS, et al. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem. 2015;132(1):135–45.PubMedCrossRef Ittner A, Bertz J, Suh LS, et al. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem. 2015;132(1):135–45.PubMedCrossRef
93.
Zurück zum Zitat Liu W, Zhao L, Blackman B, et al. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J Neurosci. 2016;36(49):12425–35.PubMedPubMedCentralCrossRef Liu W, Zhao L, Blackman B, et al. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J Neurosci. 2016;36(49):12425–35.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Rosenqvist N, Asuni AA, Andersson CR, et al. Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. Alzheimers Dement (N Y). 2018;4:521–34.CrossRef Rosenqvist N, Asuni AA, Andersson CR, et al. Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. Alzheimers Dement (N Y). 2018;4:521–34.CrossRef
95.
Zurück zum Zitat Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein tau, assessed in tau.P301L mice that model tauopathy. PLoS ONE. 2013;8(8):e72301.PubMedPubMedCentralCrossRef Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein tau, assessed in tau.P301L mice that model tauopathy. PLoS ONE. 2013;8(8):e72301.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Agadjanyan MG, Zagorski K, Petrushina I, et al. Humanized monoclonal antibody armanezumab specific to N-terminus of pathological tau: characterization and therapeutic potency. Mol Neurodegener. 2017;12(1):33.PubMedPubMedCentralCrossRef Agadjanyan MG, Zagorski K, Petrushina I, et al. Humanized monoclonal antibody armanezumab specific to N-terminus of pathological tau: characterization and therapeutic potency. Mol Neurodegener. 2017;12(1):33.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Albert M, Mairet-Coello G, Danis C, et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain. 2019;142(6):1736–50.PubMedPubMedCentralCrossRef Albert M, Mairet-Coello G, Danis C, et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain. 2019;142(6):1736–50.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Courade JP, Angers R, Mairet-Coello G, et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 2018;136(5):729–45.PubMedPubMedCentralCrossRef Courade JP, Angers R, Mairet-Coello G, et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 2018;136(5):729–45.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Kontsekova E, Zilka N, Kovacech B, et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther. 2014;6(4):44.PubMedPubMedCentralCrossRef Kontsekova E, Zilka N, Kovacech B, et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther. 2014;6(4):44.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Andoh T, Kuraishi Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 2004;18(1):182–4.PubMedCrossRef Andoh T, Kuraishi Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 2004;18(1):182–4.PubMedCrossRef
104.
Zurück zum Zitat Fernandez-Vizarra P, Lopez-Franco O, Mallavia B, et al. Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain. 2012;135(Pt 9):2826–37.PubMedCrossRef Fernandez-Vizarra P, Lopez-Franco O, Mallavia B, et al. Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain. 2012;135(Pt 9):2826–37.PubMedCrossRef
105.
Zurück zum Zitat Suemitsu S, Watanabe M, Yokobayashi E, et al. Fcgamma receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience. 2010;166(3):819–31.PubMedCrossRef Suemitsu S, Watanabe M, Yokobayashi E, et al. Fcgamma receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience. 2010;166(3):819–31.PubMedCrossRef
106.
Zurück zum Zitat van der Kleij H, Charles N, Karimi K, et al. Evidence for neuronal expression of functional Fc (epsilon and gamma) receptors. J Allergy Clin Immunol. 2010;125(3):757–60.PubMedPubMedCentralCrossRef van der Kleij H, Charles N, Karimi K, et al. Evidence for neuronal expression of functional Fc (epsilon and gamma) receptors. J Allergy Clin Immunol. 2010;125(3):757–60.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Lee SH, Le Pichon CE, Adolfsson O, et al. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep. 2016;16(6):1690–700.PubMedCrossRef Lee SH, Le Pichon CE, Adolfsson O, et al. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep. 2016;16(6):1690–700.PubMedCrossRef
108.
