Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2014

Open Access 01.12.2014 | Research article

Does plate type influence the clinical outcomes and implant removal in midclavicular fractures fixed with 2.7-mm anteroinferior plates? A retrospective cohort study

verfasst von: Alex K Gilde, Clifford B Jones, Debra L Sietsema, Martin F Hoffmann

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

The purpose of this study was to evaluate surgical healing rates, implant failure, implant removal, and the need for surgical revision with regards to plate type in midshaft clavicle fractures fixed with 2.7-mm anteroinferior plates utilizing modern plating techniques.

Methods

This retrospective exploratory cohort review took place at a level I teaching trauma center and a single large private practice office. A total of 155 skeletally mature individuals with 156 midshaft clavicle fractures between March 2002 and March 2012 were included in the final results. Fractures were identified by mechanism of injury and classified based on OTA/AO criteria. All fractures were fixed with 2.7-mm anteroinferior plates. Primary outcome measurements included implant failure, malunion, nonunion, and implant removal. Secondary outcome measurements included pain with the visual analog scale and range of motion. Statistically significant testing was set at 0.05, and testing was performed using chi-square, Fisher’s exact, Mann–Whitney U, and Kruskall-Wallis.

Results

Implant failure occurred more often in reconstruction plates as compared to dynamic compression plates (p = 0.029). Malunions and nonunions occurred more often in fractures fixed with reconstruction plates as compared to dynamic compression plates, but it was not statistically significant. Implant removal attributed to irritation or implant prominence was observed in 14 patients. Statistically significant levels of pain were seen in patients requiring implant removal (p = 0.001) but were not associated with the plate type.

Conclusions

Anteroinferior clavicular fracture fixation with 2.7-mm dynamic compression plates results in excellent healing rates with low removal rates in accordance with the published literature. Given higher rates of failure, 2.7-mm reconstruction plates should be discouraged in comparison to stiffer and more reliable 2.7-mm dynamic compression plates.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13018-014-0055-x) contains supplementary material, which is available to authorized users.

Competing interests

The authors do not have any interest that might be interpreted as influencing the research, and ethical standards were followed in the conduct and dissemination of the study. The authors did not receive grants or outside funding in support of their research or preparation of the manuscript.

Authors’ contributions

AKG participated in the conception and design of the study, performed the data acquisition, and drafted the manuscript. DLS participated in the conception of the study and performed the statistical analysis. CBJ and MFH participated in the conception and design of the study, provided administrative support, and supervision of the study. All authors carried out the critical revision of the manuscript, read and approved the final manuscript.

Introduction

For displaced clavicular fractures, plate fixation improves clinical outcomes and patient satisfaction as compared to nonoperative treatment [[1]–[4]]. However, plate fixation is related to implant prominence and skin irritation and has previously resulted in implant removal rates of 9% to 64% [[3]-[6]]. A recent systematic review of eleven studies showed that nonunion rates after plate fixation were less than 10% in all except one study [[6]]. Although clavicle fixation has been controversial regarding its use and plate location, recent studies have shown efficient healing, few complications, and excellent return to function for anteroinferior plating [[7]–[9]]. Advantages of this technique are avoidance of potentially dangerous infraclavicular structures and reduction of patient complaints due to implant prominence [[7]].
Regarding stability, a recent biomechanical study showed inferior nonlocking plates to be stiffer than superior locking plates [[10]]. In addition, a finite element study showed that anteroinferior plating best resists the effect of most daily living forces acting on the clavicle and can be considered more mechanically physiological [[11]]. The anteroinferior plate is perpendicular to the primary force vector and has greater resistance to axial compression of the clavicle during motions of abduction and flexion [[10]]. Taking these mechanical findings into consideration and following the effort to reduce implant prominence, anteroinferior plating has been performed using 2.7-mm plates [[7],[12]].
Two biomechanical studies have found greater stability with compression plates as compared to reconstruction plates [[13],[14]]. Thus, the primary purpose of this study was to evaluate the rates of fracture union, nonunion, malunion, implant failure, and implant removal with regards to plate type (compression plates vs. reconstruction plates) in midshaft clavicle fractures fixed with 2.7-mm anteroinferior plates utilizing modern plating techniques.

