Skip to main content
Erschienen in: BMC Medicine 1/2020

Open Access 01.12.2020 | Research article

Does parity matter in women’s risk of dementia? A COSMIC collaboration cohort study

verfasst von: Jong Bin Bae, Darren M. Lipnicki, Ji Won Han, Perminder S. Sachdev, Tae Hui Kim, Kyung Phil Kwak, Bong Jo Kim, Shin Gyeom Kim, Jeong Lan Kim, Seok Woo Moon, Joon Hyuk Park, Seung-Ho Ryu, Jong Chul Youn, Dong Young Lee, Dong Woo Lee, Seok Bum Lee, Jung Jae Lee, Jin Hyeong Jhoo, Juan J. Llibre-Rodriguez, Jorge J. Llibre-Guerra, Adolfo J. Valhuerdi-Cepero, Karen Ritchie, Marie-Laure Ancelin, Isabelle Carriere, Ingmar Skoog, Jenna Najar, Therese Rydberg Sterner, Nikolaos Scarmeas, Mary Yannakoulia, Efthimios Dardiotis, Kenichi Meguro, Mari Kasai, Kei Nakamura, Steffi Riedel-Heller, Susanne Roehr, Alexander Pabst, Martin van Boxtel, Sebastian Köhler, Ding Ding, Qianhua Zhao, Xiaoniu Liang, Marcia Scazufca, Antonio Lobo, Concepción De-la-Cámara, Elena Lobo, Ki Woong Kim, for Cohort Studies of Memory in an International Consortium (COSMIC)

Erschienen in: BMC Medicine | Ausgabe 1/2020

Abstract

Background

Dementia shows sex difference in its epidemiology. Childbirth, a distinctive experience of women, is associated with the risk for various diseases. However, its association with the risk of dementia in women has rarely been studied.

Methods

We harmonized and pooled baseline data from 11 population-based cohorts from 11 countries over 3 continents, including 14,792 women aged 60 years or older. We investigated the association between parity and the risk of dementia using logistic regression models that adjusted for age, educational level, hypertension, diabetes mellitus, and cohort, with additional analyses by region and dementia subtype.

Results

Across all cohorts, grand multiparous (5 or more childbirths) women had a 47% greater risk of dementia than primiparous (1 childbirth) women (odds ratio [OR] = 1.47, 95% confidence interval [CI] = 1.10–1.94), while nulliparous (no childbirth) women and women with 2 to 4 childbirths showed a comparable dementia risk to primiparous women. However, there were differences associated with region and dementia subtype. Compared to women with 1 to 4 childbirths, grand multiparous women showed a higher risk of dementia in Europe (OR = 2.99, 95% CI = 1.38–6.47) and Latin America (OR = 1.49, 95% CI = 1.04–2.12), while nulliparous women showed a higher dementia risk in Asia (OR = 2.15, 95% CI = 1.33–3.47). Grand multiparity was associated with 6.9-fold higher risk of vascular dementia in Europe (OR = 6.86, 95% CI = 1.81–26.08), whereas nulliparity was associated with a higher risk of Alzheimer disease (OR = 1.91, 95% CI 1.07–3.39) and non-Alzheimer non-vascular dementia (OR = 3.47, 95% CI = 1.44–8.35) in Asia.

Conclusion

Parity is associated with women’s risk of dementia, though this is not uniform across regions and dementia subtypes.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AD
Alzheimer disease
CHAS
Cuban Health and Alzheimer Study
CI
Confidence interval
COSMIC
Cohort Studies of Memory in an International Consortium
DM
Diabetes mellitus
ESPRIT
Etude Sante Psychologique et Traitement
H70
Gothenburg H70 Birth Cohort Studies
HELIAD
Hellenic Longitudinal Investigation of Aging and Diet
KLOSCAD
Korean Longitudinal Study on Cognitive Aging and Dementia
KS
Kurihara Study
LEILA75+
Leipzig Longitudinal Study of the Aged
MAAS
Maastricht Ageing Study
NAVD
Non-Alzheimer non-vascular dementia
OR
Odds ratio
SAS
Shanghai Aging Study
SPAH
Sao Paulo Ageing & Health Study
VaD
Vascular dementia
ZARADEMP
Zaragoza Dementia Depression Project

Background

Dementia is one of many disorders with sex and gender differences in epidemiology, risk factors, and outcomes. Compared to men, women show a greater prevalence of dementia [1], a higher risk of Alzheimer disease (AD) conferred by the apolipoprotein ε4 allele [2], and faster loss of autonomy after diagnosis of AD [3]. Pregnancy and childbirth are distinctive experiences of women and are associated with changes in hormone levels, health conditions, and lifestyle that influence the risk of dementia. For example, estrogen is closely associated with the risk of AD and vascular dementia (VaD) [4], and its serum level increases more than 10-fold in the third trimester of pregnancy [4, 5]. A higher number of births is generally associated with lower socioeconomical status and educational level, factors that may increase the risk of dementia [6]. Additionally grand multiparity (5 or more childbirths) increases the chances of developing hypertension, coronary heart disease, and diabetes mellitus (DM) [79], all of which can increase the risk of dementia.
Studies on whether parity affects the risk of dementia are limited, and their results are different according to study design and study population with different level of parity. Some research suggests that more childbirths increases the risk of dementia. A pooled analysis of two population-based cohorts from South Korea and Greece found that grand multiparous women had a 1.7-fold higher risk of AD than women with 1 to 4 childbirths [10], and a case-control study in Germany found that nulliparity was less frequent in women with AD than in cognitively normal women [11]. However, a prospective cohort study in Italy found nulliparous women to show a comparable risk of dementia to women with 1 to 4 childbirths [12], and an analysis of a claims database from the USA found that women with 3 or more childbirths showed a lower risk of dementia than women giving birth only once (primiparous) [13].
In this study, we used the pooled data of 11 population-based prospective cohort studies from 11 countries over 3 continents to investigate whether parity influences the risk of dementia, and whether there are differences associated with geographic region and type of dementia. Knowing whether parity affects the risk of dementia will help to clarify sex and gender difference in dementia and could identify a high-risk group in women. With such a diverse overall sample, our study might also help to explain the different results from previous studies.

Methods

Study population

We pooled baseline data for community-dwelling women aged 60 or older from 11 members of the Cohort Studies of Memory in an International Consortium (COSMIC) collaboration (Table 1) [1425]. The participants were randomly sampled in all studies but the Maastricht Ageing Study (MAAS). Although the Leipzig Longitudinal Study of the Aged (LEILA 75+) included both community-dwelling and institutionalized participants, we included the community sample only in the present study. The included cohorts varied in size from 342 to 3919 participants. From an initial sample of 16,296 women, we excluded 1504 who did not have data on educational level, hypertension, DM, or parity, giving a final sample of 14,792 women.
Table 1
Contributing cohorts
Study
Location
Start
Ethnicity*
Participants (all/women/included)
Age
Parity
Dementia (all/AD/VaD)
CHAS15
Havana and Matanzas, Cuba
2003
Cuban
2944/1913/1552
75.1 ± 7.2 (65–100)
2.5 ± 2.2 (0–23)c
183/105/11
ESPRIT16
Montpellier, France
1999
White
2259/1313/1094
72.5 ± 5.6 (65–93)
2.4 ± 1.5 (0–9)cb
19/17/1
H7017
Gothenburg, Sweden
2000
White
1016/787/575
74.7 ± 5.4 (70–92)
2.0 ± 1.6 (0–20)c
16/7/4
HELIAD18
Larissa and Marousi, Greece
2009
White
1814/1074/918
72.1 ± 5.5 (60–93)
2.0 ± 0.8 (0–7)cb
22/16/3
KLOSCAD19
Nationwide, South Korea
2010
Asian
6818/3919/3686
70.7 ± 7.2 (60–101)
3.6 ± 1.7 (0–12)cb
190/145/17
KS20
Kurihara, Japan
2008
Asian
590/365/365
80.3 ± 4.2 (74–94)
2.4 ± 1.3 (0–7)cb
49/32/3
LEILA 75+21
Leipzig, Germany
1997
White
1265/964/636
81.2 ± 4.9 (75–99)
1.6 ± 1.3 (0–10)c
68/48/14
MAAS22
South Limburg, Netherlands
1993
White
683/342/342
69.2 ± 6.2 (60–82)
2.6 ± 1.9 (0–9)c
26/n.a./n.a.
SAS23
Shanghai, China
2010
Asian
3141/1873/1869
71.2 ± 8.4 (60–100)
2.0 ± 1.4 (0–9)cb
97/67/7
SPAH24
Sao Paulo, Brazil
2003
Brazilian
2072/1255/1149
72.6 ± 6.4 (65–101)
5.6 ± 4.1 (0–24)c
68/24/13
ZARADEMP25
Zaragoza, Spain
1994
White
4638/2683/2606
74.5 ± 9.6 (60–102)
2.4 ± 1.9 (0–12)cb
152/n.a./n.a.
CHAS Cuban Health and Alzheimer Study, ESPRIT Etude Sante Psychologique et Traitement, H70 Gothenburg H70 Birth Cohort Studies, HELIAD Hellenic Longitudinal Investigation of Aging and Diet, KLOSCAD Korean Longitudinal Study on Cognitive Aging and Dementia, KS Kurihara Study, LEILA75+ Leipzig Longitudinal Study of the Aged, MAAS Maastricht Ageing Study, SAS Shanghai Aging Study, SPAH Sao Paulo Ageing & Health Study, ZARADEMP Zaragoza Dementia Depression Project, AD Alzheimer’s disease, VaD vascular dementia, n.a. not available
The participants of all studies but MAAS were randomly sampled.
*Ethnicity of the country
Numbers at the baseline assessment
Mean ± standard deviations (range)
cNumber of children
cbNumber of childbirths

