Skip to main content
Erschienen in: Medical Gas Research 1/2012

Open Access 01.12.2012 | Letter to the Editor

A hypothesis on chemical mechanism of the effect of hydrogen

verfasst von: Penghui Shi, Wancang Sun, Pengzhong Shi

Erschienen in: Medical Gas Research | Ausgabe 1/2012

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Many studies have shown that hydrogen can play important roles on the antioxidant, anti-inflammatory and other protective effects. Ohsawa et al have proved that hydrogen can electively and directly scavenge hydroxyl radical. But this mechanism cannot explain more new experimental results. In this article, the hypothesis, which is inspired by H2 could bind to the metal as a ligand, come up to explain its extensive biology effect: Hydrogen could regulate particular metalloproteins by bonding (M–H2 interaction) it. And then it could affect the metabolization of ROS and signal transduction. Metalloproteins may be ones of the target molecules of H2 action. Metal ions may be appropriate role sites for H2 molecules. The hypothesis pointed out a new direction to clarify its mechanisms.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2045-9912-2-17) contains supplementary material, which is available to authorized users.
Penghui Shi, Wancang Sun contributed equally to this work.

Background

Basal cellular metabolism continuously produces reactive oxygen species (ROS). O2 may generate successively superoxide (O2−), hydrogen peroxide (H2O2) and hydroxyl radical (OH·). ROS are able to oxidize biological macromolecules such as DNA, protein and lipids [1, 2]. Some enzymic systems detoxify ROS, however, catalase dismutates H2O2, and SOD eliminates O2− (but generates H2O2). Excess oxygen can react with H2O2 to produce hydroxyl radicals by the Fenton reaction [3] (Figure 1). Ohsawa et al provide evidence that hydrogen could reach subcellular compartments such as the nucleus and mitochondria, biochemical experiments using fluorescent probes and electron paramagnetic resonance spectroscopy spin traps indicated that hydrogen gas may selectively scavenge the hydroxyl radical [4]; They were the first to show the ability of H2 to suppress oxidation in vivo. So far, many researches have proved the central role of hydrogen on the antioxidant, anti-inflammatory and other protective effects.
Much evidence has shown that hydrogen exert beneficial effects in animal models of a number of diseases mainly associated with oxidative stress; However, the findings don’t cover plants. Moreover, the mechanism of the effect of hydrogen remains unclear, the most acceptable mechanism is that the hydrogen can electively and directly scavenge hydroxyl radical while preserving other reactive oxygen and nitrogen species important in signaling [4]. There is some question, however, the published rate constant for the reaction of ·OH with H2 to form H2O and H· is drastically slower than most radical-radical reactions [6]. Furthermore, it can’t explain some new experimental results. For example, Tomohiro Itoh proved that hydrogen exerts its beneficial effect by modulating some signaling pathways. Experimenters found that oral intake of hydrogen-rich water abolishes an immediate-type allergic reaction in mice. The results indicated that hydrogen attenuates phosphorylation of the FcεRI-associated Lyn and its downstream signal transduction, which subsequently inhibits the NADPH oxidase activity and reduces the generation of hydrogen peroxide. they also found that inhibition of NADPH oxidase attenuates phosphorylation of Lyn in mast cells, indicating the presence of a feed-forward loop that potentiates the allergic responses. Hydrogen accordingly inhibits all tested signaling molecule(s) in the loop. The results imply that effects of hydrogen in some diseases are possibly mediated by modulation of yet unidentified signaling pathways [7].