Patients and methods

This study was an Institutional Review Board (IRB)-approved retrospective exploratory cohort review of operatively treated midshaft clavicle fractures at a single large private practice associated with a level I teaching trauma center. Consecutive patients were identified by Current Procedural Terminology (CPT) coding for operative (23515) and nonoperative (23500 and 23505) treatment of diaphyseal clavicle fracture that had initial treatment from 1 March 2002 through 31 March 2012. A total of 718 clavicle fractures were diagnosed and treated during this time period. Operative criteria included significant clavicular shortening (greater than 20 mm on either AP, cephalad, or caudal radiographs), associated neurological injury, associated unstable scapular injury (glenoid neck, acromion, coracoid, or intra-articular glenoid fractures), double suspensory shoulder instability, open clavicular fractures, published criteria for displacement, skin compromise, or polytrauma [[1],[2],[15]–[17]]. Inclusion criteria were skeletally mature (age equal to or greater than 18 years), diaphyseal clavicle fracture that met operative indications, open reduction internal fixation (ORIF) via an anterior-inferior approach, internal fixation with 2.7-mm plate and screws, and a minimum 3 months follow-up confirming radiographic union and return to previous activities and/or employment was established. A minimum follow-up was chosen based on a previous study which showed patients with early fracture healing returned to previous activities at the 3-month interval and skin or soft tissue irritation, fixation failure, or nonunion were also commonly noted by 3 months [[12]]. A total of 249 midshaft diaphyseal clavicular fractures fulfilled the inclusion criteria. Ninety-three fractures were excluded due to pathological fracture (1), death due to other injuries (1), initial nonoperative treatment with subsequent nonunion (3), lost to follow-up (6), insufficient records/radiographs (17), and follow-up less than 3 months (65). One hundred fifty-six fractures (156) in 155 patients formed the basis of the study.
Patient demographics for all fractures and primary outcomes are displayed in Table 1. Fractures occurred in 41% on the right and in 59% on the left hand side. The mean follow-up was 8.9 months (3 to 54). Fractures were caused by a high-energy mechanism in 92.3% of patients (Table 2). Three fractures were classified as open (one type I and two type II according to Gustilo/Anderson). Associated injuries were found in 82 of the 156 patients (52.6%). Musculoskeletal injuries included 35 ipsilateral shoulder girdle extremity fractures (22.4%), 25 scapula fractures (16.0%), 17 rib fractures (10.9%), and 3 proximal humeral fractures (1.9%).
Table 1
Patient demographics by plate type and primary outcomes
 
Recon
DCP
pvalue
All fractures
n = 71
n = 85
 
  Age
39 ± 15
41 ± 15
0.431
  Sex
  
0.071
  Male
43, 60.6%
63, 74.1%
 
  Female
28, 39.4%
22, 25.9%
 
  BMI (kg/m2)
25.5 ± 4.9
25.9 ± 5.1
0.730
  Current smoker
19, 26.8%
19, 22.4%
0.523
United fractures
n = 65
n = 84
 
  Age
39 ± 15
41 ± 15
0.380
  Sex
  
0.160
  Male
41, 63.1%
62, 73.8%
 
  Female
24, 36.9%
22, 26.2%
 
  BMI (kg/m2)
25.6 ± 4.9
25.8 ± 5.1
0.829
  Current smoker
16, 24.6%
18, 21.4%
0.646
Nonunion
n = 5
n = 1
 
  Age
42 ± 15
32
0.566
  Sex
  
0.121
  Male
1, 20%
1, 100%
 
  Female
4, 80%
0
 
  BMI (kg/m2)
25.2 ± 4.3
32.1
 
  Current smoker
3, 60 %
1, 100%
0.667
Malunion
n = 2
n = 0
 
  Age
32 ± 4
 
UA
  Sex
  
UA
  Male
2, 100%
  
  Female
0
  
  BMI (kg/m2)
41.3
 
UA
  Current smoker
0
 
UA
Implant failure
n = 6
n = 1
 
  Age
38 ± 15
19
0.316
  Sex
  
0.571
  Male
3, 50%
1, 100%
 
  Female
3, 50%
0
 
  BMI (kg/m2)
28.7 ± 8.1
19.2
0.348
  Current smoker
3, 50%
0
0.571
UA, unable to assess; none in comparator group. Continuous variables reported as mean ± standard deviation. Dichotomous variables reported as number, percentage.
Table 2
Mechanism of injury
Mechanism
Number
Percentage
High energy
  