Measures

All studies provided data on dementia diagnosis, based on DSM-IV criteria [26] in 10 studies and DSM-III-R criteria [27] in one. Nine studies provided data on dementia subtypes: AD according to the NINCDS-ADRDA criteria [28] or DSM-IV criteria [26], and VaD according to the NINDS-AIREN criteria [29] or DSM-IV criteria [26].
Other data included parity, age, sex, educational level, and presence of hypertension and DM which were all harmonized when necessary. We assigned parity as the number of childbirths in 6 cohorts and as the number of children in 5 cohorts. When the participants adopted and fostered children or their children died after birth, the number of childbirths and children could be different. However, only 3 among 590 women (0.3%) had different numbers for childbirths and children in Kurihara study (KS) providing numbers for both childbirths and children, and we used data on childbirth in these 3 cases. To harmonize data on educational level, we classified it into 3 categories. For nine studies with data on years of education, we classified educational level as ≤ 6, 7 to 12, or >  12 years. Three comparable education level groups were used for the remaining two studies with categorical data: primary school or under, secondary school, and tertiary school or above. For hypertension and DM, we used all available information from a study relevant to diagnosing or classifying the condition. In a study with limited information, hypertension and DM may be classified only from a medical history record, while for another study, it may be indicated by any of self-reported history, use of relevant medication, or measured blood pressure or glucose level exceeding values indicated by international guidelines. Four studies (Cuban Health and Alzheimer Study [CHAS], Hellenic Longitudinal Investigation of Aging and Diet [HELIAD], Korean Longitudinal Study on Cognitive Aging and Dementia [KLOSCAD] and Sao Paulo Ageing & Health Study [SPAH]) additionally provided data on economic status, employment, and length of reproductive years. Low economic status was defined as lower 50% based on assets in the CHAS, less than KRW 1,000,000 of monthly house income in the KLOSCAD, and BRL 360 or less of monthly house income in the SPAH. In the HELIAD, 4 socioeconomic variables regarding a set of economic reserves or assets, holiday travelling, and leisure time activities were used to define low economic status [30]. Unemployment was defined as “never been employed in lifetime” in all cohorts. The length of reproductive years was calculated by subtracting the age at menarche from the age at menopause.

Analysis

We initially examined the association between parity (0, 2, 3, 4, ≥ 5 vs 1) and the risk of all-cause dementia with unadjusted and adjusted binary logistic regressions. The adjusted model included age, educational level, hypertension, DM, and cohort as covariates. We employed primiparous women as the reference instead of nulliparous women because nulliparity is associated with earlier menopause [31], and women with earlier menopause had an increased risk of dementia [32]. In obstetrics, 5 or more parities and 10 or more parities are defined as grand multiparity and great grand multiparity, respectively, and they were known to increase obstetric and neonatal complications [33]. Because the number of women with 5 or more births was relatively low, we did not analyze each number of births from 5 or more separately, but rather grouped them into a grand multiparity group. In addition, we further classified grand multiparous women who gave 10 or more childbirths as a great grand multiparity group to examine whether an extremely higher number of parity additionally increase the risk of dementia. Next, we collapsed women with 1 to 4 parities into a referent group and compared this against nulliparity and grand multiparity using the adjusted analyses described above. For 4 cohorts with the additional data, we conducted analyses that further adjusted for socioeconomic status, employment, and reproductive years. We also used adjusted logistic regression to investigate the association between parity as a continuous variable and the risk of all-cause dementia.
The effects of parity and geographic region, and their interaction, on the risk of all-cause dementia were investigated using a binary logistic regression. In this analysis, we grouped parity into nulliparity, 1 to 4 parities, and grand multiparity, and geographic region into Asia, Europe, and Latin America. We adjusted for age, educational level, hypertension, and DM.
We also conducted analyses within each geographic region that examined how both nulliparity and grand multiparity (vs 1 to 4 parities) were associated with (1) the risk of all-cause dementia, using binary logistic regressions, and (2) the risks of AD, VaD, and non-Alzheimer non-vascular dementia (NAVD), using multinomial logistic regressions. These analyses used data from the 9 cohorts with information on dementia subtype. We excluded individuals with mixed etiologies (2.5% of dementia) and adjusted for age, educational level, hypertension, DM, and cohort.
The KLOSCAD team harmonized and pooled the dataset and performed the analyses using the Statistical Package for Social Sciences, v20 (SPSS Inc., Chicago, IL).

Results

The characteristics of the contributing cohorts are summarized in Table 1. At least 10% of women were grand multiparous in 5 cohorts and nulliparous in 4 cohorts. Grand multiparity was more frequent in the Latin American cohorts (28.6%) than in the Asian (17.8%) and European (7.8%) cohorts. The Asian cohorts had less frequent nulliparity (4.5%) than the European (14.3%) and Latin American (11.2%) cohorts (Table 2). The prevalence of dementia was also different between regions. The frequency of dementia was 10% or more in 3 cohorts, and higher in the Latin American cohorts compared to the Asian and European cohorts (P <  0.01). When the prevalence of dementia subtypes was compared separately, AD was less prevalent in the Asian cohorts compared to the European and Latin American cohorts while NAVD was more prevalent in the Latin American cohorts compared to the Asian and European cohorts (P <  0.01). Compared to women with 1 to 4 parities, grand multiparous women were older (72.3 ± 7.7 years vs 75.6 ± 7.6 years, P < 0.01), showed higher proportion of only primary or less education (44% vs 80%, P < 0.01), and had more hypertension (65% vs 71%, P < 0.01) and DM (17% vs 24%, P < 0.01).
Table 2
Comparison of the cohort characteristics between three geographical regions
Characteristics
Total (N = 14,792)
Asia (N = 5920)
Europe (N = 6171)
Latin America (N = 2701)
Statistics*
F or χ2
P
Post hoc*
Age, mean ± SD, years
73.1 ± 7.9
71.4 ± 7.8
74.2 ± 8.0
74.0 ± 7.0
217.79
< 0.001
a < b, a < c
Educational level, %
    
1049.72
< 0.001
 ≤ 6 years or primary school or under
48.8
46.6
39.4
75.0
   
 7 to 12 years or secondary school
38.8
39.0
48.4
16.1
   
 >  12 years or tertiary school or above
12.5
14.4
12.2
12.2
   
Hypertension, %
66.5
55.7
71.2
79.2
569.22
< 0.001
a < b, a < c, b < c
Diabetes mellitus, %
17.3
16.6
12.7
29.5
375.205
< 0.001
a > b, a < c, b < c
Parity (continuous), mean ± SD
2.8 ± 2.2
3.0 ± 1.8
2.3 ± 1.6
3.8 ± 3.5
512.99
< 0.001
a > b, a < c, b < c
Parity (categorical), %
    