Hypothesis and discussion

Although the beneficial effect of hydrogen is generally accepted, the mechanism is not still clear. There can be little doubt that biology function of H2 depends on the physical and chemical interaction of other molecules with it , so what would it be like?
In organometallic and inorganic chemistry, for some metal complexes, the "arrested" addition product can be isolated–the dihydrogen complex is obtained as a stable species that can be put in a bottle: [8] (Scheme 1).
Traditional ligands use lone pairs of electrons in their bonding, but in dihydrogen complexes, the bonding to the metal comes from donation of electron density from the nonpolar H-H σ bond to d orbitals on the metal (Figure 2). We hold that hydrogenase is a typical case in point. Hydrogenases catalyse the reversible oxidation of molecular hydrogen (H2). The active site domain of the Fe hydrogenases contains an unusual Fe-S centre termed the H-cluster. H-cluster consists of the [Fe4S4 subcluster bridged via the Cys thiolate to the [Fe2 (binuclear iron) subcluster (Figure 3) [912]. Iron sulfur clusters are found at the active sites of numerous enzymes where they commonly facilitate electron transfer and substrate transformations (Table 1) [13]. It is infered that M–H2 interaction also exists in these metalloproteins. By extension, it also should exist in non-cluster metalloproteins. All this suggestes that metal ions may be the site where H2 interacted with metalloproteins.
Table 1
Iron-sulphur proteins in cells
Function
Protein class
Catalysis
Bacterial nitrate reductase, Formate dehydrogenase, Fumarate reductase, Glutamine PRPP amidotransferase, Hydrogenase, Methane monooxygenase, NADH:ubiquinone reductase, Phthalate dioxygenase reductase, Succinate dehydrogenase, Sulphite reductase, Xanthine dehydrogenase, Aconitase (TCA cycle)
Electron transfer
Ferredoxins, Rieske proteins, Rubredoxins, NADH Dehydrogenase, Succinate-CoQ Reductase, CoQ-cyt c Reductase (respiratory chain complexes)
It is proved from experiments that molecules containing a metallic cation may promote O2− formation because they have the ability to store and easily give an electron to molecular dioxygen [16]. Free radicals arise through the autoxidation catalyzed by metalloproteins, this mainly occurs within the mitochondria. Some experimental results proved that hydrogen can permeate into mitochondria and prevent superoxide formation [17]. It indicates that H2 can affect the metabolization of ROS by way of superoxie formation. And it must have a big impact on the content of H2O2. Besides, free radical production can also happen in other cellular compartments, such as NADPH oxidase. ROS production can interfere with signal transduction pathways [1820]. ROS, in particular H2O2, are indeed second messengers for many physiological stimuli, some stimuli have been proven to induce mitochondrial H2O2 release [21].
On the basis of the mentioned analysis, we evaluate that metal ions could be appropriate role sites for H2 molecules. We propose that hydrogen can permeate into mitochondria and concentrate at mitochondrial membrane to regulate activity of metalloproteins (complexesI,II,III) by M–H2 interaction. The same may be true of NADPH oxidase. This could reduce the production of superoxide and prevent synthesis of the hydroxyl from the source. Hydrogen, on the one hand, maybe regulate the content of H2O2 by affecting the metabolization of ROS. And then it disturbs signaling pathway. On the other hand, hydrogen maybe directly influence signal transduction by regulating particular metalloproteins of signaling pathways. It may be the mechanism of its extensive biology effect.

Conclusions

We propose that metalloproteins may be ones of the target molecules of H2 action. Metal ions may be appropriate role sites for H2 molecules. And in this way can we explain its extensive biology effect. Although some details remain murky, the hypothesis pointed out a new direction for the continuation. It is a good inspiration to clarify the mechanism of the effect of hydrogen. We predict that hydrogen can affect many metalloproteins activities.Therefore, more studies will be necessary to test the hypothesis.