Motor cycle accident (MCA)
45
28.9
Motor vehicle accident (MVA)
37
23.7
Fall
21
13.5
All-terrain vehicle, snowmobile, or watercraft
20
12.8
Bicycling
13
8.3
Sports
6
3.8
Pedestrian versus car
2
1.3
Low-energy fall
9
5.8
Others
3
1.9
All patients were treated by four fellowship trained orthopedic trauma surgeons utilizing similar philosophies and modern techniques of plate fixation [[12]]. Patients were evaluated at regular intervals of 2, 6, 12 weeks, and ongoing according to clinical necessity including, but not limited to, pain, plate irritation, plate prominence, or not achieving complete clinical healing. The attending surgeon was responsible for clinically assessing the patient, interpreting radiographs, and determining primary healing outcomes. Pain was recorded utilizing the visual analog scale from a standardized questionnaire that the patient filled out at scheduled office visits [[18]]. Range of motion (ROM) using basic clinical measurements was recorded. Radiographs consisted of cephalad and caudal views obtained at each interval [[19]]. Clavicular displacement was measured using digital software with picture archiving and communication system (PACS) or manually using protractors. Injury patterns were classified according to OTA/AO (Orthopaedic Trauma Association/Arbeitsgemeinschaft fur Osteosynthesefragen) classification [[20]]. Based on reported clavicle union rates at 10 to 16 weeks following operative fixation [[3],[7],[12],[21]], a nonunion was defined as a painful, persistent fracture line with no radiographic progression of healing over three consecutive months with or without fixation failure which required surgical revision. A malunion was defined as a fracture that achieved a malpositioned bony union stable from the initial reduction and fixation or a reduction that changed with time. Any change in implant position or alignment regardless of union seen on serial radiographs was deemed an implant failure.
Statistical analysis was completed using PASW® version 18 (IBM, Armonk, NY, USA). Descriptive statistics provided percent, range, mean, and median. Chi-square test was used to determine associations based on plate type; Fisher’s exact test, to determine comparisons when small ordinal groups existed such as with tobacco use and malunion; Mann–Whitney U test, to calculate the comparisons for plate length, working length, lag screws, and cortical screws; and Kruskall-Wallis, to calculate comparisons for OTA/AO classification. Spearman’s rho determined correlation between pain and complications. Significance was set at less than 0.05.

Results

Fracture classification for all fractures and primary outcomes is shown in Table 3 and Figure 1. The plate utilization and technical characteristics of fracture fixation based on primary outcome are described in Table 4 and Figure 2. One hundred fifty fractures (96.2%) healed radiographically within 3 months of follow-up. Six of 156 (3.8%) fractures resulted in a nonunion (Figure 3). None of those fractures were open. Four of 39 (10.3%) tobacco users had nonunions as compared to 2 of 116 (1.7%) nontobacco users (p = 0.035). Two (one angulation and one translation) of 156 (1.3%) fractures, both treated with recon plates, were classified as a malunion (Figure 4). None of those fractures were open, and no malunions were associated with pain or necessitated implant removal. Details of nonunion and malunion cases are displayed in Table 5. Implant failure occurred in 7 of 156 fractures (4.5%; 4 in nonunions, 2 in malunions, and 1 in a union). The implant failure observed in the dynamic compression plate (DCP) was the united fracture. The patient sustained a large axial load which resulted in a new clavicular fracture adjacent to the healed fracture with subsequent plate deformation.
Table 3
Comparison of OTA/AO classification for all fractures and primary outcomes
OTA/AO classification
Recon 71, 45.5%
DCP85, 54.5%
pvalue
All fracturesa
   
  B1
35, 49.3%
34, 40.0%
 
  B2
27, 38.0%
36, 42.4%
0.371
  B3
8, 11.3%
15, 17.6%
 
United fracturesa
   
  B1
31, 49.2%
33, 39.3%
 
  B2
24, 38.1%
36, 42.9%
0.446
  B3
8, 12.7%
15, 17.9%
 
Nonunion
   
  B1
3, 60.0%
1, 100%
 
  B2
2, 40.0%
0
0.480
  B3
0
0
 
Malunion
   
  B1
1, 50%
0
 
  B2
1, 50%
0
UA
  B3
0
0
 
Implant failurea
   
  B1
4, 66.7%
1, 100%
 
  B2
2, 33.3%
0
0.714
  B3
0
0
 
aOne fracture was unclassifiable secondary to transfer and lack of preoperative radiographs. UA, unable to assess; none in comparator group.
Table 4
Technical characteristics of all fractures and primary outcomes
 
Recon
DCP
pvalue
All fractures
71, 45.5%
85, 54.5%
 
  Displacement (mm)a
14.4 ± 7.4 (0 to 39)
16.7 ± 8.4 (0 to 36)
0.106
  Plate lengthb (holes)
12 (8 to 16)
12 (6 to 12)
<0.001
  Working lengthb (holes)
1 (0 to 5)
1 (0 to 4)
0.184
  Cortical screws usedb
8 (6 to 12)
8 (5 to 10)
0.001
  Lag screws usedb
1 (0 to 3)
1 (0 to 4)
0.298
United fractures
64, 90.1%
84, 98.8%
0.014
  Plate length (holes)
12 (8 to 16)
12 (6 to 12)
<0.001
  Working length (holes)
2 (0 to 5)
1 (0 to 4)
0.123
  Lag screws used
1 (0 to 3)
1 (0 to 4)
0.501
Nonunion
5, 7.0%
1, 1.2%
0.058
  Plate length (holes)
14 (10 to 16)
10
0.228
  Working length (holes)
1 (0 to 3)
3
0.206
  Lags screws used
0 (0 to 2)
1
0.299
Malunion
2, 2.8%
0, 0%
0.119
  Plate length (holes)
14 (12 to 16)
 