949.73
< 0.001
 
 0 (nulliparity)
9.8
4.5
14.3
11.2
   
 1 to 4
74.6
77.8
77.9
60.2
   
 ≥ 5 (grand multiparity)
15.6
17.8
7.8
28.6
   
Dementia prevalence, %
5.9
5.7
4.7
9.1
64.60
< 0.001
a < c, b < c
Dementia subtypes, %
    
54.14
< 0.001
 AD
4.0
3.1
4.1
4.8
   
 VD
0.6
0.7
0.5
0.9
   
 NAVD
1.4
0.4
0.9
3.3
   
SD standard deviation, AD Alzheimer’s disease, VaD vascular dementia, NAVD non-Alzheimer non-vascular dementia
*Continuous variables were compared using analysis of variance, and categorical variables were compared using the χ2 test. Post hoc comparisons were based on Scheffé’s theorem: a = Asia; b = Europe; c = Latin America
Estimated using 9 cohorts providing data on dementia subtypes
The number of parities was associated with hypertension and DM (Table 3). Compared to women with 1 to 4 parities, grand multiparous women were more likely to have hypertension and DM (P < 0.01) and nulliparous women showed a higher frequency of hypertension and lower frequency of DM (P < 0.01).
Table 3
Comparison of the cohort characteristics between three parity groups
Characteristics
Number of parities
Statistics*
0
1 to 4
≥ 5
F or χ2
P
Post hoc*
Age, mean ± SD, years
74 ± 8.3
72.3 ± 7.7
75.6 ± 7.7
224.345
< 0.001
a > b, a < c, b < c
Educational level, %
   
1122.978
< 0.001
 ≤ 6 years or primary school or under
36.5
43.9
80.0
   
 7 to 12 years or secondary school
44.4
42.6
17.1
   
 > 12 years or tertiary school or above
19.1
13.6
2.9
   
Hypertension, %
69.3
65.2
70.9
33.289
< 0.001
a > b, b < c
Diabetes mellitus, %
13.1
16.5
23.5
84.376
< 0.001
a < b, a < c, b < c,
Dementia prevalence, %
5.8
5.0
10.5
103.961
< 0.001
a < c, b < c,
Dementia subtypes, %
   
112.556
< 0.001
 AD
4.6
3.1
7.1
   
 VD
0.6
0.5
1.1
   
 NAVD
2.2
1.0
2.4
   
*Continuous variables were compared using analysis of variance, and categorical variables were compared using the χ2 test. Post hoc comparisons were based on Scheffé’s theorem: a = nulliparity; b = 1 to 4 parities; c = grand multiparity
Estimated using 9 cohorts providing data on dementia subtypes
Table 4 shows the risk of all-cause dementia associated with parity determined with our initial analyses. In the unadjusted logistic regression model, the risk of all-cause dementia was not significantly different for nulliparous women and women with 2, 3, or 4 parities, but was significantly higher for grand multiparous women compared to primiparous women. In the logistic regression model adjusting for age, educational level, and cohort, grand multiparous women showed 1.47-fold higher risk of all-cause dementia than primiparous women (95% confidence interval [CI] = 1.11–1.94, P < 0.01). When we further adjusted for hypertension and DM, the association between grand multiparity and the risk for all-cause dementia remained significant (OR = 1.47, 95% CI = 1.10–1.94, P < 0.01). When we divided grand multiparous women into two groups, women with 5 to 9 parities and great grand multiparous women showed 1.44-fold (95% CI = 1.08–1.90, P = 0.01) and 1.86-fold (95% CI = 1.11–3.09, P = 0.02) higher risks of all-cause dementia, respectively. Further analyses with 1 to 4 parities as the reference group found the risk of all-cause dementia to be significantly higher in grand multiparous women (odds ratio [OR] = 1.33, 95% CI = 1.09–1.60, P < 0.01) but not significantly different in nulliparous women (OR = 0.83, 95% CI = 0.64–1.08, P = 0.16). The results were similar when additionally adjusting for economic status, employment, and reproductive years; grand multiparity was associated with an increased risk of all-cause dementia (OR = 1.46, 95% CI = 1.13–1.89, P < 0.01), but nulliparity was not (OR = 1.07, 95% CI = 0.70–1.62, P = 0.77). An analysis with parity as a continuous variable showed the risk of all-cause dementia to increase as the number of parities increased (OR = 1.06, 95% CI = 1.03–1.10, P < 0.01).
Table 4
The risk of all-cause dementia associated with parity
Parity
Number of subjects
Unadjusted model
Adjusted model I*
Adjusted model II
Control
Dementia
OR (95% CI)
P
OR (95% CI)
P
OR (95% CI)
P
0 (nulliparity)
1368
84
1.25 (0.93–1.68)
0.014
0.91 (0.66–1.25)
0.560
0.92 (0.67–1.27)
0.613
1 (primiparity)
2096
103
1.00 [Reference]
 
1.00 [Reference]
 
1.00 [Reference]
 
2
3923
181
0.94 (0.73–1.20)
0.618
1.12 (0.86–1.46)
0.397
1.13 (0.86–1.47)
0.375
3
2819
161
1.16 (0.90–1.50)
0.245
1.19 (0.91–1.57)
0.206
1.19 (0.91–1.57)
0.200
4
1652
103
1.27 (0.96–1.68)
0.096
1.06 (0.79–1.44)
0.690
1.07 (0.79–1.45)
0.664
≥ 5 (grand multiparity)
2061
241
2.38 (1.87–3.02)
< 0.001
1.47 (1.11–1.94)
0.007
1.47 (1.10–1.94)
0.007
5 to 9
1836
212
2.35 (1.84–3.00)
< 0.001
1.43 (1.08–1.90)
0.012
1.44 (1.08–1.90)
0.012
≥ 10
225
29
2.62 (1.70–4.05)
< 0.001
1.84 (1.11–3.06)
0.019
1.86 (1.11–3.09)
0.018
OR odds ratio, CI confidence intervals
*Binary logistic regression analyses adjusted for age, educational level, and cohort as covariates
Binary logistic regression analyses adjusted for age, educational level, hypertension, diabetes mellitus, and cohort as covariates
In further analyses, the risk of all-cause dementia was significantly associated with parity (P < 0.01) and geographic region (P < 0.01), as well as their interaction (P < 0.01). As seen in Table 5, compared to women with 1 to 4 parities, grand multiparous women showed about 3-fold and 1.5-fold higher risk of all-cause dementia in the European (P < 0.01) and Latin American (P = 0.03) cohorts. Grand multiparous women also showed a modestly higher risk of all-cause dementia in the Asian cohorts, but this was not statistically significant (P = 0.24). Nulliparous women showed about 2-fold higher risk of all-cause dementia than women with 1 to 4 parities in the Asian cohorts (P < 0.01), but associations with nulliparity were not statistically significant in the European (P = 0.66) and Latin American (P = 0.26) cohorts.
Table 5
The risks of nulliparity and grand multiparity for dementia according to subtypes and geographical regions
 