Zurück zum Zitat Boutajangout A, Ingadottir J, Davies P, et al. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118(4):658–67.PubMedPubMedCentralCrossRef Boutajangout A, Ingadottir J, Davies P, et al. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118(4):658–67.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat d’Abramo C, Acker CM, Jimenez HT, et al. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE. 2013;8(4):e62402.PubMedPubMedCentralCrossRef d’Abramo C, Acker CM, Jimenez HT, et al. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE. 2013;8(4):e62402.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Jicha GA, Bowser R, Kazam IG, et al. Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res. 1997;48(2):128–32.PubMedCrossRef Jicha GA, Bowser R, Kazam IG, et al. Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res. 1997;48(2):128–32.PubMedCrossRef
111.
Zurück zum Zitat Krishnaswamy S, Wu Q, Lin Y, et al. In vivo imaging of tauopathy in mice. Methods Mol Biol. 2018;1779:513–26.PubMedCrossRef Krishnaswamy S, Wu Q, Lin Y, et al. In vivo imaging of tauopathy in mice. Methods Mol Biol. 2018;1779:513–26.PubMedCrossRef
112.
Zurück zum Zitat Krishnaswamy S, Huang HW, Marchal IS, et al. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol Dis. 2020;137:104770.PubMedPubMedCentralCrossRef Krishnaswamy S, Huang HW, Marchal IS, et al. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol Dis. 2020;137:104770.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Ising C, Gallardo G, Leyns CEG, et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J Exp Med. 2017;214(5):1227–38.PubMedPubMedCentralCrossRef Ising C, Gallardo G, Leyns CEG, et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J Exp Med. 2017;214(5):1227–38.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Nisbet RM, Van der Jeugd A, Leinenga G, et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain. 2017;140(5):1220–30.PubMedPubMedCentralCrossRef Nisbet RM, Van der Jeugd A, Leinenga G, et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain. 2017;140(5):1220–30.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Spencer B, Bruschweiler S, Sealey-Cardona M, et al. Selective targeting of 3 repeat tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol. 2018;136(1):69–87.PubMedPubMedCentralCrossRef Spencer B, Bruschweiler S, Sealey-Cardona M, et al. Selective targeting of 3 repeat tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol. 2018;136(1):69–87.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Vitale F, Giliberto L, Ruiz S, et al. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol Commun. 2018;6(1):82.PubMedPubMedCentralCrossRef Vitale F, Giliberto L, Ruiz S, et al. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol Commun. 2018;6(1):82.PubMedPubMedCentralCrossRef
117.
118.
Zurück zum Zitat Goodwin MS, Sinyavskaya O, Burg F, et al. Anti-tau scFvs targeted to the cytoplasm or secretory pathway variably modify pathology and neurodegenerative phenotypes. Mol Ther. 2021;29(2):859–72.PubMedCrossRef Goodwin MS, Sinyavskaya O, Burg F, et al. Anti-tau scFvs targeted to the cytoplasm or secretory pathway variably modify pathology and neurodegenerative phenotypes. Mol Ther. 2021;29(2):859–72.PubMedCrossRef
119.
Zurück zum Zitat Dupre E, Danis C, Arrial A, et al. Single domain antibody fragments as new tools for the detection of neuronal tau protein in cells and in mice studies. ACS Chem Neurosci. 2019;10(9):3997–4006.PubMedCrossRef Dupre E, Danis C, Arrial A, et al. Single domain antibody fragments as new tools for the detection of neuronal tau protein in cells and in mice studies. ACS Chem Neurosci. 2019;10(9):3997–4006.PubMedCrossRef
120.
Zurück zum Zitat Li T, Vandesquille M, Koukouli F, et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release. 2016;243:1–10.PubMedCrossRef Li T, Vandesquille M, Koukouli F, et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release. 2016;243:1–10.PubMedCrossRef
121.
Zurück zum Zitat Congdon EE, Lin Y, Sigurdsson EM. Prevention of intra- and extracellular alpha-synuclein toxicity and seeding by single domain antibodies. Soc Neurosci Abstract. 2019; p. 537.07. Congdon EE, Lin Y, Sigurdsson EM. Prevention of intra- and extracellular alpha-synuclein toxicity and seeding by single domain antibodies. Soc Neurosci Abstract. 2019; p. 537.07.
122.