UA
  Working length (holes)
2.5 (1.4)
 
UA
  Lags screws used
0.5 (0 to 1)
 
UA
Implant failure
6, 8.5%
1, 1.2%
0.029
  Plate length (holes)
14 (10 to 16)
10
0.190
  Working length (holes)
1 (0 to 4)
0
0.190
  Lags screws used
0.5 (0 to 2)
1
0.589
aStatistics are reported as the mean ± standard deviation (range); bstatistics are reported as the median (range). UA, unable to assess; none in comparator group.
Table 5
Characteristics of malunion and nonunions
 
Gender
Age
Tobacco use
Mechanism of injury
OTA classification
Plate type
Number of holes/working length/cortical screws/lag screws
Malunion
Male
29
Past
High-energy fall
15 Type B2
Recon
16/4/8/1
Male
34
No
MCA
15 Type B1
Recon
12/1/7/0
Nonunion
Male
39
Current
ATV
15 Type B2
Recon
12/1/8/0
Female
59
Current
MCA
15 Type B1
Recon
14/1/9/0
Female
47
No
MVA
15 Type B2
Recon
16/3/10/2
Female
47
Current
MVA
15 Type B1
Recon
10/0/6/0
Female
19
Past
Low-energy fall
15 Type B1
Recon
14/1/9/0
Male
32
Current
MVA
15 Type B1
DCP
10/3/6/1
MCA, motorcycle accident; ATV, all-terrain vehicle; MVA, motor vehicle accident.
Postoperative ROM averaged 170.9° of forward flexion (range, 70° to 180°) and 168.4° of abduction (range, 70° to 180°). Eight of the 14 patients (57.1%) had associated injuries. At the last follow-up visit, 107 (68.6%) patients did not report any pain and pain was not associated with associated injuries (p = 0.186) (Table 6). Pain did occur more often in those that had implant removal (p < 0.001). Fourteen of 156 fractures (9.0%) had implant removal for skin irritation (7.7%) or prominence (1.3%) (Table 7), but removal was not due to plate type (9/71, 12.7% recon vs. 11/85, 12.9% DCP, p = 0.961). Twelve of the 14 (85.7%) patients stated pain improvement with implant removal, but 2 of 14 (14.3%) patients claimed continued pain despite removal. There were no infections or re-fractures associated with implant removal.
Table 6
Reported pain at final follow-up
Pain
Number (n = 156)
Percentage of total
Number with associated injuries (n = 82)
Percentage with associated injuries
None (VAS 0)
107
68.6
52
63.4
Mild (VAS 1 to 3)
37
23.7
25
30.5
Moderate (VAS 4 to 6)
1
0.6
0
0
Severe (VAS 7 to 10)
11
7.1
5
6.1
VAS, visual analog scale.
Table 7
Reasons for implant removal
Reason for implant removal
Number
Percentage
Recon
DCP
Skin/soft tissue irritation
12
7.7
5
7
Prominence
2
1.3
0
2
Othera
1
0.6
0
1
aImplant failure after union that resulted in a new fracture.