Numbers of subjects
All-cause dementia
AD
VaD
NAVD
Control
Dementia
AD
VaD
NAVD
OR (95 CI)*
P
OR (95 CI)*
P
OR (95 CI)*
P
OR (95 CI)*
P
Nulliparity
 Asia
239/5584
27/336
17/244
1/27
7/54
2.15 (1.33–3.47)
0.002
1.91 (1.07–3.39)
0.028
1.03 (0.13–7.89)
0.977
3.47 (1.44–8.35)
0.005
 Europe
117/3098
25/125
12/88
1/22
1/12
0.70 (0.38–1.30)
0.261
0.90 (0.46–1.76)
0.761
0.28 (0.04–2.13)
0.218
0.53 (0.06–4.32)
0.552
 Latin America
2456/270
32/245
15/129
4/24
13/89
0.91 (0.59–1.40)
0.661
0.72 (0.40–1.30)
0.277
1.39 (0.42–4.57)
0.585
1.11 (0.58–2.14)
0.746
Grand multiparity
 Asia
919/5584
132/336
102/244
10/27
1/54
1.25 (0.94–1.67)
0.122
1.29 (0.93–1.79)
0.127
1.37 (0.55–3.42)
0.498
1.22 (0.61–2.43)
0.581
 Europe
117/3098
39/125
6/88
3/22
1/12
2.99 (1.38–6.47)
0.005
2.42 (0.94–6.25)
0.068
6.86 (1.81–26.08)
0.005
3.36 (0.37–30.80)
0.283
 Latin America
702/2456
70/245
30/129
9/24
28/89
1.49 (1.04–2.12)
0.028
1.25 (0.77–2.03)
0.366
1.41 (0.53–3.79)
0.495
1.80 (1.05–3.10)
0.034
AD Alzheimer’s disease, VaD vascular dementia, NAVD non-Alzheimer non-vascular dementia, OR odds ratio, CI confidence intervals
*Binary or multinomial logistic regression analyses that employed the women with 1 to 4 parities as the referent group and adjusted age, educational level, hypertension, diabetes mellitus, and cohort as covariates using the pooled dataset of 9 cohort studies that provided the type of dementia (Cuban Health and Alzheimer Study, Etude Sante Psychologique et Traitement, Gothenburg H70 Birth cohort Studies, Hellenic Longitudinal Investigation of Aging and Diet, Korean Longitudinal Study on Cognitive Aging and Dementia, Kurihara Study, Leipzig Longitudinal Study of the Aged, Shanghai Aging Study, Sao Paulo Ageing & Health Study)
The results of analyses examining how grand multiparity and nulliparity were associated with the risks of AD, VaD, and NAVD separately in each geographic region are also shown in Table 5. Compared to women with 1 to 4 parities, grand multiparity was associated with a more than 6-fold higher risk of VaD in the European cohorts (P < 0.01) and about a 1.8-fold higher risk of NAVD in the Latin American cohorts (P = 0.03). Nulliparity was associated with about a 1.9-fold higher risk of AD (P = 0.03) and about a 3.5-fold higher risk of NAVD (P < 0.01) in the Asian cohorts. However, the associations between nulliparity and the risk of AD, VaD, and NAVD were not statistically significant in other geographic regions.

Discussion

This study included nearly 15,000 community-dwelling elderly women from 11 population-based prospective cohort studies from 11 countries over 3 continents and found that grand multiparity and nulliparity were associated with an increased risk of dementia. However, these associations were not uniform across different geographic regions or dementia subtypes. Grand multiparity was associated with an increased risk of VaD in European cohorts and an increased risk of NAVD in Latin American cohorts. Conversely, nulliparity was associated with an increased risk of both AD and NAVD in Asian cohorts.
The association between grand multiparity and the risk of all-cause dementia has not been previously investigated. Gilsanz et al., using a claims database that included 14,595 women (Caucasian 68%, African American 16%, Asian 6%, and Hispanic 5%), reported that women with 3 or more childbirths showed modestly lower risk of all-cause dementia (hazard ratio = 0.88, 95% CI = 0.81–0.95) than primiparous women [13]. However, they did not specifically analyze the association between grand multiparity and the risk of all-cause dementia, and their dementia diagnoses were derived from the billing codes of electronic medical records, which may lack diagnostic accuracy [34]. Their results thus cannot be directly compared against our finding that grand multiparity increased the risk of dementia. It has been previously reported that grand multiparous women are more likely to have risk factors for dementia that include being less educated, unemployed, and economically disadvantaged [6], experiencing more stress during childbearing, and higher rates of medical conditions such as coronary heart disease, stroke, DM, and metabolic syndrome [79]. This is consistent with the data we had showing less education and higher rates of hypertension and DM in grand multiparous women. Repetitive pregnancies and childbirths may also have direct cumulative harmful effects on the brain. For example, serum estradiol increases more than 10-fold and insulin sensitivity drops to 50% in the third trimester, with both effects potentially neurotoxic [35, 36]. Gray matter volumes in multiple areas including the hippocampus were reduced and persisted for 2 years after birth [37]. Density and numbers of microglia which is known to contribute to neurogenesis and spinogenesis were reduced during peripartum period, and its proliferation was reduced in the postpartum hippocampus [38]. In addition, serum estrogen was reduced after pregnancy in both premenopausal and postmenopausal periods [39, 40].
The number of people with dementia is expected to more than double in Africa, Asia, and Latin America, and the global proportion of individuals with dementia living in these regions will have increased to about 70% by 2050 [41]. Women in these regions have typically had much higher fertility rates than women in Europe and North America [42]. Despite the global fertility rate having fallen by half in the last 60 years or so (from 5 to 2.5 births per woman), it remains at around five in most African countries [41]. While this suggests that grand multiparity may be a risk factor for dementia of particular importance to Africa, further research is needed given our lack of African cohorts and findings of geographic differences.
Although grand multiparity was associated with an increased risk of dementia both in European and Latin American cohorts, the association was not significant in Asian cohorts. There were also differences associated with dementia subtype. Grand multiparity was associated with a more than 6-fold higher risk of VaD in European cohorts, and about a 2-fold risk of NAVD in Latin American cohorts. Different associations between grand multiparity and dementia risk by geographic region and dementia subtype might be due to different ethno-racial susceptibilities of the hormonal and vascular system to the effects of pregnancy or childbirth. For example, it has been previously reported that the number of parities influenced gestational period estradiol levels in Caucasian women, but not in Asian women [43], and that the risks of gestational hypertension and preeclampsia were higher in Caucasian women than in Asian/Pacific Islanders and Hispanic women [44]. Insulin resistance, which was more prevalent in postmenopausal women with 4 or more children compared to those with 0–3 parities [45], may influence the risk of dementia in European regions where DM was less prevalent compared to the Asian and Latin American regions. Although we could not adjust the effect of apolipoprotein E genotype in the present study, different distribution of apolipoprotein E genotype and psychosocial stresses associated with childbearing between regions may possibly contribute to the different association between grand multiparity and the risk of dementia between regions.
In contrast to grand multiparity being associated with an increased risk of dementia in both the European and Latin American cohorts, only in Asian cohorts was nulliparity associated with a higher risk of dementia, particularly non-vascular dementia. In the current study, the proportion of VaD in all-cause dementia was higher in the European cohorts (18%) than in Asian (8.3%) and Latin American (9.9%) cohorts. This inter-regional difference in the association between nulliparity and the risk of dementia may be, at least in part, attributable to an inter-regional difference in the causes of nulliparity. In the current study, the proportion of nulliparous women in Asian cohorts (4.5%) was much lower than that in European (14.3%) and Latin American (11.2%) cohorts, and nonmarriage and voluntary childlessness in nulliparous women are less common in Asian countries compared to the Western countries [46]. Therefore, nulliparous women in Asia are more likely to have involuntary factors as causes of nulliparity. The majority of involuntary causes of nulliparity are infertility and recurrent miscarriage. The most common cause of infertility is ovulatory dysfunction caused by premature ovarian failure, ovarian hyperandrogenism, hypothalamic dysfunction, pituitary disease, and thyroid disease [47], and these conditions are reportedly associated with the risk of cognitive impairment or AD [48]. Furthermore, women experiencing recurrent miscarriage are more likely to have the apolipoprotein E ε4 allele, which conveys an increased risk of AD [49].
The current study has limitations. First, we could not adjust for some well-known associated factors for dementia such as apolipoprotein E genotype, diet, reproductive experiences such as breast feeding, and gynecological surgery that could be associated with parity. However, in our previous work, the association between parity and AD remained significant even after adjusting for breast feeding, history of hormonal replacement therapy, hysterectomy, and oophorectomy [10]. Second, the data harmonization procedure might have confounded our observations. For example, parity data was based on the number of childbirths in 6 cohorts and the number of children in 5 cohorts, and adoption or death of children might have distorted parity information. However, this would likely apply to only a very small number of cases, given that for our KS, only 0.3% of women had different numbers for childbirths and children. Third, information on parity was obtained retrospectively. However, childbirths are life events not easily forgotten and likely to be minimally prone to recall bias. Fourth, regional difference in the diagnostic rates of dementia and its subtypes might have influenced the differential associations of parity with dementia subtypes according to geographical regions because the prevalence of dementia subtypes was considerably different between geographical regions. Fifth, women with middle- and late-stage dementia might be less likely to be included in the present study because all participants were community-dwelling.