Acknowledgment

We wish to sincerely thank Xuejun Sun (Second Military Medical University, Shanghai, China) for advice about the manuscript.
Funding
There is no source of support in the form of grants.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Vaughan M: Oxidative modification of macromolecules minireview series. J Biol Chem. 1997, 272: 18513-10.1074/jbc.272.30.18513.CrossRef Vaughan M: Oxidative modification of macromolecules minireview series. J Biol Chem. 1997, 272: 18513-10.1074/jbc.272.30.18513.CrossRef
2.
Zurück zum Zitat Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB: (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999, 13: 411-418.PubMed Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB: (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999, 13: 411-418.PubMed
3.
Zurück zum Zitat Woo ES, Lazo JS: Nucleocytoplasmic functionality of metallothionein. Cancer Res. 1997, 57: 4236-4241.PubMed Woo ES, Lazo JS: Nucleocytoplasmic functionality of metallothionein. Cancer Res. 1997, 57: 4236-4241.PubMed
4.
Zurück zum Zitat Ohsawa I, Ishikawa M, Takahashi K, et al: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13: 688-694. 10.1038/nm1577.CrossRefPubMed Ohsawa I, Ishikawa M, Takahashi K, et al: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13: 688-694. 10.1038/nm1577.CrossRefPubMed
6.
Zurück zum Zitat Wood KC, Gladwin MT: The hydrogen highway to reperfusion therapy. Nat Med. 2007, 13: 673-674. 10.1038/nm0607-673.CrossRefPubMed Wood KC, Gladwin MT: The hydrogen highway to reperfusion therapy. Nat Med. 2007, 13: 673-674. 10.1038/nm0607-673.CrossRefPubMed
7.
Zurück zum Zitat Itoh T, Fujita Y, Ito M, et al: Molecular hydrogen suppresses FcRI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun. 2009, 389: 651-656. 10.1016/j.bbrc.2009.09.047.CrossRefPubMed Itoh T, Fujita Y, Ito M, et al: Molecular hydrogen suppresses FcRI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun. 2009, 389: 651-656. 10.1016/j.bbrc.2009.09.047.CrossRefPubMed
8.
Zurück zum Zitat Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ: J Am Chem Soc. 1984, 106: 451-452. 10.1021/ja00314a049.CrossRef Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ: J Am Chem Soc. 1984, 106: 451-452. 10.1021/ja00314a049.CrossRef
9.
Zurück zum Zitat Darensbourg MY, Lyon EJ, Smee JJ: The bio-organometallic chemistry of active site iron in hydrogenases. Coord Chem Rev. 2000, 219/221: 533-561.CrossRef Darensbourg MY, Lyon EJ, Smee JJ: The bio-organometallic chemistry of active site iron in hydrogenases. Coord Chem Rev. 2000, 219/221: 533-561.CrossRef
10.
Zurück zum Zitat Marr AC, Spencer DJE, Schurder M: Structural mimics for the active site of [NiFe] hydrogenase. Coord Chem Rev. 2001, 219/221: 1055-1074.CrossRef Marr AC, Spencer DJE, Schurder M: Structural mimics for the active site of [NiFe] hydrogenase. Coord Chem Rev. 2001, 219/221: 1055-1074.CrossRef
11.
Zurück zum Zitat Nicolet Y, de Lacey AL, Vernde X, et al: Crystallographic and FTIR Spectroscopic Evidence of Changes in Fe Coordination Upon Reduction of the Active Site of the Fe-Only Hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc. 2001, 123: 1596-1601. 10.1021/ja0020963.CrossRefPubMed Nicolet Y, de Lacey AL, Vernde X, et al: Crystallographic and FTIR Spectroscopic Evidence of Changes in Fe Coordination Upon Reduction of the Active Site of the Fe-Only Hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc. 2001, 123: 1596-1601. 10.1021/ja0020963.CrossRefPubMed
12.
Zurück zum Zitat Lawrence JD, Li HX, Rauchfuss TB, et al: Angew Chem Int Ed. 2001, 40: 1768-1771. 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E.CrossRef Lawrence JD, Li HX, Rauchfuss TB, et al: Angew Chem Int Ed. 2001, 40: 1768-1771. 10.1002/1521-3773(20010504)40:9<1768::AID-ANIE17680>3.0.CO;2-E.CrossRef
13.
Zurück zum Zitat Cowan JA: Inorganic Biochemistry: An Introduction. 1993, New York: VCH Publishers Cowan JA: Inorganic Biochemistry: An Introduction. 1993, New York: VCH Publishers
14.
Zurück zum Zitat Martin HG: Prechtl. 2007, WiKu: Publisher Martin HG: Prechtl. 2007, WiKu: Publisher
15.
Zurück zum Zitat He Chengjiang WangMei, Li Minna, Sun Licheng: Advance in chemical mimic of fe-only hydrogenase. Progress in chemistry. 2004, 16 (2): 250-255. He Chengjiang WangMei, Li Minna, Sun Licheng: Advance in chemical mimic of fe-only hydrogenase. Progress in chemistry. 2004, 16 (2): 250-255.
16.
Zurück zum Zitat Kagan VE, Tyurina YY: Recycling and redox cycling of phenolic antioxidants. Ann N Y Acad Sci. 1998, 854: 425-434. 10.1111/j.1749-6632.1998.tb09921.x.CrossRefPubMed Kagan VE, Tyurina YY: Recycling and redox cycling of phenolic antioxidants. Ann N Y Acad Sci. 1998, 854: 425-434. 10.1111/j.1749-6632.1998.tb09921.x.CrossRefPubMed
17.
Zurück zum Zitat Sato Y, Kajiyama S, Amano A, et al: Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun. 2008, 375: 346-350. 10.1016/j.bbrc.2008.08.020.CrossRefPubMed Sato Y, Kajiyama S, Amano A, et al: Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun. 2008, 375: 346-350. 10.1016/j.bbrc.2008.08.020.CrossRefPubMed
18.
Zurück zum Zitat Finkel T: Oxygen radicals and signaling. Curr Opin Cell Biol. 1998, 10: 248-253. 10.1016/S0955-0674(98)80147-6.CrossRefPubMed Finkel T: Oxygen radicals and signaling. Curr Opin Cell Biol. 1998, 10: 248-253. 10.1016/S0955-0674(98)80147-6.CrossRefPubMed
19.
Zurück zum Zitat Lander HM: An essential role for free radicals and derived species in signal transduction. FASEB J. 1997, 11: 118-124.PubMed Lander HM: An essential role for free radicals and derived species in signal transduction. FASEB J. 1997, 11: 118-124.PubMed
20.
Zurück zum Zitat Suzuki YJ, Forman HJ, Sevanian A: Oxidants as stimulators of signal transduction. Free Radical Biol. Med. 1997, 22: 269-285. 10.1016/S0891-5849(96)00275-4.CrossRef Suzuki YJ, Forman HJ, Sevanian A: Oxidants as stimulators of signal transduction. Free Radical Biol. Med. 1997, 22: 269-285. 10.1016/S0891-5849(96)00275-4.CrossRef
21.
Zurück zum Zitat Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G: Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997, 272: 21388-21395. 10.1074/jbc.272.34.21388.CrossRefPubMed Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G: Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997, 272: 21388-21395. 10.1074/jbc.272.34.21388.CrossRefPubMed
Metadaten
Titel
A hypothesis on chemical mechanism of the effect of hydrogen
verfasst von
Penghui Shi
Wancang Sun
Pengzhong Shi
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Medical Gas Research / Ausgabe 1/2012
Elektronische ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-2-17

Weitere Artikel der Ausgabe 1/2012

Medical Gas Research 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Frühzeitige HbA1c-Kontrolle macht sich lebenslang bemerkbar

22.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes von Anfang an intensiv BZ-senkend zu behandeln, wirkt sich positiv auf Komplikationen und Mortalität aus – und das offenbar lebenslang, wie eine weitere Nachfolgeuntersuchung der UKPD-Studie nahelegt.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.