Discussion

In many prior studies, clavicular shaft fractures were mainly treated nonoperatively [[22]–[24]]. A growing body of evidence supports earlier and more predictable results with operative reduction and stabilization of unstable diaphyseal clavicular fractures [[2],[3]]. Modern plate fixation techniques provide reliable healing rates. However, optimal plate position, size, and type remain controversial.
The clavicle contour and anatomy is curved in multiple planes. The recon plate is easier to contour in all planes than the stiffer DCP, which allows bending only along the length of the plate. For superior plating, a recon plate or precontoured plate can fit the ‘S’-shaped anatomy more precisely. For anteroinferior plating, the DCP or the recon can be bent to conform to the anatomy very well. Previous biomechanical studies have shown that the DCP demonstrated greater resistance to bending and torque stressors as compared to recon plates [[13],[14]]. This study demonstrated that standard 2.7-mm DCP provides adequate fracture site stability when applied appropriately. Appropriate modern plating techniques entail longer plates (≥10 holes) balanced over the fracture and comminution zone with adequate cortical screw fixation (≥6 cortices) and liberal interfragmentary screw fixation for larger fragments. Dynamic compression plating performs well with extremely low rates of nonunion and implant failure. Despite utilizing modern plating techniques, reconstruction plating does not perform as well as DCPs and are not recommended. In comparison to the 1.69% nonunion rate reported after plate fixation in a recent meta-analysis [[25]], the 2.7-mm DCP healing rates employing modern techniques should produce similar healing and low nonunion rates as exhibited by 1.2% in this study.
The two malunions occurred with recon plates in this study. Even though the recon plate allows for easier plate bending and accommodation, the plate is too pliable for clavicular stabilization and the complex shoulder girdle movements. The increasing stiffness with modern techniques of longer plates and interfragmentary fixation still leaves the recon plate too flexible for predictable stability and healing. Since the outlet view of the clavicle demands the reduction to be straight with apex cephalad angulation, the straight DCP facilitates initial reduction and final healing in this plane. The recon plate does not resist plastic apex angular deformation with time. Obese patients had a higher rate of clavicular malunions than smaller patients. We cannot fully explain this result except that obese patients may require the use of the upper extremities for mobility [[26]].
Robinson reported an incidence of 15/100,000 displaced or comminuted midshaft clavicle fractures per year [[27]]. Studies have reported implant removal rates of 9% to 64% [[4]–[6]], and our study resulted in a similar low removal rate of 9.0%. Based on Robinson’s rate, this would result in an additional 1.5/100,000 surgical procedures per year as compared to a maximum of 10/100,000 at 64% removal. Only one patient had a prominent implant and a lateral plate end that could have potentially been avoided with improved plate alignment or centrally applying the plate to the bone over the fracture and at either end. Preliminary fixation at both ends of the plate and outlet imaging optimize plate positioning and lessen prominence.
The major limitation of this study is its retrospective design. With a high number of patients excluded secondary to less than 3 months follow-up, there is a potential for selection bias. Varying associated shoulder girdle injuries could influence clavicular fixation stability, therapy intervention, and persistent pain. The strengths of this study are related to a large consecutive series of acute clavicular midshaft fractures operated with similar plating techniques and philosophies. Nevertheless, despite being a relatively large series, there were insufficient numbers to statistically confirm inferior results of nonunion and malunion in recon plates compared to DCP. Even though larger series would potentially confirm this, we would not recommend utilizing anteroinferior recon plates. Modern fracture fixation techniques were utilized. Despite not having greater than 1 year follow-up in all patients, they were followed until fracture healing was complete, return to function was demonstrated, and plate irritation was stabilized. Unnecessary office visits and radiographic imaging are costly and not warranted.

Conclusions

Anteroinferior clavicular fracture fixation with 2.7-mm dynamic compression plates results in excellent healing rates with removal rates consistent with the lower end of the range in published literature. Given higher rates of failure, 2.7-mm reconstruction plates should be discouraged in comparison to stiffer and more reliable 2.7-mm dynamic compression plates.

Acknowledgements

We would like to thank Drs. Terrence Endres, James Ringler, and David Bielema for the contribution of their patients and surgical skill.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors do not have any interest that might be interpreted as influencing the research, and ethical standards were followed in the conduct and dissemination of the study. The authors did not receive grants or outside funding in support of their research or preparation of the manuscript.