Conclusions

Grand multiparity and nulliparity are associated with the risk of dementia in women, but these associations were not uniform across geographic regions and dementia subtypes. The findings of this study help to understand the development of dementia in women, and have important implications for world regions where the birth rate remains high.

Acknowledgements

The Sydney COSMIC team comprises Perminder S. Sachdev (head of COSMIC, and joint study leader of the Sydney Memory and Ageing Study), Darren M. Lipnicki (COSMIC study co-ordinator), Steve R Makkar, John D Crawford, Anbupalam Thalamuthu, Nicole A. Kochan, Yvonne Leung, and Jessica W. Lo.
Affiliations of the authors with the contributing studies are as follows (asterisk indicates study leader or joint study leader):
Cuban Health and Alzheimer Study: Juan J. Llibre-Rodriguez*, Jorge J. Llibre-Guerra, Adolfo J. Valhuerdi-Cepero;
Etude Santé Psychologique et Traitement: Karen Ritchie*, Marie-Laure Ancelin*, Isabelle Carrière;
Gothenburg H70 Birth cohort Studies: Ingmar Skoog*, Jenna Najar, Therese Rydberg Sterner;
Hellenic Longitudinal Investigation of Aging and Diet: Nikolaos Scarmeas*, Mary Yannakoulia, Efthimios Dardiotis;
Korean Longitudinal Study on Cognitive Aging and Dementia: Ki Woong Kim*, Ji Won Han, Jong Bin Bae;
Kurihara Study: Kenichi Meguro*, Mari Kasai, Kei Nakamura;
Leipzig Longitudinal Study of the Aged: Steffi G. Riedel-Heller*, Susanne Roehr, Alexander Pabst;
Maastricht Ageing Study: Martin van Boxtel*, Sebastian Köhler*;
Shanghai Aging Study: Ding Ding*. Qianhua Zhao, Xiaoniu Liang;
São Paulo Ageing & Health Study: Marcia Scazufca*;
Zaragoza Dementia Depression Project: Antonio Lobo*, Concepción De-la-Cámara, Elena Lobo.
Further COSMIC study leaders: Yuda Turana (Atma Jaya Cognitive & Aging Research), Erico Castro-Costa (Bambui Cohort Study of Aging), Bagher Larijani and Iraj Nabipour (Bushehr Elderly Health Program), Kenneth Rockwood (Canadian Study of Health & Aging), Xiao Shifu (Chinese Longitudinal Aging Study), Richard B. Lipton and Mindy J. Katz (Einstein Aging Study), Pierre-Marie Preux and Maëlenn Guerchet (Epidemiology of Dementia in Central Africa), Linda Lam (Hong Kong Memory and Ageing Prospective Study), Ingmar Skoog (Gothenburg H70 Birth Cohort Studies), Toshiharu Ninimiya (Hisayama Study), Richard Walker (Identification and Intervention for Dementia in Elderly Africans study), Hugh Hendrie (Indianapolis Ibadan Dementia Project), Antonio Guaita (Invecchiamento Cerebrale in Abbiategrasso), Liang-Kung Chen (I-Lan Longitudinal Aging Study), Suzana Shahar (LRGS TUA: Neuroprotective Model for Healthy Longevity among Malaysian Older Adults), Jacqueline Dominguez (Marikina Memory and Aging Project), Murali Krishna (Mysore studies of Natal effects on Ageing and Health), Mary Ganguli (Monongahela Valley Independent Elders Survey), Kaarin J. Anstey (Personality and Total Health Through Life Project), Michael Crowe (Puerto Rican Elderly: Health Conditions study), Mary N. Haan (Sacramento Area Latino Study on Aging), Shuzo Kumagai (Sasaguri Genkimon Study), Tze Pin Ng (Singapore Longitudinal Ageing Studies (I)), Henry Brodaty (Sydney Memory and Ageing Study), Kenichi Meguro (Tajiri Project), Richard Mayeux and Nicole Schupf (Washington Heights Inwood and Columbia Aging Project).
COSMIC NIH grant investigators: Perminder Sachdev: Scientia Professor of Neuropsychiatry; Co-Director, Centre for Healthy Brain Ageing (CHeBA), UNSW Sydney; Director, Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia. Mary Ganguli: Professor of Psychiatry, Neurology, and Epidemiology, University of Pittsburgh. Ronald Petersen: Professor of Neurology; Director, Mayo Clinic Alzheimer’s Disease Research Center and the Mayo Clinic Study of Aging. Richard Lipton: Edwin S. Lowe Professor and Vice Chair of Neurology, Albert Einstein College of Medicine. Karen Ritchie: Professor and Director of the Neuropsychiatry Research Unit of the French National Institute of Research (INSERM U1061). Ki-Woong Kim: Professor of Brain and Cognitive Sciences, Director of National Institute of Dementia of Korea. Louisa Jorm: Director, Centre for Big Data Research in Health and Professor, Faculty of Medicine, UNSW Sydney, Australia. Henry Brodaty: Scientia Professor of Ageing & Mental Health; Co-Director, Centre for Healthy Brain Ageing (CHeBA), UNSW Sydney; Director, Dementia Collaborative Research Centre (DCRC); Senior Consultant, Old Age Psychiatry, Prince of Wales Hospital.
This study was approved by the University of New South Wales Human Research Ethics Committee (Ref: # HC12446). Each of the 11 contributing studies had previously obtained ethics approval from their respective institutional review boards, and all participants provided informed consent.
Not applicable