Zurück zum Zitat Marchal IS, Huang HW, Krishnaswamy S, et al. Neuronally expressed anti-tau scFvs and sdAbs prevent tauopathy-induced phenotypes in Drosophila models. Soc Neurosci Abstract. 2019; p. 446.12. Marchal IS, Huang HW, Krishnaswamy S, et al. Neuronally expressed anti-tau scFvs and sdAbs prevent tauopathy-induced phenotypes in Drosophila models. Soc Neurosci Abstract. 2019; p. 446.12.
123.
Zurück zum Zitat Sandusky-Beltran LA, Congdon EE, Modak SR, et al. Examining the impact of single domain anti-tau immunotherapies in an animal model of tauopathy. Alzheimer’s Disease & Parkinson’s disease (ADPD) Conference. In: Abstract. 2019;Symposium 14:Treatment of Tauopathies. Sandusky-Beltran LA, Congdon EE, Modak SR, et al. Examining the impact of single domain anti-tau immunotherapies in an animal model of tauopathy. Alzheimer’s Disease & Parkinson’s disease (ADPD) Conference. In: Abstract. 2019;Symposium 14:Treatment of Tauopathies.
124.
Zurück zum Zitat Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123–34.PubMedCrossRef Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123–34.PubMedCrossRef
125.
Zurück zum Zitat Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):108.PubMedPubMedCentralCrossRef Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):108.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Hickman DT, Lopez-Deber MP, Ndao DM, et al. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem. 2011;286(16):13966–76.PubMedPubMedCentralCrossRef Hickman DT, Lopez-Deber MP, Ndao DM, et al. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem. 2011;286(16):13966–76.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Czerkowicz J, Chen W, Wang Q, et al. Pan-tau antibody BIIB076 exhibits promising safety and biomarker profile in cynomolgus monkey toxicity study. Alzheimers Dement. 2017;13(7):P1271. Czerkowicz J, Chen W, Wang Q, et al. Pan-tau antibody BIIB076 exhibits promising safety and biomarker profile in cynomolgus monkey toxicity study. Alzheimers Dement. 2017;13(7):P1271.
136.
Zurück zum Zitat Sopko R, Golonzhka O, Arndt J, et al. Characterization of tau binding by gosuranemab. Neurobiol Dis. 2020;146:105120.PubMedCrossRef Sopko R, Golonzhka O, Arndt J, et al. Characterization of tau binding by gosuranemab. Neurobiol Dis. 2020;146:105120.PubMedCrossRef
137.
Zurück zum Zitat Qureshi IA, Tirucherai G, Ahlijanian MK, et al. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement (N Y). 2018;4:746–55.CrossRef Qureshi IA, Tirucherai G, Ahlijanian MK, et al. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement (N Y). 2018;4:746–55.CrossRef
138.
Zurück zum Zitat Boxer AL, Qureshi I, Ahlijanian M, et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 2019;18(6):549–58.PubMedCrossRef Boxer AL, Qureshi I, Ahlijanian M, et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 2019;18(6):549–58.PubMedCrossRef
143.
144.
Zurück zum Zitat West T, Hu Y, Verghese PB, et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alzheimers Dis. 2017;4(4):236–41.PubMed West T, Hu Y, Verghese PB, et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alzheimers Dis. 2017;4(4):236–41.PubMed
146.
Zurück zum Zitat Höglinger GU, Litvan I, Mendonca N, et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 2021;20(3):182–92.PubMedCrossRef Höglinger GU, Litvan I, Mendonca N, et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 2021;20(3):182–92.PubMedCrossRef
147.
Zurück zum Zitat Roberts M, Sevastou I, Imaizumi Y, et al. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun. 2020;8(1):13.PubMedPubMedCentralCrossRef Roberts M, Sevastou I, Imaizumi Y, et al. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun. 2020;8(1):13.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Eisai presents data showing quantification of tau microtubule binding region in cerebrospinal fluid and the identification of a target engagement biomarker for the new anti-tau antibody e2814 at Alzheimer’s Association International Conference (AAIC) 2019. July 19, 2019 [press release]. https://www.eisai.com/news/2019/news201955.html. Accessed 19 May 2021. Eisai presents data showing quantification of tau microtubule binding region in cerebrospinal fluid and the identification of a target engagement biomarker for the new anti-tau antibody e2814 at Alzheimer’s Association International Conference (AAIC) 2019. July 19, 2019 [press release]. https://​www.​eisai.​com/​news/​2019/​news201955.​html. Accessed 19 May 2021.