Authors’ contributions

AKG participated in the conception and design of the study, performed the data acquisition, and drafted the manuscript. DLS participated in the conception of the study and performed the statistical analysis. CBJ and MFH participated in the conception and design of the study, provided administrative support, and supervision of the study. All authors carried out the critical revision of the manuscript, read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Lazarides S, Zafiropoulos G: Conservative treatment of fractures at the middle third of the clavicle: the relevance of shortening and clinical outcome. J Shoulder Elbow Surg. 2006, 15: 191-194. 10.1016/j.jse.2005.08.007.CrossRefPubMed Lazarides S, Zafiropoulos G: Conservative treatment of fractures at the middle third of the clavicle: the relevance of shortening and clinical outcome. J Shoulder Elbow Surg. 2006, 15: 191-194. 10.1016/j.jse.2005.08.007.CrossRefPubMed
2.
Zurück zum Zitat Zlowodzki M, Zelle BA, Cole PA, Jeray K, McKee MD: Treatment of acute midshaft clavicle fractures: systematic review of 2144 fractures: on behalf of the Evidence-Based Orthopaedic Trauma Working Group. J Orthop Trauma. 2005, 19: 504-507. 10.1097/01.bot.0000172287.44278.ef.CrossRefPubMed Zlowodzki M, Zelle BA, Cole PA, Jeray K, McKee MD: Treatment of acute midshaft clavicle fractures: systematic review of 2144 fractures: on behalf of the Evidence-Based Orthopaedic Trauma Working Group. J Orthop Trauma. 2005, 19: 504-507. 10.1097/01.bot.0000172287.44278.ef.CrossRefPubMed
3.
Zurück zum Zitat McKee MD, Kreder HJ, Mandel S, McCormack R, Reindl R, Pugh DMW, Sanders D, Buckley R: Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures - a multicenter, randomized clinical trial. J Bone Joint Surg Am. 2007, 89A: 1-10. McKee MD, Kreder HJ, Mandel S, McCormack R, Reindl R, Pugh DMW, Sanders D, Buckley R: Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures - a multicenter, randomized clinical trial. J Bone Joint Surg Am. 2007, 89A: 1-10.
4.
Zurück zum Zitat Kulshrestha V, Roy T, Audige L: Operative versus nonoperative management of displaced midshaft clavicle fractures: a prospective cohort study. J Orthop Trauma. 2011, 25: 31-38. 10.1097/BOT.0b013e3181d8290e.CrossRefPubMed Kulshrestha V, Roy T, Audige L: Operative versus nonoperative management of displaced midshaft clavicle fractures: a prospective cohort study. J Orthop Trauma. 2011, 25: 31-38. 10.1097/BOT.0b013e3181d8290e.CrossRefPubMed
5.
Zurück zum Zitat Singh R, Rambani R, Kanakaris N, Giannoudis PV: A 2-year experience, management and outcome of 200 clavicle fractures. Injury. 2012, 43: 159-163. 10.1016/j.injury.2011.04.008.CrossRefPubMed Singh R, Rambani R, Kanakaris N, Giannoudis PV: A 2-year experience, management and outcome of 200 clavicle fractures. Injury. 2012, 43: 159-163. 10.1016/j.injury.2011.04.008.CrossRefPubMed
6.
Zurück zum Zitat Wijdicks FJG, Van der Meijden OAJ, Millett PJ, Verleisdonk E, Houwert RM: Systematic review of the complications of plate fixation of clavicle fractures. Arch Orthop Trauma Surg. 2012, 132: 617-625. 10.1007/s00402-011-1456-5.PubMedCentralCrossRefPubMed Wijdicks FJG, Van der Meijden OAJ, Millett PJ, Verleisdonk E, Houwert RM: Systematic review of the complications of plate fixation of clavicle fractures. Arch Orthop Trauma Surg. 2012, 132: 617-625. 10.1007/s00402-011-1456-5.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Collinge C, Devinney S, Herscovici D, DiPasquale T, Sanders R: Anterior-inferior plate fixation of middle-third fractures and nonunions of the clavicle. J Orthop Trauma. 2006, 20: 680-686. 10.1097/01.bot.0000249434.57571.29.CrossRefPubMed Collinge C, Devinney S, Herscovici D, DiPasquale T, Sanders R: Anterior-inferior plate fixation of middle-third fractures and nonunions of the clavicle. J Orthop Trauma. 2006, 20: 680-686. 10.1097/01.bot.0000249434.57571.29.CrossRefPubMed
8.
Zurück zum Zitat Kloen P, Werner CML, Stufkens SAS, Helfet DL: Anteroinferior plating of midshaft clavicle nonunions and fractures. Oper Orthop Traumatol. 2009, 21: 170-179. 10.1007/s00064-009-1705-8.CrossRefPubMed Kloen P, Werner CML, Stufkens SAS, Helfet DL: Anteroinferior plating of midshaft clavicle nonunions and fractures. Oper Orthop Traumatol. 2009, 21: 170-179. 10.1007/s00064-009-1705-8.CrossRefPubMed
9.