Competing interests

All authors declare no competing financial interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15(5):455–532. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15(5):455–532.
2.
Zurück zum Zitat Altmann A, Tian L, Henderson VW, Greicius MD, Investigators AsDNI. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75(4):563–73.PubMedPubMedCentral Altmann A, Tian L, Henderson VW, Greicius MD, Investigators AsDNI. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75(4):563–73.PubMedPubMedCentral
3.
Zurück zum Zitat Sinforiani E, Citterio A, Zucchella C, Bono G, Corbetta S, Merlo P, Mauri M. Impact of gender differences on the outcome of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2010;30(2):147–54.PubMed Sinforiani E, Citterio A, Zucchella C, Bono G, Corbetta S, Merlo P, Mauri M. Impact of gender differences on the outcome of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2010;30(2):147–54.PubMed
4.
Zurück zum Zitat Naftolin F, Silva I, Orley A. Reproductive Hormones and Dementia. In: Reproductive Medicine for Clinical Practice. 1st edn. Cham: Springer; 2018:191–201. Naftolin F, Silva I, Orley A. Reproductive Hormones and Dementia. In: Reproductive Medicine for Clinical Practice. 1st edn. Cham: Springer; 2018:191–201.
5.
Zurück zum Zitat Cunningham FG. Williams obstetrics 24th edition McGraw-Hill education. In: Medical; 2014. Cunningham FG. Williams obstetrics 24th edition McGraw-Hill education. In: Medical; 2014.
6.
Zurück zum Zitat Emechebe C, Njoku C, Eyong E, Maduekwe K, Ukaga J. The social class and reasons for grand multiparity in Calabar, Nigeria. Trop J Obstet Gynaecol. 2016;33(3):327–31. Emechebe C, Njoku C, Eyong E, Maduekwe K, Ukaga J. The social class and reasons for grand multiparity in Calabar, Nigeria. Trop J Obstet Gynaecol. 2016;33(3):327–31.
7.
Zurück zum Zitat Xu B, Chen Y, Xiong J, Lu N, Tan X. Association of female reproductive factors with hypertension, diabetes and LQTc in Chinese women. Sci Rep. 2017;7:42803.PubMedPubMedCentral Xu B, Chen Y, Xiong J, Lu N, Tan X. Association of female reproductive factors with hypertension, diabetes and LQTc in Chinese women. Sci Rep. 2017;7:42803.PubMedPubMedCentral
8.
Zurück zum Zitat Lawlor DA. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing?: findings from the British Women’s Heart and Health Study and the British Regional Heart Study. Circulation. 2003;107(9):1260–4.PubMed Lawlor DA. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing?: findings from the British Women’s Heart and Health Study and the British Regional Heart Study. Circulation. 2003;107(9):1260–4.PubMed
9.
Zurück zum Zitat Nicholson WK, Asao K, Brancati F, Coresh J, Pankow JS, Powe NR. Parity and risk of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes Care. 2006;29(11):2349–54.PubMed Nicholson WK, Asao K, Brancati F, Coresh J, Pankow JS, Powe NR. Parity and risk of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes Care. 2006;29(11):2349–54.PubMed
10.
Zurück zum Zitat Jang H, Bae JB, Dardiotis E, Scarmeas N, Sachdev PS, Lipnicki DM, Han JW, Kim TH, Kwak KP, Kim BJ. Differential effects of completed and incomplete pregnancies on the risk of Alzheimer disease. Neurology. 2018;91(7):e643–51.PubMed Jang H, Bae JB, Dardiotis E, Scarmeas N, Sachdev PS, Lipnicki DM, Han JW, Kim TH, Kwak KP, Kim BJ. Differential effects of completed and incomplete pregnancies on the risk of Alzheimer disease. Neurology. 2018;91(7):e643–51.PubMed
11.
Zurück zum Zitat Ptok U, Barkow K, Heun R. Fertility and number of children in patients with Alzheimer’s disease. Arch Womens Ment Health. 2002;5(2):83–6.PubMed Ptok U, Barkow K, Heun R. Fertility and number of children in patients with Alzheimer’s disease. Arch Womens Ment Health. 2002;5(2):83–6.PubMed
12.
Zurück zum Zitat Baldereschi M, Di Carlo A, Lepore V, Bracco L, Maggi S, Grigoletto F, Scarlato G, Amaducci L. Estrogen-replacement therapy and Alzheimer’s disease in the Italian Longitudinal Study on Aging. Neurology. 1998;50(4):996–1002.PubMed Baldereschi M, Di Carlo A, Lepore V, Bracco L, Maggi S, Grigoletto F, Scarlato G, Amaducci L. Estrogen-replacement therapy and Alzheimer’s disease in the Italian Longitudinal Study on Aging. Neurology. 1998;50(4):996–1002.PubMed
13.
Zurück zum Zitat Gilsanz P, Corrada MM, Kawas CH, Quesenberry CP, Lee C, Whitmer RA. Women’s reproductive history and dementia risk. Alzheimers Dement. 2018;14(7):P1350–1. Gilsanz P, Corrada MM, Kawas CH, Quesenberry CP, Lee C, Whitmer RA. Women’s reproductive history and dementia risk. Alzheimers Dement. 2018;14(7):P1350–1.
14.
Zurück zum Zitat Sachdev PS, Lipnicki DM, Kochan NA, Crawford JD, Rockwood K, Xiao S, Li J, Li X, Brayne C, Matthews FE. COSMIC (Cohort Studies of Memory in an International Consortium): an international consortium to identify risk and protective factors and biomarkers of cognitive ageing and dementia in diverse ethnic and sociocultural groups. BMC Neurol. 2013;13(1):165.PubMedPubMedCentral Sachdev PS, Lipnicki DM, Kochan NA, Crawford JD, Rockwood K, Xiao S, Li J, Li X, Brayne C, Matthews FE. COSMIC (Cohort Studies of Memory in an International Consortium): an international consortium to identify risk and protective factors and biomarkers of cognitive ageing and dementia in diverse ethnic and sociocultural groups. BMC Neurol. 2013;13(1):165.PubMedPubMedCentral
15.
Zurück zum Zitat Llibre-Rodríguez JJ, Valhuerdi-Cepero A, López-Medina AM, Noriega-Fernández L, Porto-Álvarez R, Guerra-Hernández MA, Bosch-Bayard RI, Zayas-Llerena T, Hernandez-Ulloa E, Rodríguez-Blanco AL. Cuba’s aging and Alzheimer longitudinal study. MEDICC Rev. 2017;19:31–5.PubMed Llibre-Rodríguez JJ, Valhuerdi-Cepero A, López-Medina AM, Noriega-Fernández L, Porto-Álvarez R, Guerra-Hernández MA, Bosch-Bayard RI, Zayas-Llerena T, Hernandez-Ulloa E, Rodríguez-Blanco AL. Cuba’s aging and Alzheimer longitudinal study. MEDICC Rev. 2017;19:31–5.PubMed
16.
Zurück zum Zitat Ritchie K, Carrière I, Ritchie C, Berr C, Artero S, Ancelin M-L. Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors. BMJ. 2010;341:c3885.PubMedPubMedCentral Ritchie K, Carrière I, Ritchie C, Berr C, Artero S, Ancelin M-L. Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors. BMJ. 2010;341:c3885.PubMedPubMedCentral
17.
Zurück zum Zitat Thorvaldsson V, Karlsson P, Skoog J, Skoog I, Johansson B. Better cognition in new birth cohorts of 70 year olds, but greater decline thereafter. J Gerontol B Psychol Sci Soc Sci. 2017;72(1):16–24.PubMed Thorvaldsson V, Karlsson P, Skoog J, Skoog I, Johansson B. Better cognition in new birth cohorts of 70 year olds, but greater decline thereafter. J Gerontol B Psychol Sci Soc Sci. 2017;72(1):16–24.PubMed
18.
Zurück zum Zitat Dardiotis E, Kosmidis MH, Yannakoulia M, Hadjigeorgiou GM, Scarmeas N. The Hellenic Longitudinal Investigation of Aging and Diet (HELIAD): rationale, study design, and cohort description. Neuroepidemiology. 2014;43(1):9–14.PubMed Dardiotis E, Kosmidis MH, Yannakoulia M, Hadjigeorgiou GM, Scarmeas N. The Hellenic Longitudinal Investigation of Aging and Diet (HELIAD): rationale, study design, and cohort description. Neuroepidemiology. 2014;43(1):9–14.PubMed
19.
Zurück zum Zitat Han JW, Kim TH, Kwak KP, Kim K, Kim BJ, Kim SG, Kim JL, Kim TH, Moon SW, Park JY et al: Overview of the Korean Longitudinal Study on Cognitive Aging and Dementia. Psychiatry Investig. 2018;15(8):767–74. Han JW, Kim TH, Kwak KP, Kim K, Kim BJ, Kim SG, Kim JL, Kim TH, Moon SW, Park JY et al: Overview of the Korean Longitudinal Study on Cognitive Aging and Dementia. Psychiatry Investig. 2018;15(8):767–74.
20.
Zurück zum Zitat Kumai K, Meguro K, Kasai M, Nakamura K, Nakatsuka M. Neuroepidemiologic and neurobehavioral characteristics of motoric cognitive risk syndrome in an old-old population: the Kurihara project. Dement Geriatr Cogn Disord Extra. 2016;6(2):176–82. Kumai K, Meguro K, Kasai M, Nakamura K, Nakatsuka M. Neuroepidemiologic and neurobehavioral characteristics of motoric cognitive risk syndrome in an old-old population: the Kurihara project. Dement Geriatr Cogn Disord Extra. 2016;6(2):176–82.
21.
Zurück zum Zitat Riedel-Heller SG, Busse A, Aurich C, Matschinger H, Angermeyer MC. Prevalence of dementia according to DSM–III–R and ICD–10: results of the Leipzig Longitudinal Study of the Aged (LEILA75+) part 1. Br J Psychiatry. 2001;179(3):250–4.PubMed Riedel-Heller SG, Busse A, Aurich C, Matschinger H, Angermeyer MC. Prevalence of dementia according to DSM–III–R and ICD–10: results of the Leipzig Longitudinal Study of the Aged (LEILA75+) part 1. Br J Psychiatry. 2001;179(3):250–4.PubMed
22.
Zurück zum Zitat Jolles J, Houx P, Van Boxtel M, Ponds R. The Maastricht Aging Study. Determinants of cognitive aging Maastricht. 1995;192. Jolles J, Houx P, Van Boxtel M, Ponds R. The Maastricht Aging Study. Determinants of cognitive aging Maastricht. 1995;192.
23.
Zurück zum Zitat Ding D, Zhao Q, Guo Q, Meng H, Wang B, Yu P, Luo J, Zhou Y, Yu L, Zheng L, et al. The Shanghai Aging Study: study design, baseline characteristics, and prevalence of dementia. Neuroepidemiology. 2014;43(2):114–22.PubMed Ding D, Zhao Q, Guo Q, Meng H, Wang B, Yu P, Luo J, Zhou Y, Yu L, Zheng L, et al. The Shanghai Aging Study: study design, baseline characteristics, and prevalence of dementia. Neuroepidemiology. 2014;43(2):114–22.PubMed
24.
Zurück zum Zitat Scazufca M, Menezes PR, Araya R, Di Rienzo VD, Almeida OP, Gunnell D, Lawlor DA, Sao Paulo A, Health S. Risk factors across the life course and dementia in a Brazilian population: results from the Sao Paulo Ageing & Health Study (SPAH). Int J Epidemiol. 2008;37(4):879–90.PubMed Scazufca M, Menezes PR, Araya R, Di Rienzo VD, Almeida OP, Gunnell D, Lawlor DA, Sao Paulo A, Health S. Risk factors across the life course and dementia in a Brazilian population: results from the Sao Paulo Ageing & Health Study (SPAH). Int J Epidemiol. 2008;37(4):879–90.PubMed
25.
Zurück zum Zitat Lobo A, Lopez-Anton R, Santabarbara J, de-la-Cámara C, Ventura T, Quintanilla M, Roy J, Campayo A, Lobo E, Palomo T. Incidence and lifetime risk of dementia and Alzheimer’s disease in a Southern European population. Acta Psychiatr Scand. 2011;124(5):372–83.PubMed Lobo A, Lopez-Anton R, Santabarbara J, de-la-Cámara C, Ventura T, Quintanilla M, Roy J, Campayo A, Lobo E, Palomo T. Incidence and lifetime risk of dementia and Alzheimer’s disease in a Southern European population. Acta Psychiatr Scand. 2011;124(5):372–83.PubMed
26.