149.
Zurück zum Zitat Horie K, Barthélemy NR, Sato C, et al. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain. 2021;144(2):515–27.PubMedCrossRef Horie K, Barthélemy NR, Sato C, et al. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain. 2021;144(2):515–27.PubMedCrossRef
150.
Zurück zum Zitat Horie K, Takahashi E, Aoyama M, et al. Quantification of the tau microtubule binding region (Mtbr) in cerebrospinal fluid and subsequent validation of target engagement assay for E2814, a novel anti-tau therapeutic antibody. In: Alzheimer's Association International Conference; July 2019: p. P4–696. Horie K, Takahashi E, Aoyama M, et al. Quantification of the tau microtubule binding region (Mtbr) in cerebrospinal fluid and subsequent validation of target engagement assay for E2814, a novel anti-tau therapeutic antibody. In: Alzheimer's Association International Conference; July 2019: p. P4–696.
152.
Zurück zum Zitat Alam R, Driver D, Wu S, et al. Preclinical characterization of an antibody [Ly3303560] targeting aggregated tau. Alzheimers Dement. 2017;13(7):P592–3. Alam R, Driver D, Wu S, et al. Preclinical characterization of an antibody [Ly3303560] targeting aggregated tau. Alzheimers Dement. 2017;13(7):P592–3.
154.
Zurück zum Zitat Galpern WR, Mercken M, Kolen KV, et al. P1–052: A single ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-phospho-tau antibody JNJ-63733657 in healthy subjects. Alzheimers Dement. 2019;15(7S):252–3.CrossRef Galpern WR, Mercken M, Kolen KV, et al. P1–052: A single ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-phospho-tau antibody JNJ-63733657 in healthy subjects. Alzheimers Dement. 2019;15(7S):252–3.CrossRef
156.
Zurück zum Zitat Buchanan T, De Bruyn S, Fadini T, et al. A randomised, placebo-controlled, first-inhuman study with a central Tau epitope antibody: UCB0107. In: International Congress of Parkinson’s Disease and Movement Disorders; 2019 Late-Breaking Abstracts. 2019; p. LBA3. Buchanan T, De Bruyn S, Fadini T, et al. A randomised, placebo-controlled, first-inhuman study with a central Tau epitope antibody: UCB0107. In: International Congress of Parkinson’s Disease and Movement Disorders; 2019 Late-Breaking Abstracts. 2019; p. LBA3.
157.
Zurück zum Zitat Naserkhaki R, Zamanzadeh S, Baharvand H, et al. cis pT231-tau drives neurodegeneration in bipolar disorder. ACS Chem Neurosci. 2019;10(3):1214–21.PubMedCrossRef Naserkhaki R, Zamanzadeh S, Baharvand H, et al. cis pT231-tau drives neurodegeneration in bipolar disorder. ACS Chem Neurosci. 2019;10(3):1214–21.PubMedCrossRef
158.
Zurück zum Zitat Albayram O, Kondo A, Mannix R, et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat Commun. 2017;8(1):1000.PubMedPubMedCentralCrossRef Albayram O, Kondo A, Mannix R, et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat Commun. 2017;8(1):1000.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Kerchner GA, Ayalon G, Brunstein F, et al. A phase I study to evaluate the safety and tolerability of RO7105705 in healthy volunteers and patients with mild-to-moderate AD. Alzheimers Dement. 2017;13(7):P601. Kerchner GA, Ayalon G, Brunstein F, et al. A phase I study to evaluate the safety and tolerability of RO7105705 in healthy volunteers and patients with mild-to-moderate AD. Alzheimers Dement. 2017;13(7):P601.
Metadaten
Titel
Current Status of Clinical Trials on Tau Immunotherapies
verfasst von
Changyi Ji
Einar M. Sigurdsson
Publikationsdatum
01.07.2021
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 10/2021
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-021-01546-6

Weitere Artikel der Ausgabe 10/2021

Drugs 10/2021 Zur Ausgabe