Zurück zum Zitat Galdi B, Yoon RS, Choung EW, Reilly MC, Sirkin M, Smith WR, Liporace FA: Anteroinferior 2.7-mm versus 3.5-mm plating for AO/OTA type B clavicle fractures: a comparative cohort clinical outcomes study. J Orthop Trauma. 2013, 27: 121-125. 10.1097/BOT.0b013e3182693f32.CrossRefPubMed Galdi B, Yoon RS, Choung EW, Reilly MC, Sirkin M, Smith WR, Liporace FA: Anteroinferior 2.7-mm versus 3.5-mm plating for AO/OTA type B clavicle fractures: a comparative cohort clinical outcomes study. J Orthop Trauma. 2013, 27: 121-125. 10.1097/BOT.0b013e3182693f32.CrossRefPubMed
10.
Zurück zum Zitat Taylor PRP, Day RE, Nicholls RL, Rasmussen J, Yates PJ, Stoffel KK: The comminuted midshaft clavicle fracture: a biomechanical evaluation of plating methods. Clin Biomech. 2011, 26: 491-496. 10.1016/j.clinbiomech.2010.12.007.CrossRef Taylor PRP, Day RE, Nicholls RL, Rasmussen J, Yates PJ, Stoffel KK: The comminuted midshaft clavicle fracture: a biomechanical evaluation of plating methods. Clin Biomech. 2011, 26: 491-496. 10.1016/j.clinbiomech.2010.12.007.CrossRef
11.
Zurück zum Zitat Favre P, Kloen P, Helfet DL, Werner CML: Superior versus anteroinferior plating of the clavicle: a finite element study. J Orthop Trauma. 2011, 25: 661-665. 10.1097/BOT.0b013e3182143e06.CrossRefPubMed Favre P, Kloen P, Helfet DL, Werner CML: Superior versus anteroinferior plating of the clavicle: a finite element study. J Orthop Trauma. 2011, 25: 661-665. 10.1097/BOT.0b013e3182143e06.CrossRefPubMed
12.
Zurück zum Zitat Jones CB, Sietsema DL, Ringler JR, Endres TJ, Hoffmann MF: Results of anterior-inferior 2.7-mm dynamic compression plate fixation of midshaft clavicular fractures. J Orthop Trauma. 2013, 27: 126-129. 10.1097/BOT.0b013e318254883a.CrossRefPubMed Jones CB, Sietsema DL, Ringler JR, Endres TJ, Hoffmann MF: Results of anterior-inferior 2.7-mm dynamic compression plate fixation of midshaft clavicular fractures. J Orthop Trauma. 2013, 27: 126-129. 10.1097/BOT.0b013e318254883a.CrossRefPubMed
13.
Zurück zum Zitat Eden L, Doht S, Frey SP, Ziegler D, Stoyhe J, Fehske K, Blunk T, Meffert RH: Biomechanical comparison of the locking compression superior anterior clavicle plate with seven and ten hole reconstruction plates in midshaft clavicle fracture stabilisation. Int Orthop. 2012, 36: 2537-2543. 10.1007/s00264-012-1671-x.PubMedCentralCrossRefPubMed Eden L, Doht S, Frey SP, Ziegler D, Stoyhe J, Fehske K, Blunk T, Meffert RH: Biomechanical comparison of the locking compression superior anterior clavicle plate with seven and ten hole reconstruction plates in midshaft clavicle fracture stabilisation. Int Orthop. 2012, 36: 2537-2543. 10.1007/s00264-012-1671-x.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Drosdowech DS, Manwell SEE, Ferreira LM, Goel DP, Faber KJ, Johnson JA: Biomechanical analysis of fixation of middle third fractures of the clavicle. J Orthop Trauma. 2011, 25: 39-43. 10.1097/BOT.0b013e3181d8893a.CrossRefPubMed Drosdowech DS, Manwell SEE, Ferreira LM, Goel DP, Faber KJ, Johnson JA: Biomechanical analysis of fixation of middle third fractures of the clavicle. J Orthop Trauma. 2011, 25: 39-43. 10.1097/BOT.0b013e3181d8893a.CrossRefPubMed
15.
Zurück zum Zitat Potter JM, Jones C, Wild LM, Schemitsch EH, McKee MD: Does delay matter? The restoration of objectively measured shoulder strength and patient-oriented outcome after immediate fixation versus delayed reconstruction of displaced midshaft fractures of the clavicle. J Shoulder Elbow Surg. 2007, 16: 514-518. 10.1016/j.jse.2007.01.001.CrossRefPubMed Potter JM, Jones C, Wild LM, Schemitsch EH, McKee MD: Does delay matter? The restoration of objectively measured shoulder strength and patient-oriented outcome after immediate fixation versus delayed reconstruction of displaced midshaft fractures of the clavicle. J Shoulder Elbow Surg. 2007, 16: 514-518. 10.1016/j.jse.2007.01.001.CrossRefPubMed
16.
Zurück zum Zitat Kim W, McKee MD: Management of acute clavicle fractures. Orthop Clin North Am. 2008, 39: 491-505. 10.1016/j.ocl.2008.05.006.CrossRefPubMed Kim W, McKee MD: Management of acute clavicle fractures. Orthop Clin North Am. 2008, 39: 491-505. 10.1016/j.ocl.2008.05.006.CrossRefPubMed
17.
Zurück zum Zitat Altamimi SA: Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures. Surgical technique. J Bone and Joint Surg Am. 2008, 90 (2): 1-8. Altamimi SA: Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures. Surgical technique. J Bone and Joint Surg Am. 2008, 90 (2): 1-8.
18.