Zurück zum Zitat American Psychiatric Association: Diagnostic and statistical manual of mental disorders. 1994. American Psychiatric Association: Diagnostic and statistical manual of mental disorders. 1994.
27.
Zurück zum Zitat American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 3rd ed., revised (DSM-III-R). Washington, D.C.: American Psychiatric Association; 1987. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 3rd ed., revised (DSM-III-R). Washington, D.C.: American Psychiatric Association; 1987.
28.
Zurück zum Zitat McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939.PubMed McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939.PubMed
29.
Zurück zum Zitat Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu J, Ja G, Amaducci L, Orgogozo J-M, Brun A, Hofman A. Vascular dementia diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. Neurology. 1993;43(2):250.PubMed Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu J, Ja G, Amaducci L, Orgogozo J-M, Brun A, Hofman A. Vascular dementia diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. Neurology. 1993;43(2):250.PubMed
30.
Zurück zum Zitat Margioti E, Kosmidis MH, Yannakoulia M, Dardiotis E, Hadjigeorgiou G, Sakka P, Ntanasi E, Vlachos GS, Scarmeas N. Exploring the association between subjective cognitive decline and frailty: the Hellenic Longitudinal Investigation of Aging and Diet Study (HELIAD). Aging Ment Health. 2020;24(1):137–47.PubMed Margioti E, Kosmidis MH, Yannakoulia M, Dardiotis E, Hadjigeorgiou G, Sakka P, Ntanasi E, Vlachos GS, Scarmeas N. Exploring the association between subjective cognitive decline and frailty: the Hellenic Longitudinal Investigation of Aging and Diet Study (HELIAD). Aging Ment Health. 2020;24(1):137–47.PubMed
31.
Zurück zum Zitat Mishra GD, Pandeya N, Dobson AJ, Chung HF, Anderson D, Kuh D, Sandin S, Giles GG, Bruinsma F, Hayashi K, et al. Early menarche, nulliparity and the risk for premature and early natural menopause. Hum Reprod. 2017;32(3):679–86.PubMedPubMedCentral Mishra GD, Pandeya N, Dobson AJ, Chung HF, Anderson D, Kuh D, Sandin S, Giles GG, Bruinsma F, Hayashi K, et al. Early menarche, nulliparity and the risk for premature and early natural menopause. Hum Reprod. 2017;32(3):679–86.PubMedPubMedCentral
32.
Zurück zum Zitat Gilsanz P, Lee C, Corrada MM, Kawas CH, Quesenberry CP, Jr., Whitmer RA: Reproductive period and risk of dementia in a diverse cohort of health care members. Neurology 2019;92(17):e2005–e2014.PubMedPubMedCentral Gilsanz P, Lee C, Corrada MM, Kawas CH, Quesenberry CP, Jr., Whitmer RA: Reproductive period and risk of dementia in a diverse cohort of health care members. Neurology 2019;92(17):e2005–e2014.PubMedPubMedCentral
33.
Zurück zum Zitat Babinszki A, Kerenyi T, Torok O, Grazi V, Lapinski RH, Berkowitz RL. Perinatal outcome in grand and great-grand multiparity: effects of parity on obstetric risk factors. Am J Obstet Gynecol. 1999;181(3):669–74.PubMed Babinszki A, Kerenyi T, Torok O, Grazi V, Lapinski RH, Berkowitz RL. Perinatal outcome in grand and great-grand multiparity: effects of parity on obstetric risk factors. Am J Obstet Gynecol. 1999;181(3):669–74.PubMed
34.
Zurück zum Zitat Khwaja H, Syed H, DJBi C. Coding errors: a comparative analysis of hospital and prospectively collected departmental data. BJU Int. 2002;89(3):178–80.PubMed Khwaja H, Syed H, DJBi C. Coding errors: a comparative analysis of hospital and prospectively collected departmental data. BJU Int. 2002;89(3):178–80.PubMed
35.
Zurück zum Zitat Loriaux DL, Ruder H, Knab D, Lipsett M. Estrone sulfate, estrone, estradiol and estriol plasma levels in human pregnancy. J Clin Endocrinol Metab. 1972;35(6):887–91.PubMed Loriaux DL, Ruder H, Knab D, Lipsett M. Estrone sulfate, estrone, estradiol and estriol plasma levels in human pregnancy. J Clin Endocrinol Metab. 1972;35(6):887–91.PubMed
36.
Zurück zum Zitat Sudo S, Wen T-C, Desaki J, Matsuda S, Tanaka J, Arai T, Maeda N, Sakanaka M. β-Estradiol protects hippocampal CA1 neurons against transient forebrain ischemia in gerbil. Neurosci Res. 1997;29(4):345–54.PubMed Sudo S, Wen T-C, Desaki J, Matsuda S, Tanaka J, Arai T, Maeda N, Sakanaka M. β-Estradiol protects hippocampal CA1 neurons against transient forebrain ischemia in gerbil. Neurosci Res. 1997;29(4):345–54.PubMed
37.
Zurück zum Zitat Hoekzema E, Barba-Muller E, Pozzobon C, Picado M, Lucco F, Garcia-Garcia D, Soliva JC, Tobena A, Desco M, Crone EA, et al. Pregnancy leads to long-lasting changes in human brain structure. Nat Neurosci. 2017;20(2):287–96.PubMed Hoekzema E, Barba-Muller E, Pozzobon C, Picado M, Lucco F, Garcia-Garcia D, Soliva JC, Tobena A, Desco M, Crone EA, et al. Pregnancy leads to long-lasting changes in human brain structure. Nat Neurosci. 2017;20(2):287–96.PubMed
38.
Zurück zum Zitat Haim A, Julian D, Albin-Brooks C, Brothers HM, Lenz KM, Leuner B. A survey of neuroimmune changes in pregnant and postpartum female rats. Brain Behav Immun. 2017;59:67–78.PubMed Haim A, Julian D, Albin-Brooks C, Brothers HM, Lenz KM, Leuner B. A survey of neuroimmune changes in pregnant and postpartum female rats. Brain Behav Immun. 2017;59:67–78.PubMed
39.
Zurück zum Zitat Munro CJ, Stabenfeldt G, Cragun J, Addiego L, Overstreet J, Lasley B. Relationship of serum estradiol and progesterone concentrations to the excretion profiles of their major urinary metabolites as measured by enzyme immunoassay and radioimmunoassay. Clin Chem. 1991;37(6):838–44.PubMed Munro CJ, Stabenfeldt G, Cragun J, Addiego L, Overstreet J, Lasley B. Relationship of serum estradiol and progesterone concentrations to the excretion profiles of their major urinary metabolites as measured by enzyme immunoassay and radioimmunoassay. Clin Chem. 1991;37(6):838–44.PubMed
40.
Zurück zum Zitat Chavez-MacGregor M, van Gils CH, van der Schouw YT, Monninkhof E, van Noord PA, Peeters PH. Lifetime cumulative number of menstrual cycles and serum sex hormone levels in postmenopausal women. Breast Cancer Res Treat. 2008;108(1):101–12.PubMed Chavez-MacGregor M, van Gils CH, van der Schouw YT, Monninkhof E, van Noord PA, Peeters PH. Lifetime cumulative number of menstrual cycles and serum sex hormone levels in postmenopausal women. Breast Cancer Res Treat. 2008;108(1):101–12.PubMed
41.
Zurück zum Zitat Prince M, Guerchet M, Prina M: The global impact of dementia 2013-2050. London: Alzheimer's Disease International; 2013. Prince M, Guerchet M, Prina M: The global impact of dementia 2013-2050. London: Alzheimer's Disease International; 2013.
42.
Zurück zum Zitat United Nations: World population prospects: 2019. In., vol. 145: United Nations; 2019. United Nations: World population prospects: 2019. In., vol. 145: United Nations; 2019.
43.
Zurück zum Zitat Arslan AA, Zeleniuch-Jacquotte A, Lukanova A, Afanasyeva Y, Katz J, Levitz M, Del Priore G, Toniolo P. Effects of parity on pregnancy hormonal profiles across ethnic groups with a diverse incidence of breast cancer. Cancer Epidemiol Biomark Prev. 2006;15(11):2123–30. Arslan AA, Zeleniuch-Jacquotte A, Lukanova A, Afanasyeva Y, Katz J, Levitz M, Del Priore G, Toniolo P. Effects of parity on pregnancy hormonal profiles across ethnic groups with a diverse incidence of breast cancer. Cancer Epidemiol Biomark Prev. 2006;15(11):2123–30.
44.
Zurück zum Zitat Ghosh G, Grewal J, Mannisto T, Mendola P, Chen Z, Xie Y, Laughon SK. Racial/ethnic differences in pregnancy-related hypertensive disease in nulliparous women. Ethn Dis. 2014;24(3):283–9.PubMedPubMedCentral Ghosh G, Grewal J, Mannisto T, Mendola P, Chen Z, Xie Y, Laughon SK. Racial/ethnic differences in pregnancy-related hypertensive disease in nulliparous women. Ethn Dis. 2014;24(3):283–9.PubMedPubMedCentral
45.
Zurück zum Zitat Humphries KH, Westendorp IC, Bots ML, Spinelli JJ, Carere RG, Hofman A, Witteman JC. Parity and carotid artery atherosclerosis in elderly women: the Rotterdam study. Stroke. 2001;32(10):2259–64.PubMed Humphries KH, Westendorp IC, Bots ML, Spinelli JJ, Carere RG, Hofman A, Witteman JC. Parity and carotid artery atherosclerosis in elderly women: the Rotterdam study. Stroke. 2001;32(10):2259–64.PubMed
46.
Zurück zum Zitat Koropeckyj-Cox T, Call VRA: Characteristics of Older Childless Persons and Parents: Cross-National Comparisons. J Fam Issues. 2007;28(10):1362–414. Koropeckyj-Cox T, Call VRA: Characteristics of Older Childless Persons and Parents: Cross-National Comparisons. J Fam Issues. 2007;28(10):1362–414.
47.
Zurück zum Zitat Barbieri RL: Female infertility. In: Yen and Jaffe's Reproductive Endocrinology. 8th edn. Philadelphia: Elsevier; 2019:556–81. Barbieri RL: Female infertility. In: Yen and Jaffe's Reproductive Endocrinology. 8th edn. Philadelphia: Elsevier; 2019:556–81.
48.
Zurück zum Zitat Ryan J, Scali J, Carriere I, Amieva H, Rouaud O, Berr C, Ritchie K, Ancelin ML. Impact of a premature menopause on cognitive function in later life. BJOG. 2014;121(13):1729–39.PubMed Ryan J, Scali J, Carriere I, Amieva H, Rouaud O, Berr C, Ritchie K, Ancelin ML. Impact of a premature menopause on cognitive function in later life. BJOG. 2014;121(13):1729–39.PubMed
49.
Zurück zum Zitat Goodman C, Goodman CS, Hur J, Jeyendran RS, Coulam C. The association of Apoprotein E polymorphisms with recurrent pregnancy loss. Am J Reprod Immunol. 2009;61(1):34–8.PubMed Goodman C, Goodman CS, Hur J, Jeyendran RS, Coulam C. The association of Apoprotein E polymorphisms with recurrent pregnancy loss. Am J Reprod Immunol. 2009;61(1):34–8.PubMed
Metadaten
Titel
Does parity matter in women’s risk of dementia? A COSMIC collaboration cohort study
verfasst von
Jong Bin Bae
Darren M. Lipnicki
Ji Won Han
Perminder S. Sachdev
Tae Hui Kim
Kyung Phil Kwak
Bong Jo Kim
Shin Gyeom Kim
Jeong Lan Kim
Seok Woo Moon
Joon Hyuk Park
Seung-Ho Ryu
Jong Chul Youn
Dong Young Lee
Dong Woo Lee
Seok Bum Lee
Jung Jae Lee
Jin Hyeong Jhoo
Juan J. Llibre-Rodriguez
Jorge J. Llibre-Guerra
Adolfo J. Valhuerdi-Cepero
Karen Ritchie
Marie-Laure Ancelin
Isabelle Carriere
Ingmar Skoog
Jenna Najar
Therese Rydberg Sterner
Nikolaos Scarmeas
Mary Yannakoulia
Efthimios Dardiotis
Kenichi Meguro
Mari Kasai
Kei Nakamura
Steffi Riedel-Heller
Susanne Roehr
Alexander Pabst
Martin van Boxtel
Sebastian Köhler
Ding Ding
Qianhua Zhao
Xiaoniu Liang
Marcia Scazufca
Antonio Lobo
Concepción De-la-Cámara
Elena Lobo
Ki Woong Kim
for Cohort Studies of Memory in an International Consortium (COSMIC)
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2020
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-020-01671-1