Zurück zum Zitat Scott J, Huskisson EC: Graphic representation of pain. Pain. 1976, 2: 175-184. 10.1016/0304-3959(76)90113-5.CrossRefPubMed Scott J, Huskisson EC: Graphic representation of pain. Pain. 1976, 2: 175-184. 10.1016/0304-3959(76)90113-5.CrossRefPubMed
19.
Zurück zum Zitat Sharr JRP, Mohammed KD: Optimizing the radiographic technique in clavicular fractures. J Shoulder Elbow Surg. 2003, 12: 170-172. 10.1067/mse.2003.25.CrossRefPubMed Sharr JRP, Mohammed KD: Optimizing the radiographic technique in clavicular fractures. J Shoulder Elbow Surg. 2003, 12: 170-172. 10.1067/mse.2003.25.CrossRefPubMed
20.
Zurück zum Zitat Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audige L: Fracture and dislocation classification compendium-2007 - Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma. 2007, 21: S1-S133. 10.1097/00005131-200711101-00001.CrossRefPubMed Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audige L: Fracture and dislocation classification compendium-2007 - Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma. 2007, 21: S1-S133. 10.1097/00005131-200711101-00001.CrossRefPubMed
21.
Zurück zum Zitat Smekal V, Irenberger A, Struve P, Wambacher M, Krappinger D, Kralinger FS: Elastic stable intramedullary nailing versus nonoperative treatment of displaced midshaft clavicular fractures - a randomized, controlled, clinical trial. J Orthop Trauma. 2009, 23: 106-112. 10.1097/BOT.0b013e318190cf88.CrossRefPubMed Smekal V, Irenberger A, Struve P, Wambacher M, Krappinger D, Kralinger FS: Elastic stable intramedullary nailing versus nonoperative treatment of displaced midshaft clavicular fractures - a randomized, controlled, clinical trial. J Orthop Trauma. 2009, 23: 106-112. 10.1097/BOT.0b013e318190cf88.CrossRefPubMed
22.
Zurück zum Zitat Smekal V, Oberladstaetter J, Struve P, Krappinger D: Shaft fractures of the clavicle: current concepts. Arch Orthop Trauma Surg. 2009, 129: 807-815. 10.1007/s00402-008-0775-7.CrossRefPubMed Smekal V, Oberladstaetter J, Struve P, Krappinger D: Shaft fractures of the clavicle: current concepts. Arch Orthop Trauma Surg. 2009, 129: 807-815. 10.1007/s00402-008-0775-7.CrossRefPubMed
23.
Zurück zum Zitat Neer CS: Nonunion of the clavicle. JAMA. 1960, 172: 1006-1011. 10.1001/jama.1960.03020100014003.CrossRef Neer CS: Nonunion of the clavicle. JAMA. 1960, 172: 1006-1011. 10.1001/jama.1960.03020100014003.CrossRef
24.
Zurück zum Zitat Rowe CR: An atlas of anatomy and treatment of midclavicular fractures. Clin Orthop Relat Res. 1968, 58: 29-42. 10.1097/00003086-196805000-00006.CrossRefPubMed Rowe CR: An atlas of anatomy and treatment of midclavicular fractures. Clin Orthop Relat Res. 1968, 58: 29-42. 10.1097/00003086-196805000-00006.CrossRefPubMed
25.
Zurück zum Zitat McKee RC, Whelan DB, Schemitsch EH, McKee MD: Operative versus nonoperative care of displaced midshaft clavicular fractures: a meta-analysis of randomized clinical trials. J Bone Joint Surg Am. 2012, 94A: 675-684. McKee RC, Whelan DB, Schemitsch EH, McKee MD: Operative versus nonoperative care of displaced midshaft clavicular fractures: a meta-analysis of randomized clinical trials. J Bone Joint Surg Am. 2012, 94A: 675-684.
26.
Zurück zum Zitat Riddiford-Harland DL, Steele JR, Baur LA: Upper and lower limb functionality: are these compromised in obese children?. Int J Pediatr Obes. 2006, 1: 42-49. 10.1080/17477160600586606.CrossRefPubMed Riddiford-Harland DL, Steele JR, Baur LA: Upper and lower limb functionality: are these compromised in obese children?. Int J Pediatr Obes. 2006, 1: 42-49. 10.1080/17477160600586606.CrossRefPubMed
27.
Zurück zum Zitat Robinson CM: Fractures of the clavicle in the adult - epidemiology and classification. J Bone Joint Surg-British. 1998, 80B: 476-484. 10.1302/0301-620X.80B3.8079.CrossRef Robinson CM: Fractures of the clavicle in the adult - epidemiology and classification. J Bone Joint Surg-British. 1998, 80B: 476-484. 10.1302/0301-620X.80B3.8079.CrossRef
Metadaten
Titel
Does plate type influence the clinical outcomes and implant removal in midclavicular fractures fixed with 2.7-mm anteroinferior plates? A retrospective cohort study
verfasst von
Alex K Gilde
Clifford B Jones
Debra L Sietsema
Martin F Hoffmann
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2014
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-014-0055-x

Weitere Artikel der Ausgabe 1/2014

Journal of Orthopaedic Surgery and Research 1/2014 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.