Weitere Artikel der Ausgabe 1/2020

BMC Medicine 1/2020 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 49 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Sechs Maßnahmen gegen Regelschmerzen – von Krafttraining bis Yoga

05.06.2024 Dysmenorrhö Nachrichten

Um herauszufinden, wie gut sich körperliche Übungen dafür eignen, primäre Dysmenorrhö zu lindern, hat eine Studiengruppe sechs verschiedene Verfahren untersucht. Alle wirkten, doch eine Methode war Favorit.

Intoxikation ohne Alkoholaufnahme: An das Eigenbrauer-Syndrom denken!

05.06.2024 Internistische Diagnostik Nachrichten

Betrunken trotz Alkoholabstinenz? Der Fall einer 50-jährigen Patientin zeigt, dass dies möglich ist. Denn die Frau litt unter dem Eigenbrauer-Syndrom, bei dem durch Darmpilze eine alkoholische Gärung in Gang gesetzt wird.

Diplom, Diplom an der Wand: Wie man in der Telemedizin seriös wirkt

04.06.2024 Telemedizin Nachrichten

Seit den Zeiten der Coronapandemie sind telemedizinische Arztkonsultationen zur Normalität geworden. Wie Frau oder Herr Doktor dabei im günstigsten Licht erscheinen, hat eine Patientenbefragung eruiert.

Typ-2-Diabetes: Ernährungsunsicherheit vervierfacht Risiko für schwere Hypoglykämien

04.06.2024 Typ-2-Diabetes Nachrichten

Wenn ältere Menschen mit Typ-2-Diabetes Schwierigkeiten beim Beschaffen und Zubereiten von Mahlzeiten haben, geht dies mit einem deutlich gesteigerten Risiko für schwere Hypoglykämien einher.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.